Modified Noise for Evaluation on Graphics Hardware

Marc Olano

Computer Science and Electrical Engineering
University of Maryland, Baltimore County

Graphics Hardware 2005
Introduction & Background

Modifications

Conclusion
Outline

Introduction & Background
 Noise?
 Perlin noise

Modifications

Conclusion
Why Noise?

- Introduced by [Perlin, 1985]
 - Heavily used in production animation
 - Technical Achievement Oscar in 1997
- “Salt,” adds spice to shaders
Why Noise?

- Introduced by [Perlin, 1985]
 - Heavily used in production animation
 - Technical Achievement Oscar in 1997
- “Salt,” adds spice to shaders
Noise Characteristics

- Random
 - No correlation between distant values
- Repeatable/deterministic
 - Same argument always produces same value
- Band-limited
 - Most energy in one octave (e.g. between f & $2f$)
Noise Characteristics

- Random
 - No correlation between distant values
- Repeatable/deterministic
 - Same argument always produces same value
- Band-limited
 - Most energy in one octave (e.g. between f & 2f)
Noise Characteristics

- Random
 - No correlation between distant values
- Repeatable/deterministic
 - Same argument always produces same value
- Band-limited
 - Most energy in one octave (e.g. between f & $2f$)

![Graph showing noise characteristics](image)
Gradient Noise

- Original Perlin noise [Perlin, 1985]
- Perlin Improved noise [Perlin, 2002]
 - Lattice based
 - Value=0 at integer lattice points
 - Gradient defined at integer lattice
 - Interpolate between
 - 1/2 to 1 cycle each unit
Gradient Noise

- Original Perlin noise [Perlin, 1985]
- Perlin Improved noise [Perlin, 2002]
- Lattice based
 - Value=0 at integer lattice points
 - Gradient defined at integer lattice
 - Interpolate between

- $1/2$ to 1 cycle each unit

![Waveforms](chart.png)

Original | Improved
Gradient Noise

- Original Perlin noise [Perlin, 1985]
- Perlin Improved noise [Perlin, 2002]
- *Lattice* based
 - Value=0 at integer lattice points
 - Gradient defined at integer lattice
 - Interpolate between

- 1/2 to 1 cycle each unit

![Original](image1)

![Improved](image2)

Original

Improved
Value Noise

- Lattice based
 - Value defined at integer lattice points
 - Interpolate between
- At most 1/2 cycle each unit
 - Significant low-frequency content
- Easy hardware implementation with lower quality

![Graphs showing Linear Interp and Cubic Interp](image-url)
Value Noise

- Lattice based
 - Value defined at integer lattice points
 - Interpolate between
- At most 1/2 cycle each unit
 - Significant low-frequency content
- Easy hardware implementation with lower quality

![Linear Interp](image1.png) ![Cubic Interp](image2.png)
Value Noise

- Lattice based
 - Value defined at integer lattice points
 - Interpolate between
- At most 1/2 cycle each unit
 - Significant low-frequency content
- Easy hardware implementation with lower quality

![Linear Interp vs Cubic Interp plots](attachment:image.png)
Value Noise

- Lattice based
 - Value defined at integer lattice points
 - Interpolate between
- At most 1/2 cycle each unit
 - Significant low-frequency content
- Easy hardware implementation with lower quality

![Linear Interp](image1.png)
![Cubic Interp](image2.png)
Hardware Noise

- Value noise
 - PixelFlow [Lastra et al., 1995]
 - Perlin Noise Pixel Shaders [Hart, 2001]
 - Noise textures

- Gradient noise
 - Hardware [Perlin, 2001]
 - Complex composition [Perlin, 2004]
 - Shader implementation [Green, 2005]
Noise Details

- Subclass of *gradient noise*
 - Original Perlin
 - Perlin Improved
 - All of our proposed modifications
Find the Lattice

- Lattice-based noise: must find nearest lattice points
 - Point \(\mathbf{p} = (\mathbf{p}^x, \mathbf{p}^y, \mathbf{p}^z) \)
 - has integer lattice location
 \(\mathbf{p}_i = ([\mathbf{p}^x], [\mathbf{p}^y], [\mathbf{p}^z]) = (X, Y, Z) \)
 - and fractional location in cell
 \(\mathbf{p}_f = \mathbf{p} - \mathbf{p}_i = (x, y, z) \)
Find the Lattice

