Local Illumination

CMSC 435/634
Illumination

- Global and Local Illumination
Illumination

- Effect of light on objects
- Mostly look just at intensity
 - Apply to each color channel independently
- Good for most objects
 - Not fluorescent
 - Not phosphorescent
Local Illumination

- Light sources shining directly on object
Global Illumination

- Lights from objects shining on other objects
- Ambient Illumination
 - Approximate global illumination as constant color
 - Typically 0.1% of direct illumination
 Bidirectional Reflectance Distribution Function

How much light reflects from L_i to L_o
Physically Plausible BRDF

- Positive
- Reciprocity
 - Same light from L_i to L_o as from L_o to L_i
- Conservation of Energy
 - Don’t reflect more energy than comes in
Plotting BRDFs

- Polar plot of reflectance strength
 - For one view direction, showing light directions
 - For one light direction, showing view directions

- Reciprocity – same if you swap view and light
Rendering Equation

Integral of all Incoming Light

\[L_o(\hat{v}) = \int_{\Omega(\hat{n})} f_r(\hat{v} \leftarrow \hat{l}) L_i(\hat{l}) \hat{n} \cdot \hat{l} \, d\omega(\hat{l}) \]

Parts of this equation:

- \(L_o(\hat{v}) \): outgoing light in direction \(\hat{v} \)
- \(\Omega(\hat{n}) \): hemisphere above \(\hat{n} \)
- \(f_r(\hat{v} \leftarrow \hat{l}) \): BRDF from \(\hat{l} \) to \(\hat{v} \)
- \(L_i(\hat{l}) \): incoming light from direction \(\hat{l} \)
- \(\int_{\Omega(\hat{n})} \ldots \hat{n} \cdot \hat{l} \, d\omega(\hat{l}) \): integration over hemisphere
- \(\hat{n} \cdot \hat{l} \, d\omega(\hat{l}) \): projection of differential solid angle onto surface
Rendering Equation for Point Lights

Sum for Each Light

\[L_o(\hat{v}) = \sum_i f_r(\hat{v} \leftarrow \hat{l}_i) L_i \hat{n} \cdot \hat{l}_i \]

Parts of this equation:

- \(L_o(\hat{v}) \): outgoing light in direction \(\hat{v} \)
- \(f_r(\hat{v} \leftarrow \hat{l}) \): BRDF from \(\hat{l} \) to \(\hat{v} \)
- \(L_i \): incoming light intensity for light \(i \)
- \(\hat{l}_i \): incoming light direction for light \(i \)
Results

- Integrating full environment
- Light at one point, black elsewhere
Important directions

\(\hat{n} \)
Surface normal

\(\hat{v} \)
Vector from surface toward viewer

\(\hat{l} \)
Vector from surface toward light

\(\hat{R}_v = 2\hat{n}(\hat{n} \cdot \hat{v}) - \hat{v} \)
Mirror reflection direction for view

\(\hat{R}_l = 2\hat{n}(\hat{n} \cdot \hat{l}) - \hat{l} \)
Mirror reflection direction for light

\(\hat{h} = \frac{\hat{v} + \hat{l}}{|\hat{v} + \hat{l}|} \)
Normal direction that would reflect \(\hat{v} \) to \(\hat{l} \)

\(\hat{T}_v = \left(\eta \hat{n} \cdot \hat{v} - \sqrt{1 - \eta^2(\hat{n} \cdot \hat{v})^2} \right) \hat{n} - \eta \hat{v} \)
Refraction (transmission) direction for \(\hat{v} \)
Decomposing BRDFs

- Decompose BRDF into convenient parts
- Typical breakdown:
 - Diffuse (view independent)
 - Specular (view dependent near reflection)
 - Others less common, often ignored (e.g. retro reflection)

\[
L_o(\hat{v}) = \sum_i \left(f_d(\hat{v} \leftarrow \hat{l}_i) + f_s(\hat{v} \leftarrow \hat{l}_i) \right) L_i \hat{n} \cdot \hat{l}_i
\]

\[
L_o(\hat{v}) = \sum_i f_d(\hat{v} \leftarrow \hat{l}_i) L_i \hat{n} \cdot \hat{l}_i + \sum_i f_s(\hat{v} \leftarrow \hat{l}_i) L_i \hat{n} \cdot \hat{l}_i
\]
Diffuse

- Also called Lambertian or Matte
- BRDF constant
- Total reflectance: \(\sum_i Kd \hat{n} \cdot \hat{i} L_i \)
Phong

- Strongest where \hat{R}_l lines up with \hat{v} or \hat{R}_v lines up with \hat{l}
- BRDF: $\frac{(\hat{R}_l \cdot \hat{v})^e}{\hat{n} \cdot \hat{l}} = \frac{(\hat{R}_v \cdot \hat{l})^e}{\hat{n} \cdot \hat{l}}$
 - Size of peak determined by exponent
- Total reflectance: $\sum_i Ks (\hat{R}_v \cdot \hat{l}_i)^e L_i$
- Non-physical
 - Too much energy; division by $\hat{n} \cdot \hat{l}$ breaks reciprocity
Blinn-Phong

- Alternate formulation, similar behavior
- Strongest where \hat{h} lines up with \hat{n}
- BRDF: $\frac{(\hat{n} \cdot \hat{h})^e}{\hat{n} \cdot \hat{l}}$
- Total reflectance: $\sum_i K_s (\hat{n} \cdot \hat{h}_i)^e L_i$
- Still non-physical
Cook-Torrance

- Imagine random V-shaped mirrored *microfacets*
- Probability facet has normal \hat{h} (distribution term)
 - Beckmann Distribution = Gaussian distribution of slope
- Proportion of light or view blocked (geometry term)
 - Blocked light = *shadowing*
 - Blocked view = *masking*
- Fresnel term
Cook-Torrance

- **BRDF:** \(\frac{D(\hat{n}, \hat{h}) G(\hat{n}, \hat{v}, \hat{l}) F(\hat{v}, \hat{l})}{\pi \hat{n} \cdot \hat{v} \cdot \hat{n} \cdot \hat{l}} \),

- Total reflectance: \(\sum_i K_s \frac{D(\hat{n}, \hat{h}_i) G(\hat{n}, \hat{v}, \hat{l}_i) F(\hat{v}, \hat{l}_i)}{\pi \hat{n} \cdot \hat{v}} L_i \)

- **Is** physically-plausible

- Differs from Blinn-Phong primarily at glancing reflection
Illumination

Interpolation
When to Compute

- **Flat Shading** = Compute per-polygon
- **Gouraud Shading** = Compute per-vertex & interpolate
 - Lose sharp highlights
 - Subject to *Mach banding*
- **Phong Shading** = Interpolate normals & compute per-pixel
Phong Shading

- Phong shading can refer to lighting model or interpolation
- To save confusion:
 - *Phong lighting*
 - *Phong interpolation*