Modeling

CMSC 435/634
Modeling?

Modeling
Creating a *model* of an object, usually out of a collection of simpler *primitives*.

Primitive
A basic shape handled directly the rendering system.
Modeling?

Modeling
Creating a *model* of an object, usually out of a collection of simpler *primitives*.

Primitive
A basic shape handled directly the rendering system.
Primitives

Some common primitives

- Triangles & Polygons
 - Most common, usually the only choice for interactive
 - Patches, Spheres, Cylinders, ...
 - RenderMan has these
 - Often converted to simpler primitives within the renderer

- Volumes
 - What’s at each point in space?
 - Often with some transparent material
 - Few renderers handle both volume & surface models
Primitives

Some common primitives

▶ Triangles & Polygons
 ▶ Most common, usually the only choice for interactive

▶ Patches, Spheres, Cylinders, ...
 ▶ RenderMan has these
 ▶ Often converted to simpler primitives within the renderer

▶ Volumes
 ▶ What’s at each point in space?
 ▶ Often with some transparent material
 ▶ Few renderers handle both volume & surface models
Primitives

Some common primitives

- **Triangles & Polygons**
 - Most common, usually the only choice for interactive
- **Patches, Spheres, Cylinders, ...**
 - RenderMan has these
 - Often converted to simpler primitives within the renderer
- **Volumes**
 - What’s at each point in space?
 - Often with some transparent material
 - Few renderers handle both volume & surface models
Composing primitives

- Collections of large numbers of primitives
 - Sometimes called Boundary Representation (BRep)
- Constructive Solid Geometry (CSG)
 - Set operations (union, intersection, difference)
- Implicit Models & Blobs
 - Surface where $f(x,y,z)=0$
 - Sum, product, etc. of simpler functions
Composing primitives

- Collections of large numbers of primitives
 - Sometimes called Boundary Representation (BRep)
- Constructive Solid Geometry (CSG)
 - Set operations (union, intersection, difference)
- Implicit Models & Blobs
 - Surface where \(f(x,y,z) = 0 \)
 - Sum, product, etc. of simpler functions

Images: Friedrich Lohmueller
Composing primitives

- Collections of large numbers of primitives
 - Sometimes called Boundary Representation (BRep)
- Constructive Solid Geometry (CSG)
 - Set operations (union, intersection, difference)
- Implicit Models & Blobs
 - Surface where $f(x,y,z)=0$
 - Sum, product, etc. of simpler functions

Images: Paul Bourke
Modeling Approaches

Manual primitive creation

Procedural

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)
Modeling Approaches

Manual primitive creation

Procedural
Fractals
Implicit Functions
Grammars
Simulations

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)
Manual Creation

- Text editor
- High-level primitives
- Modeling programs
Modeling Approaches

Manual primitive creation

Procedural
- Fractals
- Implicit Functions
- Grammars
- Simulations

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)
Procedural Modeling

- Describe physical attributes through some (spatial) function
 - Shape
 - Density
 - Color
 - Texture
Procedural Approaches

- Fractals
- Implicit Functions
- Grammars
- Simulations
Fractals

Complex structure through self-similarity across scales

- Iterated equations
- Iterated replacement
- Spectral Synthesis
Iterated Equations / Mandelbrot Set

\[p' = p^2 + c \]

Image: David E. Joyce
Iterated Replacement / Koch Curve

Initiator

Generator
Iterated Replacement / Mountains

Randomness in replacement
Spectral Synthesis

- Spectral energy a function of frequency
 - Higher frequency, less energy
 - Characterizes roughness of surface
 - Natural phenomena tend to be $1/f$
Noise-Based Synthesis

- Band-limited *Perlin noise* function
 - Most energy between 1/2 and 1 cycle per unit
 - Average value is 0
 - Random, but repeatable
 - 1D, 2D, 3D & 4D versions common

- Sum noise octaves
 - $n(x) + \frac{1}{2} n(2x) + \frac{1}{4} n(4x) + ...$
 - Stop adding “...” when frequency is too high to see
Noise-Based Synthesis

- Band-limited *Perlin noise* function
 - Most energy between 1/2 and 1 cycle per unit
 - Average value is 0
 - Random, but repeatable
 - 1D, 2D, 3D & 4D versions common

- Sum noise *octaves*
 - \(n(x) + \frac{1}{2} n(2 \cdot x) + \frac{1}{4} n(4 \cdot x) + ... \)
 - Stop adding “…” when frequency is too high to see
Fractal Landscape

Landscape height is a fractal function of x, y

- Plus whatever embellishments make it look good

Image: Ken Musgrave
Multifractal

- Change roughness across fractal
 - Scaling \((\frac{1}{2}, \frac{1}{4}, \ldots)\) becomes a function
- Here, scale is a function of altitude
Multifractal

- Change roughness across fractal
 - Scaling \(\left(\frac{1}{2}, \frac{1}{4}, \ldots \right) \) becomes a function
- Here, scale is a function of altitude

Image: Ken Musgrave
Implicit Functions

- Model as sum of implicit functions
- Surface at threshold

Liang, et al., PG’01
Hybrid Implicit & Polygonal

Bloomenthal, SIGGRAPH 85
Hypertexture

- Add noise or turbulence to functions

Perlin & Hoffert, SIGGRAPH 89
Grammar-Based Modeling

- Use (mostly) context-free grammars (CFG) to specify structural change over generations
 - Often used to simulate a biological growth process
 - Plants
 - Seashells
 - L-systems (Lindenmeyer)
Grammar-Based Modeling