- Lattice-based noise: must find nearest lattice points
- Point $\vec{p} = (\vec{p}^x, \vec{p}^y, \vec{p}^z)$
 - has integer lattice location $\vec{p}_i = (\lfloor \vec{p}^x \rfloor, \lfloor \vec{p}^y \rfloor, \lfloor \vec{p}^z \rfloor) = (X, Y, Z)$
 - and fractional location in cell $\vec{p}_f = \vec{p} - \vec{p}_i = (x, y, z)$
Find the Lattice

- Lattice-based noise: must find nearest lattice points
- Point $\vec{p} = (\vec{p}^x, \vec{p}^y, \vec{p}^z)$
- has integer lattice location
 $\vec{p}_i = ([\vec{p}^x], [\vec{p}^y], [\vec{p}^z]) = (X, Y, Z)$
- and fractional location in cell
 $\vec{p}_f = \vec{p} - \vec{p}_i = (x, y, z)$
Find the Lattice

- Lattice-based noise: must find nearest lattice points
- Point \(\vec{p} = (\vec{p}^x, \vec{p}^y, \vec{p}^z) \)
- has integer lattice location
 \(\vec{p}_i = (\lfloor \vec{p}^x \rfloor, \lfloor \vec{p}^y \rfloor, \lfloor \vec{p}^z \rfloor) = (X, Y, Z) \)
- and fractional location in cell
 \(\vec{p}_f = \vec{p} - \vec{p}_i = (x, y, z) \)
Gradient

- Random vector at each lattice point is a function of \(\vec{p}_i \)

\[g(\vec{p}_i) \]

- A function with that gradient

\[\text{grad}(\vec{p}) = g(\vec{p}_i) \cdot \vec{p}_f \]

\[= g^x(\vec{p}_i) \cdot x + g^y(\vec{p}_i) \cdot y + g^z(\vec{p}_i) \cdot z \]
Gradient

- Random vector at each lattice point is a function of \vec{p}_i

$$g(\vec{p}_i)$$

- A function with that gradient

$$\text{grad}(\vec{p}) = g(\vec{p}_i) \cdot \vec{p}_f$$

$$= g^x(\vec{p}_i) \cdot x + g^y(\vec{p}_i) \cdot y + g^z(\vec{p}_i) \cdot z$$
Gradient

• Random vector at each lattice point is a function of \vec{p}_i

$$g(\vec{p}_i)$$

• A function with that gradient

$$\text{grad}(\vec{p}) = g(\vec{p}_i) \cdot \vec{p}_f$$

$$= g^x(\vec{p}_i) \ast x + g^y(\vec{p}_i) \ast y + g^z(\vec{p}_i) \ast z$$
Interpolate

• Interpolate nearest 2^n gradient functions

• 2D $\text{noise}(\vec{p})$ is influenced by
 $\vec{p}_i + (0, 0) : \vec{p}_i + (0, 1) : \vec{p}_i + (1, 0) : \vec{p}_i + (1, 1)$

• Linear interpolation
 • $\text{lerp}(t, a, b) = (1 - t) \cdot a + t \cdot b$

• Smooth interpolation
Interpolate

- Interpolate nearest 2^n gradient functions
- 2D $\text{noise}(\vec{p})$ is influenced by
 \[\vec{p}_i + (0, 0); \vec{p}_i + (0, 1); \vec{p}_i + (1, 0); \vec{p}_i + (1, 1) \]
- Linear interpolation
 - $\text{lerp}(t, a, b) = (1 - t) \cdot a + t \cdot b$
- Smooth interpolation
Interpolate

- Interpolate nearest 2^n gradient functions
- 2D $\text{noise}(\vec{p})$ is influenced by $\vec{p}_i + (0,0); \vec{p}_i + (0,1); \vec{p}_i + (1,0); \vec{p}_i + (1,1)$
- Linear interpolation
 - $\text{lerp}(t, a, b) = (1 - t) \, a + t \, b$
- Smooth interpolation
Interpolate

