CMSC 435/634

Shading

Based on SIGGRAPH 97 education slide set
Rosalee Wolfe, DePaul University
Procedural Shading

So many options for shading, how to represent?
Write a procedure!

- Simple function
- Specialized high-level shading language
Shading Languages

Shade Trees [Cook 84]
- Simple expressions: surface, light, atmosphere
- Built-in vector math & common shading functions

Image Synthesizer [Perlin 86]
- Full language with branch & loop
- Band-limited noise function (more on this in a minute)

RenderMan [Hanrahan & Lawson 90/Pixar]
- C-like language
- Designed to work with many rendering algorithms
- Surface, light, displacement, volume/atmosphere
Shading Example

\[
\text{if } (\text{mod}(\text{trunc}(z\text{comp}(P)),2)==0)
\]
\[
\text{Ci} = \text{color}(1,0,0);
\]

\[
\text{else}
\]
\[
\text{Ci} = \text{color}(1,1,1);
\]
RenderMan Surface Shaders

Input

• Cs, Os
• u, v, du, dv, s, t
• time, dtime
• P, N, Ng, dPdu, dPdv, dPdtime
• E, I
• L, Cl, Ol (In illuminance)

Output

• Ci, Oi
float d = sqrt(
 xcomp(P)*xcomp(P) + ycomp(P)*ycomp(P));
if (mod(trunc(d),2)==0)
 Ci = color(1,0,0);
else
 Ci = color(1,1,1);
Repeating Patterns

float r1 = mod(x, 2)/2; float r2 = sin(x);
Ci = mix(yellow, magenta, r1); Ci = mix(yellow, magenta, r2);
Color Tables
Ci = texture("rainbow", x + noise(P));
Noise

What is this noise?

• “it provides seasoning to help you make things irregular enough so that you can make them look more interesting” – Ken Perlin

• Random but repeatable
 – Different arguments give different random values
 – Same argument gives the same value every time
 – Consistency in animation!

• Frequency band-limited (approximately one octave)
 – Control: can choose frequency range by combining several octaves of noise
Lattice/Value Noise
Gradient Noise
Value vs. Gradient

lattice

gradient
RenderMan noise

Biased to give values centered at .5 rather than 0 float, color or vector output

• inferred, but can force: $C_i = \text{float noise}(P)$;

1D, 2D, 3D or 4D

• $\text{noise}(x)$
• $\text{noise}(x, y)$
• $\text{float}(P)$
• $\text{noise}(P, t)$

Periodic version

• $\text{pnoise}(x, y, x_{\text{period}}, y_{\text{period}})$
Noise Frequency & Amplitude

\[a \cdot \text{noise}(f \cdot P) \]
Simple RenderMan Example

C Code

```c
#include "ri.h"
RtPoint Square[4]=
    {{1.4,1,1},{1.4,-1,1},{-1.4,1,1},{-1.4,-1,1}};
int main() {
    float noisescale = 4;
    RiBegin("square.rib");
    RiDeclare("sc","uniform float");
    RiWorldBegin();
    RiSurface ("noisetest", "sc", &noisescale, RI_NULL);
    RiPatch (RI_BILINEAR, RI_P, (RtPointer) Square, RI_NULL);
    RiWorldEnd();
    RiEnd();
    return 0;
}
```
Simple RenderMan Example

SL Code

```sl
surface noisetest(float sc=1) {
    Ci = float noise(floor(1/t)*sc*P);
}
```
Fractional Brownian Motion (fBm)

Combine octaves, scaled by $1/f$

```cpp
for(f=1; f<=floor(1/t); f*=2)
    Ci += (float noise(f*sc*P)-.5)/f;
Ci += .5;
```
fBm using abs(noise)

for (f=1; f<=floor(1/t); f*=2)
 Ci += abs(float noise(f*sc*P)-.5)/f;
Ci += .5;
Marble
texture(xcomp(P)+turbulence(P))
Wood

Concentric rings of dark & light wood
Perturbed by noise
Volume/Cloud

Solid ellipse
Noise modifies density