- Use (mostly) context-free grammars (CFG) to specify structural change over generations
- Often used to simulate a biological growth process
 - Plants
 - Seashells
- L-systems (Lindenmeyer)
Grammar-Based Modeling

- Use (mostly) context-free grammars (CFG) to specify structural change over generations
- Often used to simulate a biological growth process
 - Plants
 - Seashells
- L-systems (Lindenmeyer)
Context-Free Grammar

- A CFG $G = (V, T, S, P)$ where
 - V is a set of non-terminals
 - T is a set of terminals
 - S is the start symbol
 - P is a set of productions (rules) of the form:
 - $A \rightarrow x$, where $A \in V$, $x \in (V \cup T)^*$
Applying Grammar Rules

- **Symbols**
 - A, B, straight line segments
 - $[]$, branch left 90°

- **Rules**
 - $B \rightarrow A[B]AA[B]$
 - $A \rightarrow AA$

- **Strings**
 - B
Applying Grammar Rules

- **Symbols**
 - A, B, straight line segments
 - $[]$, branch left 90°

- **Rules**
 - $B \rightarrow A[B]AA[B]$
 - $A \rightarrow AA$

- **Strings**
 - B
Applying Grammar Rules

- **Symbols**
 - \(A, B \), straight line segments
 - \([] \), branch left 90°

- **Rules**
 - \(B \rightarrow A[B]AA[B] \)
 - \(A \rightarrow AA \)

- **Strings**
 - \(B \)
Applying Grammar Rules

- **Symbols**
 - A, B, straight line segments
 - $[]$, branch left 45°
 - $()$, branch right 45°

- **Rules**
 - $B \rightarrow A[B]AA(B)$
 - $A \rightarrow AA$

- **Strings**
 - B
 - $A[B]AA(B)$
Applying Grammar Rules

- **Symbols**
 - A, B, straight line segments
 - $[]$, branch left 45°
 - $()$, branch right 45°

- **Rules**
 - $B \rightarrow A[B]AA(B)$
 - $A \rightarrow AA$

- **Strings**
 - B
 - $A[B]AA(B)$
Applying Grammar Rules

- Symbols
 - A, B, straight line segments
 - $[]$, branch left 45°
 - $()$, branch right 45°
- Rules
 - $B \rightarrow A[B]AA(B)$
 - $A \rightarrow AA$
- Strings
 - B
 - $A[B]AA(B)$
L-System Examples

- Symbols
 -
 - $[\ldots]$ = push/pop
 - \pm = rotate left/right
 - $A - Z$ = straight segment

- Rules
 - 25.7°, 7 generations
 - $X \rightarrow F[+X][-X]FX$
 - $F \rightarrow FF$
L-System Examples

- Symbols
 - \([/]\) = push/pop
 - \(+/-\) = rotate left/right
 - \(A-Z\) = straight segment

- Rules
 - 25.7°, 7 generations
 - \(X \rightarrow F[+X][-X]FX\)
 - \(F \rightarrow FF\)
L-System Examples

- Rules
 - 22.5°, 5 generations
 - $F \rightarrow FF$
L-System Examples

- Rules
 - 22.5°, 4 generations
 - $F \rightarrow FF - [F + F + F] + [+F - F - F]$
Additions

- 3D structure
- Randomness
- Leaves
- Flowers

Prusinkiewicz, et al., SIGGRAPH 88
Pruning

Prusinkiewicz, et al., SIGGRAPH 94
Pruning

Prusinkiewicz, et al., SIGGRAPH 94
Simulations

- Biological
 - Simulate growth, development

- Physical
 - Simulate formation or erosion
Simulations

- Biological
 - Simulate growth, development

- Physical
 - Simulate formation or erosion
Biological Simulations

Fowler, et al., SIGGRAPH 92

Fleischer, et al., SIGGRAPH 95
Biological Simulations

Fowler, et al., SIGGRAPH 92
Biological Simulations

Turk, SIGGRAPH 91
Physical Simulation

- Erosion, Deposition

Kenji Nagashima, Visual Computer 1997
Modeling Approaches

Manual primitive creation

Procedural
 Fractals
 Implicit Functions
 Grammars
 Simulations

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)
Scan from Objects

- General concept
 - Find points on surface
 - Connect into mesh
- Mechanical
- Triangulation
 - Laser
 - Structured Light
 - Multiple Cameras
- CAT scan / MRI
Modeling

Scan from physical object

Mechanical

- Touch tip to surface
- Measure angles
Triangulation

- Point in space at intersection of ray from A and ray from B
Structured Light

- Point in space at intersection of color edge from light source/projector and ray through camera pixel

Zhang, Curless and Seitz, 3DPVT 2002
Modeling Approaches

Manual primitive creation

Procedural
 Fractals
 Implicit Functions
 Grammars
 Simulations

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)
Visualization

- Data
 - measurements
 - simulation
 - information

- Present visually
 - Increase understanding
 - Recognize patterns
Visualization

- Data
 - measurements
 - simulation
 - information
- Present visually
 - Increase understanding
 - Recognize patterns
Visualization

- Can be 3D Object
Visualization

- Can be 3D, but showing non-visual aspects.
Visualization

- Can be not traditionally geometric at all
Modeling Approaches

Manual primitive creation

Procedural
 Fractals
 Implicit Functions
 Grammars
 Simulations

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)
Image-based Rendering

- Pixels in one or more cameras
 - Color of point in space
 - Color of light along one ray
- IBR
 - Construct new novel view using only image data
Image-based Rendering

- Pixels in one or more cameras
 - Color of point in space
 - Color of light along one ray
- IBR
 - Construct new novel view using only image data