- Interpolate nearest 2^n gradient functions
- 2D $\text{noise}(\vec{p})$ is influenced by
 $\vec{p}_i + (0, 0) ; \vec{p}_i + (0, 1) ; \vec{p}_i + (1, 0) ; \vec{p}_i + (1, 1)$
- Linear interpolation
 - $\text{lerp}(t, a, b) = (1 - t) \ a + t \ b$
- Smooth interpolation
Interpolate

- Interpolate nearest 2^n gradient functions
- 2D $\text{noise}(\vec{p})$ is influenced by
 $\vec{p}_i + (0, 0); \vec{p}_i + (0, 1); \vec{p}_i + (1, 0); \vec{p}_i + (1, 1)$
- Linear interpolation
 - $\text{lerp}(t, a, b) = (1 - t) \cdot a + t \cdot b$
- Smooth interpolation
Interpolate

- Interpolate nearest 2^n gradient functions
- 2D $\text{noise}(\vec{p})$ is influenced by
 $\vec{p}_i + (0, 0); \vec{p}_i + (0, 1); \vec{p}_i + (1, 0); \vec{p}_i + (1, 1)$
- Linear interpolation
 - $\text{lerp}(t, a, b) = (1 - t) \ a + t \ b$
- Smooth interpolation
 - $\text{fade}(t) =$

![Diagram showing interpolation points]

- lerp function for linear interpolation
- fade function for smooth interpolation
Interpolate

• Interpolate nearest 2^n gradient functions
• 2D $\text{noise}(\vec{p})$ is influenced by
 $\vec{p}_i + (0, 0)$; $\vec{p}_i + (0, 1)$; $\vec{p}_i + (1, 0)$; $\vec{p}_i + (1, 1)$
• Linear interpolation
 • $\text{lerp}(t, a, b) = (1 - t) a + t b$
• Smooth interpolation
 • $\text{fade}(t) = \begin{cases}
 3t^2 - 2t^3 & \text{for original noise} \\
 \end{cases}$
 • $\text{flerp}(t, a, b) = \text{lerp}(\text{fade}(t), a, b)$
Interpolate

- Interpolate nearest 2^n gradient functions
- 2D \(\text{noise}(\vec{p}) \) is influenced by
 \(\vec{p}_i + (0, 0) \); \(\vec{p}_i + (0, 1) \); \(\vec{p}_i + (1, 0) \); \(\vec{p}_i + (1, 1) \)
- Linear interpolation
 - \(\text{lerp}(t, a, b) = (1 - t) a + t b \)
- Smooth interpolation
 - \(\text{fade}(t) = \begin{cases}
 3t^2 - 2t^3 & \text{for original noise} \\
 10t^3 - 15t^4 + 6t^5 & \text{for improved noise}
\end{cases} \)
 - \(\text{flerp}(t, a, b) = \text{lerp}(\text{fade}(t), a, b) \)
Interpolate

- Interpolate nearest 2^n gradient functions
- 2D $\text{noise}(\vec{p})$ is influenced by
 $\vec{p}_i + (0, 0); \vec{p}_i + (0, 1); \vec{p}_i + (1, 0); \vec{p}_i + (1, 1)$
- Linear interpolation
 - $\text{lerp}(t, a, b) = (1 - t) a + t b$
- Smooth interpolation
 - $\text{fade}(t) = \begin{cases}
 3t^2 - 2t^3 & \text{for original noise} \\
 10t^3 - 15t^4 + 6t^5 & \text{for improved noise}
\end{cases}$
 - $\text{flerp}(t, a, b) = \text{lerp}(\text{fade}(t), a, b)$
Interpolate

- Interpolate nearest 2^n gradient functions
- 2D $\text{noise}(\vec{p})$ is influenced by
 $\vec{p}_i + (0,0)$; $\vec{p}_i + (0,1)$; $\vec{p}_i + (1,0)$; $\vec{p}_i + (1,1)$
- Linear interpolation
 - $\text{lerp}(t, a, b) = (1 - t) \, a + t \, b$
- Smooth interpolation
 - $\text{fade}(t) = \begin{cases}
 3t^2 - 2t^3 & \text{for original noise} \\
 10t^3 - 15t^4 + 6t^5 & \text{for improved noise}
\end{cases}$
 - $\text{flerp}(t, a, b) = \text{lerp}(\text{fade}(t), a, b)$
Hash

