CMSC 435
Introductory Computer Graphics
Rasterization
Penny Rheingans
UMBC
Scan conversion

• Problem
 – How to generate filled polygons (by determining which pixel positions are inside the polygon)
 – Conversion from continuous to discrete domain

• Concepts
 – Spatial coherence
 – Span coherence
 – Edge coherence
for (y from y0 to yn)
 for (x from x0 to xn)
 Write Pixel (x, y, val)
Scanning Rectangles (2)

for (\(y \) from \(y_0 \) to \(y_n \))
for (\(x \) from \(x_0 \) to \(x_n \))
Write Pixel (\(x, y, val \))
Scanning Rectangles (3)

for (y from y0 to yn)
 for (x from x0 to xn)
 Write Pixel (x, y, val)
Scanning Arbitrary Polygons

- vertices:
 \((4, 1), (7, 13), (11, 2)\)
Scanning Arbitrary Polygons (2)

- vertices:
 $(4, 1) , (7, 13) , (11 , 2)$

- Intersect scanline w/ pgon edges => span extrema
Scanning Arbitrary Polygons (3)

- vertices:

 (4, 1) , (7, 13) , (11 , 2)

- Intersect scanline w/pgon edges => span extrema

- Fill between pairs of span extrema
Scanning Arbitrary Polygons (4)

- vertices:
 \((4, 1), (7, 13), (11, 2)\)

For each nonempty scanline
Intersect scanline w/ pgon edges => span extrema
Fill between pairs of span extrema
Example Cases (2)

4 intersections w/ scanline 6 at x = 1, 6, 6, 12 1/7
Example Cases (3)

• 3 intersections w/scanline 5 at $x = 1, 1, 11 \ 5/7$
Example Cases (4)

3 intersections w/scanline 5 at x = 1, 1, 11 5/7

==> Count continuing edges once (shorten lower edge) now x=1, 11 5/7
Example Cases (5)

4 intersections w/ scanline 1 at x = 5, 5, 10, 10
Example Cases (6)

4 intersections w/ scanline 1 at x = 5, 5, 10, 10

=>

Don't count vertices of horizontal edges.
Now x = 5, 10
Scanline Data Structures

Sorted edge table:
- all edges
- sorted by min y

Holds:
- max y
- init x
- inverse slope

Active edge table:
- edges intersecting current scanline

Holds:
- max y
- current x
- inverse slope
Scanline Algorithm

1. Bucket sort edges into sorted edge table
2. Initialize y & active edge table
 \[
 y = \text{first non-empty scanline} \\
 \text{AET} = \text{SET} [y]
 \]
3. Repeat until AET and SET are empty
 Fill pixels between pairs of x intercepts in AET
 Remove exhausted edges
 \[
 Y++
 \]
 Update x intercepts
 Resort table (AET)
 Add entering edges
Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)
Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table

sort on minY: 1
store:
 max Y: 11
 min X: 4
 \[1/m : (X_{\text{max}} - X_{\text{min}}) / (Y_{\text{max}} - Y_{\text{min}}) = (1 - 4) / (11 - 1) = -3 / 10\]
Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
 fill between pairs (x=4,12)
Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
 fill between pairs (x=4,12)
 remove exhausted edges
 update intersection points
 resort table
add entering edges
Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
 fill between pairs (x=3 1/10,12)
 remove exhausted edges
 update intersection points
Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
 fill between pairs (x=3 1/10, 12)
 remove exhausted edges
 update intersection points
resort table
add entering edges
Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

bucket sort edges into sorted edge table
initialize active edge list to first non empty scanline
for each non empty scanline
 fill between pairs (x = 2 8/10, 9; 9,12)
 remove exhausted edges
 update intersection points
 resort table
 add entering edges
Example: vertices (4,1), (1,11), (9,5), (12,8), (12,1)

- Bucket sort edges into sorted edge table
- Initialize active edge list to first non-empty scanline
- For each non-empty scanline:
 - Fill between pairs (x=2 5/10, 7 2/3; 10,12)
 - Remove exhausted edges
 - Update intersection points
 - Resort table
 - Add entering edges
Fill between pairs:

\[
\text{for } (x = x_1; x < x_2; x++) \text{ }
\]

\[
\text{framebuffer}[x, y] = c
\]
Fill Variants (2)

