CMSC 435

Antialiasing
Aliasing

- Visual artifacts
 - jagged lines and edges
 - high frequencies appearing as low
 - small objects missed
 - texture distortions
 - strobing and popping
 - backward movement
No antialiasing
Rendering Process

- Two basic stages
 - sampling
 - reconstruction

- Assuming discrete sampling
Original scene

Luminosity signal
Sampling at pixel centers

Sampled signal
Rendered image

Luminosity signal
Prefiltering methods examine areas of color within a pixel.
Hello World

Hello World

A demonstration
No antialiasing
Prefiltering
Sampling Theory

- Shannon’s sampling theory (1D):
 - A band limited signal \(f(t) \) with cut off frequency \(w_F \) may be perfectly reconstructed from its samples \(f(nT_0) \) if \(2\pi/T_0 \geq 2w_F \)
 - \(w_F == \) Nyquist limit

- Alternatively:
 - a signal can be reconstructed exactly from samples only if the highest frequency is less than half the sampling rate
Sampling Schemes

- Regular supersampling
- Jittered supersampling
- Adaptive supersampling
- Stochastic sampling
Taking 9 samples per pixel
Fig. 12c. Comb rendered with a regular grid, one sample per pixel.

Fig. 12d. Comb rendered with a jittered grid, one sample per pixel.
Reconstruction

- Reconstruction: recreate a continuous signal from a set of samples
- Tasks of reconstruction filter
 - remove extraneous replicas of signal spectrum
 - pass the original signal base unchanged
<table>
<thead>
<tr>
<th>1/16</th>
<th>1/8</th>
<th>1/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>1/4</td>
<td>1/8</td>
</tr>
<tr>
<td>1/16</td>
<td>1/8</td>
<td>1/16</td>
</tr>
</tbody>
</table>

Combines nine samples

Filters combine samples to find a pixel's color.
This filter computes a weighted average.

Samples Pixels
No antialiasing
3x3 supersampling
3x3 unweighted filter
3x3 supersampling
5x5 weighted filter
3x3 jittered supersampling
5x5 weighted filter