- n-D gradient function built from 1D components

\[g(\vec{p}_i) \]

- Both original and improved use a permutation table hash
- Original: \(g \) is a table of unit vectors
- Improved: \(g \) is derived from bits of final hash
Hash

- n-D gradient function built from 1D components

\[g(\text{hash}(X, Y, Z)) \]

- Both original and improved use a permutation table \text{hash}
- Original: \(g \) is a table of unit vectors
- Improved: \(g \) is derived from bits of final hash
Hash

• n-D gradient function built from 1D components

\[g(\text{hash}(Z + \text{hash}(Y + \text{hash}(X)))) \]

• Both original and improved use a permutation table \(\text{hash} \)
• Original: \(g \) is a table of unit vectors
• Improved: \(g \) is derived from bits of final hash
Hash

• n-D gradient function built from 1D components

\[g(\text{hash}(Z + \text{hash}(Y + \text{hash}(X)))) \]

• Both original and improved use a permutation table \textit{hash}

 • Original: \(g \) is a table of unit vectors

 • Improved: \(g \) is derived from bits of final hash
Hash

- n-D gradient function built from 1D components
 \[g(\text{hash}(Z + \text{hash}(Y + \text{hash}(X)))) \]
- Both original and improved use a permutation table `hash`
- Original: \(g\) is a table of unit vectors
- Improved: \(g\) is derived from bits of final hash
Outline

Introduction & Background

Modifications
 Corner Gradients
 Factorization
 Hash

Conclusion
Gradient Vectors of n-D Noise

- **Original:** on the surface of a n-sphere
 - Found by hash of \vec{p}_i into gradient table
- **Improved:** at the edges of an n-cube
 - Found by decoding bits of hash of \vec{p}_i
Gradient Vectors of n-D Noise

- Original: on the surface of a n-sphere
 - Found by hash of \vec{p}_i into gradient table
- Improved: at the edges of an n-cube
 - Found by decoding bits of hash of \vec{p}_i
Gradients of noise\((x,y,0)\) or noise\((x,0)\)

- **Why?**
 - Cheaper low-D noise matches slice of higher-D
 - Reuse textures (for full noise or partial computation)

- Original: new short gradient vectors
- Improved: gradients in new directions
 - Possibly including 0 gradient vector!
Gradients of noise\((x, y, 0)\) or noise\((x, 0)\)

- **Why?**
 - Cheaper low-D noise matches slice of higher-D
 - Reuse textures (for full noise or partial computation)
- **Original:** new short gradient vectors
- **Improved:** gradients in new directions
 - Possibly including 0 gradient vector!
Gradients of noise\((x,y,0)\) or noise\((x,0)\)

- **Why?**
 - Cheaper low-D noise matches slice of higher-D
 - Reuse textures (for full noise or partial computation)
- **Original:** new short gradient vectors
- **Improved:** gradients in new directions
 - Possibly including 0 gradient vector!
Solution?

• Observe: use gradient function, not vector alone

\[\text{grad} = g^x x + g^y y + g^z z \]

• In any integer plane, fractional \(z = 0 \)

\[\text{grad} = g^x x + g^y y + 0 \]

• Any choice keeping projection of vectors the same will work
 • Improved noise uses cube edge centers
Solution?

• Observe: use gradient function, not vector alone

\[\text{grad} = g^x \ x + g^y \ y + g^z \ z \]

• In any integer plane, fractional \(z = 0 \)

\[\text{grad} = g^x \ x + g^y \ y + 0 \]

• Any choice keeping projection of vectors the same will work
 • Improved noise uses cube edge centers
 • Instead use cube corners!
Solution?

