Modeling

CMSC 435/634
Modeling?

Modeling
Creating a *model* of an object, usually out of a collection of simpler *primitives*.

Primitive
A basic shape handled directly the rendering system.
Primitives

Some common primitives

- Triangles & Polygons
 - Most common, usually the only choice for interactive
- Patches, Spheres, Cylinders, ...
 - RenderMan has these
 - Often converted to simpler primitives within the renderer
- Volumes
 - What’s at each point in space?
 - Often with some transparent material
 - Few renderers handle both volume & surface models
Composing primitives

- Collections of large numbers of primitives
 - Sometimes called Boundary Representation (BRep)
- Constructive Solid Geometry (CSG)
 - Set operations (union, intersection, difference)
- Implicit Models & Blobs
 - Surface where \(f(x,y,z) = 0 \)
 - Sum, product, etc. of simpler functions
Composing primitives

- Collections of large numbers of primitives
 - Sometimes called Boundary Representation (BRep)
- Constructive Solid Geometry (CSG)
 - Set operations (union, intersection, difference)
- Implicit Models & Blobs
 - Surface where $f(x,y,z)=0$
 - Sum, product, etc. of simpler functions

Images: Friedrich Lohmueller
Composing primitives

- Collections of large numbers of primitives
 - Sometimes called Boundary Representation (BRep)
- Constructive Solid Geometry (CSG)
 - Set operations (union, intersection, difference)
- Implicit Models & Blobs
 - Surface where \(f(x,y,z)=0 \)
 - Sum, product, etc. of simpler functions

Images: Paul Bourke
Modeling Approaches

- Manual primitive creation
- Procedural
- Scan from physical object
- From data (visualization)
- Through image capture (image-based rendering)
Modeling Approaches

Manual primitive creation

Procedural

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)
Manual Creation

- Text editor
- High-level primitives
- Modeling programs
Modeling Approaches

Manual primitive creation

Procedural
- Fractals
- Implicit Functions
- Grammars
- Simulations

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)
Procedural Modeling

- Describe physical attributes through some (spatial) function
 - Shape
 - Density
 - Color
 - Texture
Procedural Approaches

- Fractals
- Implicit Functions
- Grammars
- Simulations
Fractals

Complex structure through self-similarity across scales

- Iterated equations
- Iterated replacement
- Spectral Synthesis
Iterated Equations / Mandelbrot Set

\[p' = p^2 + c \]

Image: David E. Joyce
Iterated Replacement / Koch Curve
Iterated Replacement / Mountains

Randomness in replacement
Spectral Synthesis

- Spectral energy a function of frequency
 - Higher frequency, less energy
 - Characterizes roughness of surface
 - Natural phenomena tend to be $1/f$
Noise-Based Synthesis

- Band-limited *Perlin noise* function
 - Most energy between 1/2 and 1 cycle per unit
 - Average value is 0
 - Random, but repeatable
 - 1D, 2D, 3D & 4D versions common

- Sum noise *octaves*
 - \(n(x) + \frac{1}{2} n(2 \times x) + \frac{1}{4} n(4 \times x) + ... \)
 - Stop adding “...” when frequency is too high to see
Fractal Landscape

Landscape height is a fractal function of x,y

- Plus whatever embellishments make it look good

Image: Ken Musgrave
Multifractal

- Change roughness across fractal
 - Scaling ($\frac{1}{2}$, $\frac{1}{4}$, ...) becomes a function
- Here, scale is a function of altitude

Image: Ken Musgrave
Implicit Functions

- Model as sum of implicit functions
- Surface at threshold

Liang, et al., PG'01
Hybrid Implicit & Polygonal

Bloomenthal, SIGGRAPH 85
Hypertexture

- Add noise or turbulence to functions

Perlin & Hoffert, SIGGRAPH 89
Grammar-Based Modeling

- Use (mostly) context-free grammars (CFG) to specify structural change over generations
- Often used to simulate a biological growth process
 - Plants
 - Seashells
- L-systems (Lindenmeyer)
Context-Free Grammar

- A CFG $G = (V, T, S, P)$ where
 - V is a set of non-terminals
 - T is a set of terminals
 - S is the start symbol
 - P is a set of productions (rules) of the form:
 - $A \rightarrow x$, where $A \in V$, $x \in (V \cup T)^*$
Applying Grammar Rules

- **Symbols**
 - A, B, straight line segments
 - $[]$, branch left 90°

- **Rules**
 - $B \rightarrow A[B]AA[B]$
 - $A \rightarrow AA$

- **Strings**
 - B
Applying Grammar Rules

- **Symbols**
 - A, B, straight line segments
 - $[]$, branch left 45°
 - $()$, branch right 45°

- **Rules**
 - $B \rightarrow A[B]AA(B)$
 - $A \rightarrow AA$

- **Strings**
 - B
 - $A[B]AA(B)$
L-System Examples

- **Symbols**
 -
 -
 -
 -

- **Rules**
 -
 -
 -
 -

- **25.7°, 7 generations**

- **X → F[+X][−X]FX**

- **F → FF**
L-System Examples

- Rules
 - 22.5°, 5 generations
 - $F \rightarrow FF$
L-System Examples

- Rules
 - 22.5°, 4 generations
 - $F \rightarrow FF - [F + F + F] + [+F - F - F]$
Additions

- 3D structure
- Randomness
- Leaves
- Flowers

Prusinkiewicz, et al., SIGGRAPH 88
Pruning

Prusinkiewicz, et al., SIGGRAPH 94
Pruning

Prusinkiewicz, et al., SIGGRAPH 94
Simulations

- Biological
 - Simulate growth, development

- Physical
 - Simulate formation or erosion
Biological Simulations

Fowler, et al., SIGGRAPH 92

Fleischer, et al., SIGGRAPH 95
Biological Simulations

Fowler, et al., SIGGRAPH 92
Biological Simulations

Turk, SIGGRAPH 91
Physical Simulation

- Erosion, Deposition

Kenji Nagashima, Visual Computer 1997
Modeling Approaches

Manual primitive creation

Procedural

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)
Scan from Objects

- General concept
 - Find points on surface
 - Connect into mesh

- Mechanical

- Triangulation
 - Laser
 - Structured Light
 - Multiple Cameras

- CAT scan / MRI
Mechanical

- Touch tip to surface
- Measure angles
Triangulation

- Point in space at intersection of ray from A and ray from B
Structured Light

- Point in space at intersection of color edge from light source/projector and ray through camera pixel

Zhang, Curless and Seitz, 3DPVT 2002
Modeling Approaches

Manual primitive creation

Procedural

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)
Visualization

- Data
 - measurements
 - simulation
 - information

- Present visually
 - Increase understanding
 - Recognize patterns
Visualization

- Can be 3D Object
Visualization

- Can be 3D, but showing non-visual aspects.
Visualization

- Can be not traditionally geometric at all
Modeling Approaches

Manual primitive creation

Procedural

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)
Image-based Rendering

- Pixels in one or more cameras
 - Color of point in space
 - Color of light along one ray
- IBR
 - Construct new *novel* view using only image data