- Pattern Fill

Fill between pairs:

```c
for ( x = x1; x < x2; x++ )
    if ( ( x + y ) % 2 )
        framebuffer [ x, y ] = c1
    else
        framebuffer [ x, y ] = c1
```
Fill Variants (3)

- Colorwash
 Red to blue

Fill between pairs:

```c
for ( x = x1; x < x2; x++ )
    framebuffer [ x, y ] = C0 + dC * ( x1 - x )
```

For efficiency carry C and dC in AET and calculate color incrementally.
Fill Variants (4)

• Vertex colors
 Red, green, blue

Fill between pairs:

\[
\text{for } (x = x1; x < x2; x++) \\
framebuffer [x, y] = \\
Cy1x1 + [(x - x1)/(x2 - x1)*(Cy1x2 - Cy1x1)]/dCx
\]

For efficiency carry Cy and dCy in AET calculate dCx at beginning of scanline
Barycentric Coordinates

• Use non-orthogonal coordinates to describe position relative to vertices

\[p = a + \beta(b - a) + \gamma(c - a) \]

\[p(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c \]

– Coordinates correspond to scaled signed distance from lines through pairs of vertices
Barycentric Example
Barycentric Coordinates

• Computing coordinates

\[
\gamma = \frac{(y_a - y_b)x + (x_b - x_a)y + x_a y_b - x_b y_a}{(y_a - y_b)x_c + (x_b - x_a)y_c + x_a y_b - x_b y_a}
\]

\[
\beta = \frac{(y_a - y_c)x + (x_c - x_a)y + x_a y_c - x_b y_a}{(y_a - y_c)x_b + (x_c - x_a)y_b + x_a y_c - x_c y_a}
\]

\[
\alpha = 1 - \beta - \gamma
\]
Alternative Computation

\[b_i = \frac{a_i}{a_1 + a_j + a_k} \]
\[b_j = \frac{a_j}{a_1 + a_j + a_k} \]
\[b_k = \frac{a_k}{a_1 + a_j + a_k} \]
Barycentric Rasterization

For all \(x\) do

For all \(y\) do

Compute \((\alpha, \beta, \gamma)\) for \((x,y)\)

If \((\alpha \in [0,1] \text{ and } \beta \in [0,1] \text{ and } \gamma \in [0,1])\) then

\[c = \alpha c_0 + \beta c_1 + \gamma c_2 \]

Draw pixel \((x,y)\) with color \(c\)
Barycentric Rasterization

\[x_{\text{min}} = \text{floor}(x_i) \]
\[x_{\text{max}} = \text{ceiling}(x_i) \]
\[y_{\text{min}} = \text{floor}(y_i) \]
\[y_{\text{max}} = \text{ceiling}(x_i) \]

for \(y = y_{\text{min}} \) to \(y_{\text{max}} \) do

\[\text{for } x = x_{\text{min}} \text{ to } x_{\text{max}} \text{ do} \]

\[\alpha = \frac{f_{12}(x,y)}{f_{12}(x_0,y_0)} \]
\[\beta = \frac{f_{20}(x,y)}{f_{20}(x_1,y_1)} \]
\[\gamma = \frac{f_{01}(x,y)}{f_{01}(x_2,y_2)} \]

If \(\alpha \in [0,1] \) and \(\beta \in [0,1] \) and \(\gamma \in [0,1] \) then

\[c = \alpha c_0 + \beta c_1 + \gamma c_2 \]

Draw pixel \((x,y)\) with color \(c\)
Barycentric Rasterization

• Computing coordinates

\[
\gamma = \frac{f_{01}(x, y)}{f_{01}(x_2, y_2)} = \frac{(y_0 - y_1)x + (x_1 - x_0)y + x_0y_1 - x_1y_0}{(y_0 - y_1)x_2 + (x_1 - x_0)y_2 + x_0y_1 - x_1y_0}
\]

\[
\beta = \frac{f_{20}(x, y)}{f_{20}(x_1, y_1)} = \frac{(y_2 - y_0)x + (x_0 - x_2)y + x_2y_0 - x_0y_2}{(y_2 - y_0)x_1 + (x_0 - x_2)y_1 + x_2y_0 - x_0y_2}
\]

\[
\alpha = \frac{f_{12}(x, y)}{f_{12}(x_0, y_0)} = \frac{(y_1 - y_2)x + (x_2 - x_1)y + x_1y_2 - x_2y_1}{(y_1 - y_2)x_0 + (x_2 - x_1)y_0 + x_1y_2 - x_2y_1}
\]