- Observe: use *gradient function*, not vector alone

\[
\text{grad} = g^x \cdot x + g^y \cdot y + g^z \cdot z
\]

- In any integer plane, fractional \(z = 0 \)

\[
\text{grad} = g^x \cdot x + g^y \cdot y + 0
\]

- Any choice keeping *projection* of vectors the same will work
 - Improved noise uses cube edge centers
 - Instead use cube corners!
Solution?

- Observe: use gradient function, not vector alone

\[\text{grad} = g^x \cdot x + g^y \cdot y + g^z \cdot z \]

- In any integer plane, fractional \(z = 0 \)

\[\text{grad} = g^x \cdot x + g^y \cdot y + 0 \]

- Any choice keeping projection of vectors the same will work
 - Improved noise uses cube edge centers
 - Instead use cube corners!
Solution?

- Observe: use gradient function, not vector alone

\[
\text{grad} = g^x x + g^y y + g^z z
\]

- In any integer plane, fractional \(z = 0 \)

\[
\text{grad} = g^x x + g^y y + 0
\]

- Any choice keeping projection of vectors the same will work
 - Improved noise uses cube edge centers
 - Instead use cube corners!
Corner Gradients

- Simple binary selection from hash bits
 $\pm x, \pm y, \pm z$
- Perlin mentions “clumping” for corner gradient selection
 - Not very noticeable in practice
 - Already happens in any integer plane of improved noise
Corner Gradients

- Simple binary selection from hash bits
 \(\pm x, \pm y, \pm z \)
- Perlin mentions “clumping” for corner gradient selection
 - Not very noticeable in practice
 - Already happens in any integer plane of improved noise

![Edge Centers](image1.png) ![Corner](image2.png)
Separable Computation

- Like to store computation in texture
 - Texture sampling 3-4x highest frequency

- 1D & 2D OK size, 3D gets big, 4D impossible
- Factor into lower-D textures
Separable Computation

- Like to store computation in texture
 - Texture sampling 3-4x highest frequency

- 1D & 2D OK size, 3D gets big, 4D impossible
- Factor into lower-D textures
 (e.g., write \(\text{noise}(\vec{p}_x, \vec{p}_y, \vec{p}_z) \) as several \(x/y \) terms)
Separable Computation

- Like to store computation in texture
 - Texture sampling 3-4x highest frequency

- 1D & 2D OK size, 3D gets **big**, 4D impossible

- Factor into lower-D textures
 - (e.g. write $\text{noise}(\vec{p}_x, \vec{p}_y, \vec{p}_z)$ as several x/y terms)
Separable Computation

• Like to store computation in texture
 • Texture sampling 3-4x highest frequency

• 1D & 2D OK size, 3D gets **big**, 4D impossible

• Factor into lower-D textures
 • (e.g. write $\text{noise}(\vec{p}^x, \vec{p}^y, \vec{p}^z)$ as several x/y terms)
Separable Computation

- Like to store computation in texture
 - Texture sampling 3-4x highest frequency

- 1D & 2D OK size, 3D gets **big**, 4D impossible

- Factor into lower-D textures
 - (e.g. write $\text{noise}(\vec{p}_x, \vec{p}_y, \vec{p}_z)$ as several x/y terms)

\[
\text{noise}(\vec{p}_x, \vec{p}_y, \vec{p}_z) = \text{flerp}(z, \text{xyz-term}+\text{xyz-term} \ast z \\
\text{xyz-term}+\text{xyz-term} \ast (z - 1))
\]
Separable Computation

- Like to store computation in texture
 - Texture sampling 3-4x highest frequency
- 1D & 2D OK size, 3D gets big, 4D impossible
- Factor into lower-D textures
 - (e.g. write $\text{noise}(\vec{p}^x, \vec{p}^y, \vec{p}^z)$ as several x/y terms)

$$
\text{noise}(\vec{p}^x, \vec{p}^y, \vec{p}^z) = \text{flerp}(z, \text{xy-term}(Z_0) + \text{xy-term}(Z_0) \ast z \text{xy-term}(Z_1) + \text{xy-term}(Z_1) \ast (z - 1))
$$
Factorization Details

\[\text{noise}(\vec{p}) = \text{flerp}(z, z\text{const}(\vec{p}^x, \vec{p}^y, Z_0) + z\text{grad}(\vec{p}^x, \vec{p}^y, Z_0) \ast z, \]
\[z\text{const}(\vec{p}^x, \vec{p}^y, Z_1) + z\text{grad}(\vec{p}^x, \vec{p}^y, Z_1) \ast (z - 1)) \]

