CMSC 435/634

Texture
Texture Mapping

- Def: mapping a function onto a surface; function can be:
 - 1, 2, or 3D
 - sampled (image) or mathematical function
Mapped Parameters

- Surface color (Catmull 74)
- Specular reflection (Blinn and Newell 76)
- Normal vector perturbation (Blinn 78)
- Specularity (Blinn 78)
- Transparency (Gardner 85)
- Diffuse Reflection (Miller and Hoffman 84)
- Shadows, displacements, etc (Cook 84)
- Local coord system (Kajiya 85)
Map Indices

- Surface parameters
- Ray direction
 - reflection/environment mapping
- Surface normal direction
 - diffuse reflection mapping
 - transparency/refraction mapping
Key Challenges

- Mapping function determination
- Resolution issues
- Texture design/capture
Mapping Functions

- **Standard projecting functions**
 - planar
 - cylindrical
 - spherical
- **Mechanism**
 - Two-stage mapping
 - Reverse projection
- **Arbitrary**
Two-stage Mapping

- **S-mapping**
 - map to simple 3D shape
 - intermediate surfs: plane, cylinder, cube, sphere

- **O-mapping**
 - map 3D texture onto surface
 - map entities: reflected view ray, surface normal, line through centroid, intermediate surface normal
Planar Mapping

- For xy aligned plane

\[(u, v) = \left(\frac{x - x_1}{x_r - x_1}, \frac{y - y_1}{y_r - y_1} \right)\]

- Reverse projection
Cylindrical Mapping

- For cylinder with point
 \((r \cos \theta, r \sin \theta, h z)\)
- Texture coords
 \((u, v) = (\theta/2\pi, z)\)
Spherical Mapping

- For sphere with point
 \((r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi)\)
- Texture coords

\[
(u, v) = \left(\frac{\theta}{\pi/2}, \frac{\pi/2 - \phi}{\pi/4} \right)
\]
Mapping onto Parametric Patches

- Use scaled surface u,v parameters for texture u,v
Mapping onto Polygons

- Like parametric surfaces, but use explicit vertex texture coordinates
- Screen-space Interpolation
 - Interpolate u,v
 - Nonlinearity and errors from lack of rotational invariance
 - use small polygons to minimize artifacts
- Correct solution: per-pixel projection
 - Interpolate $(u/w, v/w, 1/w)$; divide to get pixel (u,v)
Bump Mapping

- Perturb surface normals to simulate shape variations
Bump mapping Displacement Mapping
Reflection Mapping

- Look up reflections on an object from a map simulating surrounding environment
Environment Mapping

- Surround scene with maps simulating surrounding detail
Ray tracing

Environment Mapping
Ray tracing Environment mapping

736 sec 330 sec
Ray tracing

Environment Mapping

6179 sec

543 sec
Refraction Mapping

- Perturb refraction rays through transparent surface by disruption of surface normal
Texture Aliasing

- Undersampling of texture map leads to texture aliasing
- Oversampling can show limited texture resolution
Supersampling

- Sample texture multiple times per pixel and reconstruct
Filtering

- Basic method (Catmull 78)
 - Project pixel polygon onto texture map
 - Average color over projected area
Filtering Types

- **Direct Convolution**
 - average multiple samples from texture (usually selected in texture space)

- **Prefiltering**
 - construct multi-resolution copies of texture

- **Fourier filtering**
 - low pass filter texture in frequency space
Mipmappng

- Precalculate filtered maps at a range of resolutions (Williams 83)
- Higher memory requirements
Mipmapping Process

- Compute pixel area in mipmap

- Average from two closest maps
Anti-aliasing: none, mipmapped, supersampled, supersampling and mipmapping