CMSC 635

Volume Rendering
Volume data

- 3D Scalar Field: $F(x,y,z) = ?$
 - Implicit functions
 - Voxel grid
- Scalar data
 - Density
 - Temperature
 - Wind speed
 - …
Implicit functions

- **Blobs** [Blinn 82]
 - $\exp(-ar^2)$

- **Metaballs** [Nishimura 83]
 - $0 \leq r \leq R_i / 3 : 1 - 3(r / R_i)^2$
 - $R_i / 3 \leq r \leq R_i : 3 (1 - r / R_i)^2 / 2$
 - $r < R_i : 0$

- **Soft Objects** [Wyvill 86]
 - Polynomial approximation for $\exp()$
Voxels

- Sampled volume
 - Usually in a grid
- Measured
 - MRI, CT scan, …
- Computed
 - Sample geometric model
 - Finite element simulation
 - …
Isosurface rendering

- $F(x,y,z) - c = 0$ (for some given c)
- Isosurface normal: ∇F
- Implicit: Point repulsion [Witkin 92]
- Voxel: Marching cubes [Lorensen 87]
Marching cubes

- Estimate intersection point on each edge
 - Same criteria (e.g., linear interpolation)
 - Polygons will match

- Use template for polygons
 - 2^8 possibilities, 15 “unique”
 - Store templates in table
Marching tetrahedra

- Decompose volume into tetrahedra
- Avoids ambiguous “opposite corner” cases
- $2^4 = 16$ cases, 3 unique
 - 0 or 4 points inside (0 triangles)
 - 1 or 3 points inside (1 triangle)
 - 2 points inside (2 triangles)
Dividing cubes

- Find voxels that cross isosurface
- Subdivide to pixel-sized sub-voxels
- Find sub-voxels that cross isosurface
- Plot as shaded points / kernel footprints
Direct volume rendering

- Model as transparent material
 - Color and extinction $C(p)$, $\alpha(p)$
 - Attenuation along ray p: $p = r(t)$
 - $\alpha(t) = e^{-\int \alpha(t') dt'}$
 - Attenuated color at $r(t)$
 - $C(t) \alpha(t)$
 - Accumulate attenuated colors along ray
 - $I = \int C(t) \alpha(t) dt$
Simplify volume integral

- **Numeric integration, step size d**
 - \(e^{-\int \Box dt} \approx e^{-\sum \Box d} = \prod e^{-\Box d} = \prod (1-\Box_i) \)
 - Color of ray segment \(i \approx \Box_i C_i \)
 - \(I \approx \sum \Box_i C_i \prod (1-\Box_j) \)

- **Back to front composite**
 - \(C'_i = \Box_i C_i + (1-\Box_i) C'_{i+1} \)
Transfer functions

- Map scalar to color and/or opacity
Appearance

- Additive / pseudo-XRay
- Volume lighting: $N \cdot L, (N \cdot H)^e$

 - $N \cdot V = \nabla F \cdot V = \text{Directional derivative}$

 - $F_v \approx \left(F(P+kV) - F(P-kV) \right) / 2k$
Rendering methods

- Ray casting
- Splatting
- Texture accumulation
- Shear-warp
Ray casting

- Straightforward numerical integration
- Uniform steps along ray
- Resample volume to sample points
 - Before classification and/or shading
 - After classification and/or shading
Splatting [Westover 90]

- Resample directly onto screen
- Each voxel contributes kernel footprint
- Accumulate back-to-front
Shear-warp [Lacroute 94]
Texture accumulation

- Let texturing hardware resample
- Accumulate back-to-front
- 3D textures
 - Render slices parallel to image plane
 - Shift accesses for $\square F \cdot L$, $\square F \cdot H$
- 2D texture slices
 - Slice sets perpendicular to each axis
 - Choose set most parallel to image plane
Pre-integrated texture [Engel 01]

- Improve approximation for C_i and \mathbb{T}_i
 - $\text{Lookup}(\text{start value, end value, d})$
- Dependent lookup
 - 3D texture
 - linear in d
 - 2D texture
 - constant d
Pre-integrated texture

- a: shading before resampling
- b: shading after resampling
- c: b with interpolated slices
- d: pre-integrated, same slice set as b