- With nested hash,

\[z\text{const}(\vec{p}^x, \vec{p}^y, Z_0) = z\text{const}(\vec{p}^x, \vec{p}^y + \text{hash}(Z_0)) \]
\[z\text{grad}(\vec{p}^x, \vec{p}^y, Z_0) = z\text{grad}(\vec{p}^x, \vec{p}^y + \text{hash}(Z_0)) \]

- With corner gradients, \(z\text{const} = \text{noise}! \)
Factorization Details

\[
\text{noise}(\vec{p}) = \text{flerp}(z, \text{zconst}(\vec{p}^x, \vec{p}^y, Z_0) + \text{zgrad}(\vec{p}^x, \vec{p}^y, Z_0) \cdot z, \\
\text{zconst}(\vec{p}^x, \vec{p}^y, Z_1) + \text{zgrad}(\vec{p}^x, \vec{p}^y, Z_1) \cdot (z - 1))
\]

- With nested hash,
 \[
 \text{zconst}(\vec{p}^x, \vec{p}^y, Z_0) = \text{zconst}(\vec{p}^x, \vec{p}^y + \text{hash}(Z_0)) \\
 \text{zgrad}(\vec{p}^x, \vec{p}^y, Z_0) = \text{zgrad}(\vec{p}^x, \vec{p}^y + \text{hash}(Z_0))
 \]

- With corner gradients, \(\text{zconst} = \text{noise} \)!
Factorization Details

\[\text{noise}(\vec{p}) = \text{flerp}(z, \text{zconst}(\vec{p}^x, \vec{p}^y, Z_0) + \text{zgrad}(\vec{p}^x, \vec{p}^y, Z_0) \ast z, \]
\[z\text{const}(\vec{p}^x, \vec{p}^y, Z_1) + \text{zgrad}(\vec{p}^x, \vec{p}^y, Z_1) \ast (z - 1)) \]

- With nested hash,

\[z\text{const}(\vec{p}^x, \vec{p}^y, Z_0) = z\text{const}(\vec{p}^x, \vec{p}^y + \text{hash}(Z_0)) \]
\[z\text{grad} (\vec{p}^x, \vec{p}^y, Z_0) = z\text{grad} (\vec{p}^x, \vec{p}^y + \text{hash}(Z_0)) \]

- With corner gradients, \(z\text{const} = \text{noise}! \)
Perlin’s Hash

• 256-element *permutation array*
 • Turns each integer 0-255 into a different integer 0-255

• Chained lookups
 \[g(\text{hash}(Z + \text{hash}(Y + \text{hash}(X)))) \]

• Must compute for each lattice point around \(\vec{p} \)

• Even with a 2D \(\text{hash}(Y + \text{hash}(X)) \) texture, that’s
Perlin’s Hash

- 256-element *permutation array*
 - Turns each integer 0-255 into a different integer 0-255
- Chained lookups
 \[g(\text{hash}(Z + \text{hash}(Y + \text{hash}(X)))) \]
 - Must compute for each lattice point around \(\vec{p} \)
 - Even with a 2D \(\text{hash}(Y + \text{hash}(X)) \) texture, that’s
 - 2 hash lookups for 1D noise
Perlin’s Hash

- 256-element *permutation array*
 - Turns each integer 0-255 into a different integer 0-255
- Chained lookups
 $$g(hash(Z + hash(Y + hash(X))))$$
- Must compute for each lattice point around \(\vec{p} \)
- Even with a 2D \(hash(Y + hash(X)) \) texture, that’s
 - 2 hash lookups for 1D noise
 - 4 hash lookups for 2D noise
 - 12 hash lookups for 3D noise
 - 20 hash lookups for 4D noise
Perlin’s Hash

• 256-element permutation array
 • Turns each integer 0-255 into a different integer 0-255
• Chained lookups
 \[g(\text{hash}(Z + \text{hash}(Y + \text{hash}(X)))) \]
• Must compute for each lattice point around \(\vec{p} \)
• Even with a 2D \(\text{hash}(Y + \text{hash}(X)) \) texture, that’s
 • 2 hash lookups for 1D noise
 • 4 hash lookups for 2D noise
 • 12 hash lookups for 3D noise
 • 20 hash lookups for 4D noise
Perlin’s Hash

• 256-element *permutation array*
 • Turns each integer 0-255 into a different integer 0-255

• Chained lookups
 \[g(\text{hash}(Z + \text{hash}(Y + \text{hash}(X)))) \]

• Must compute for each lattice point around \(\vec{p} \)

• Even with a 2D \(\text{hash}(Y + \text{hash}(X)) \) texture, that’s
 • 2 hash lookups for 1D noise
 • 4 hash lookups for 2D noise
 • 12 hash lookups for 3D noise
 • 20 hash lookups for 4D noise
Perlin’s Hash

- 256-element *permutation array*
 - Turns each integer 0-255 into a different integer 0-255
- Chained lookups
 \[g(\text{hash}(Z + \text{hash}(Y + \text{hash}(X)))) \]
- Must compute for each lattice point around \(\vec{p} \)
- Even with a 2D \(\text{hash}(Y + \text{hash}(X)) \) texture, that’s
 - 2 hash lookups for 1D noise
 - 4 hash lookups for 2D noise
 - 12 hash lookups for 3D noise
 - 20 hash lookups for 4D noise
Perlin’s Hash

- 256-element *permutation array*
 - Turns each integer 0-255 into a different integer 0-255
- Chained lookups
 - $g(hash(Z + hash(Y + hash(X))))$
- Must compute for each lattice point around \vec{p}
- Even with a 2D $hash(Y + hash(X))$ texture, that’s
 - 2 hash lookups for 1D noise
 - 4 hash lookups for 2D noise
 - 12 hash lookups for 3D noise
 - 20 hash lookups for 4D noise
Perlin’s Hash

- 256-element *permutation array*
 - Turns each integer 0-255 into a different integer 0-255
- Chained lookups
 \[g(\text{hash}(Z + \text{hash}(Y + \text{hash}(X)))) \]
- Must compute for each lattice point around \vec{p}
- Even with a 2D $\text{hash}(Y + \text{hash}(X))$ texture, that’s
 - 2 hash lookups for 1D noise
 - 4 hash lookups for 2D noise
 - 12 hash lookups for 3D noise
 - 20 hash lookups for 4D noise
Alternative Hash

- Many choices; I kept 1D chaining
- Desired features
 - Low correlation of hash output for nearby inputs
 - Computable without lookup
- Use a random number generator?
 - Seed
 - Successive calls give uncorrelated values
Alternative Hash

- Many choices; I kept 1D chaining
- Desired features
 - Low correlation of hash output for nearby inputs
 - Computable without lookup
- Use a random number generator?
 - Seed
 - Successive calls give uncorrelated values
Alternative Hash

- Many choices; I kept 1D chaining
- Desired features
 - Low correlation of hash output for nearby inputs
 - Computable without lookup
- Use a random number generator?
 - Seed
 - Successive calls give uncorrelated values
Random Number Generator Hash

- Hash argument is seed
 - Most RNG are highly correlated for nearby seeds
- Hash argument is number of times to call
 - Most RNG are expensive (or require n calls) to get n^{th} number
 - Should noise(30) be 30 times slower than noise(1)?

permute table hash using seed=X
Random Number Generator Hash

- Hash argument is seed
 - Most RNG are highly correlated for nearby seeds
- Hash argument is number of times to call
 - Most RNG are expensive (or require n calls) to get \(n^{th} \) number
 - Should noise(30) be 30 times slower than noise(1)?

```
permute table
```

```
hash using \( X^{th} \) random number
```
Blum-Blum Shub

\[x_{n+1} = x_i^2 \mod M \]

\[M = \text{product of two large primes} \]

- Uncorrelated for nearby seeds...
- But large M is bad for hardware...
- But reasonable results for smaller M...
- And square and mod is simple to compute!
Blum-Blum Shub

\[x_{n+1} = x_i^2 \mod M \]

\[M = \text{product of two large primes} \]

- Uncorrelated for nearby seeds...
- But large \(M \) is bad for hardware...
- But reasonable results for smaller \(M \)...
- And square and mod is simple to compute!

523*527
Blum-Blum Shub

\[x_{n+1} = x_i^2 \mod M \]

\[M = \text{product of two large primes} \]

- Uncorrelated for nearby seeds...
- But large \(M \) is bad for hardware...
- But reasonable results for smaller \(M \)...
- And square and mod is simple to compute!
Blum-Blum Shub

\[x_{n+1} = x_i^2 \mod M \]

\[M = \text{product of two large primes} \]

- Uncorrelated for nearby seeds...
- But large M is bad for hardware...
- But reasonable results for smaller M...
- And square and mod is simple to compute!
Blum-Blum Shub

\[x_{n+1} = x_i^2 \mod M \]

\[M = \text{product of two large primes} \]

- Uncorrelated for nearby seeds...
- But large M is bad for hardware...
- But reasonable results for smaller M...
- And square and mod is simple to compute!
Modified Noise

- Square and mod hash
 - $M = 61$
- Corner gradient selection
 - One 2D texture for both 1D and 2D
- Factor
 - Construct 3D and 4D from 2 or 4 2D texture lookups
Comparison

Perlin original

Corner gradients

Perlin improved

Corner+Hash
Using Noise

3D noise

3D turbulence

Wood

Marble
Conclusions

- Three (mostly) independent modifications to Perlin noise
 - Corner gradient: can subset noise
 - noise(x) = noise(x,0)
 - noise(x,y) = noise(x,y,0)
 - Factorization: can superset noise
 - build 3D noise out of 2D
 - build 4D noise out of 3D
 - Computed hash
 - lookup-free noise
 - avoid potentially costly chained lookups
- Admit a range of choices for texture vs. compute
Conclusions

- Three (mostly) independent modifications to Perlin noise
 - Corner gradient: can subset noise
 - $\text{noise}(x) = \text{noise}(x,0)$
 - $\text{noise}(x,y) = \text{noise}(x,y,0)$
 - Factorization: can superset noise
 - build 3D noise out of 2D
 - build 4D noise out of 3D
 - Computed hash
 - lookup-free noise
 - avoid potentially costly chained lookups
- Admit a range of choices for texture vs. compute
Conclusions

• Three (mostly) independent modifications to Perlin noise
 • Corner gradient: can subset noise
 • noise(x) = noise(x,0)
 • noise(x,y) = noise(x,y,0)
 • Factorization: can superset noise
 • build 3D noise out of 2D
 • build 4D noise out of 3D
 • Computed hash
 • lookup-free noise
 • avoid potentially costly chained lookups

• Admit a range of choices for texture vs. compute
Conclusions

• Three (mostly) independent modifications to Perlin noise
 • Corner gradient: can subset noise
 • noise(x) = noise(x,0)
 • noise(x,y) = noise(x,y,0)
 • Factorization: can superset noise
 • build 3D noise out of 2D
 • build 4D noise out of 3D
 • Computed hash
 • lookup-free noise
 • avoid potentially costly chained lookups
• Admit a range of choices for texture vs. compute
Future Work

• Other computed hash functions?
• Extend to simplex noise
• Extend to other hash-based primitives
 • Tiled texture
 • Worley cellular textures
• Further explore turbulence & fBm
 • Can we pre-bake the octaves together?
Questions?

www.umbc.edu/~olano/noise
Implementing improved Perlin noise.
Addison-Wesley.

Perlin noise pixel shaders.
SIGGRAPH/EUROGRAPHICS, ACM, New York.

Real-time programmable shading.

An image synthesizer.

Noise hardware.
In Olano, M., editor, *Real-Time Shading SIGGRAPH Course Notes*.

Improving noise.

Implementing improved Perlin noise.
In Fernando, R., editor, *GPU Gems*, chapter 5. Addison-Wesley.