Masked SABL: a Long Lasting Side-Channel Protection Design Methodology

BIJAN FADAЕINIA1, MD TOUFIQ HASAN ANIK2(Graduate Student Member, IEEE), NAGHМEH KARIMI2(Member, IEEE), AND AMIR MORADI1

1Ruhr University Bochum, Hoest Gortz Institute for IT Security, Germany (e-mail: {bijan.fadaeinia, amir.moradi}@rub.de)
2University of Maryland Baltimore County, Baltimore, MD 21250, USA (e-mail: {toufiqhanik, nkarimi}@umbc.edu)

Corresponding author: Bijan Fadaeinia (e-mail: bijan.fadaeinia@rub.de).

The work described in this paper has been supported in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972 and through the project 418658052 “Aged but Fit: Long Lasting Security for Trusted Platforms”, and in part by National Science Foundation CAREER Award (NSF CNS-1943224) through the project “Investigating the Impact of Device Aging on the Security of Cryptographic Chips”. A preliminary version of this paper was presented at the 2021 Asia and South Pacific Design Automation Conference [4].

ABSTRACT As an outstanding cell-level countermeasure to defeat power analysis attacks, dual-rail pre-charge logics rely on balanced complementary paths. During the circuit lifetime, the gates undergo unavoidable changes due to the so-called device aging, hence imbalancing the dual rails. Here, we focus on Sense Amplifier Based Logic (SABL), and highlight the vulnerability of corresponding circuits when the device is aged. By integrating gate-level masking, we introduce a modified variant of SABL, maintaining its resistance in presence of device aging. The corresponding results, covering both dynamic and static power profiles, show the prominent impact of our construction on extending the protection of circuits for their entire lifetime.

INDEX TERMS Cryptographic Circuits, Device Aging, Sense Amplifier Based Logic (SABL), Side-channel Analysis (SCA)

I. INTRODUCTION

Cryptographic circuits offer continued advances in authenticating messages and devices as well as preserving the integrity and confidentiality of sensitive information through implementation of cryptographic algorithms in hardware. The deployment of such devices in military, space, finance and other critical applications that require a high level of security is inevitable. Although developed to maintain security and trust, the physical implementation of cryptographic devices can be compromised by the adversaries who aim at extracting the sensitive information these circuits conceal. Accordingly, preserving the security of these devices is of utmost importance.

Revealing the key of the cryptographic devices leading to recovering the corresponding encrypted data has been always an attractive task for adversaries, particularly with the rising inclusion of smart cards in everyday life. Although traditionally, the security of a cryptographic device depends on the complexity of the underlying cryptographic algorithm and the deployed authentication protocol, an adversary may benefit from the information collected by monitoring its physical characteristics. Such so-called Side-Channel Analysis (SCA) attacks, are conducted by analyzing e.g., running time, power consumption, and electromagnetic radiation of the underlying cryptographic device during its operations. In practice, dependency between the side-channel information and the device intermediate values during the encryption/decryption can reveal the deployed key [18].

To thwart such attacks, different countermeasures have been proposed in literature which can be mainly categorized to two groups of masking and hiding. In practice, masking countermeasures try to randomize the intermediate values via a form of secret-sharing scheme, while hiding countermeasures opt to reduce the dependency of power consumption on processed data via reducing the Signal-to-Noise Ratio (SNR) [18].

DPA-resistant logic styles (where DPA refers to Dynamic Power Analysis [13]), as a well-known class of hiding coun-
termeasures, try to equalize the power consumption of the
target cryptographic circuit independent of processed data.
Obviously, this cannot be fully achieved due to process
variation, but the SNR can be significantly lowered thereby
hardening the implementations against power SCA attacks.
Some of such techniques are based on conventional stan-
dard cells [5], [30] and some others require full-custom cell
design [6], [29]. Sense Amplifier Based Logic (SABL) is
among such countermeasures which provides a reasonable
trade-off between the overhead and achieved security level.
The resistance of such logic styles, including SABL, are
based on a balance between the rising (resp. falling) time of
dual rails representing complementary signals. However, due
to the so-called device aging, the specifications of the tran-
sistors building a digital circuit change over time, e.g., their
threshold voltage. The transistors’ threshold voltage is among
such specifications, whose change naturally affects the gates’
timing characteristics, hence deviating from the aforemen-
tioned balance [4]. Therefore, although SABL-based circuits
have been shown effective against SCA attacks, such a resis-
tance may not be maintained over the circuits’ lifetime [4].
More precisely, the adversary can intentionally accelerate the
aging process and make use of the resulting SCA leakage to
recover the embedded secret.

To alleviate this shortcoming, and sustain the security
of such protected circuits even when they have been used
for a while, an aging-resilient countermeasure is needed.
Accordingly, this paper targets SABL, and investigates the
vulnerability of corresponding circuits after being aged. We
even move one step further by presenting a solution which
keeps the same level of SCA resistance when the device is
aged. To achieve our goals, we construct a new variant of
SABL, i.e., masked SABL, by making use of the concept
behind masked dual-rail logic, where the rails (of dual-rail
routes) are randomly swapped during the operation of the
circuit. To our best knowledge, no aging-resilient counter-
measure against SCA attacks has been proposed in open
literature.

In this paper, we investigate the effect of aging on the
success of SCA attacks, which exploit static power con-
sumption, as well as those which monitor the circuit’s dy-
namic power. Accordingly, we demonstrate the robustness
of our new construction in preventing both static and dynamic
power SCA leakages in presence of device aging. To this
end, after giving the essential background in Section II, we
discuss the impact of aging in degrading the balancedness
of SABL cells in Section III. Then we present our new
aging-resilient structure in Section IV. We further construct
a transistor-level description of the PRESENT S-box (as the
most complex part of the corresponding encryption function),
and run extensive transistor-level simulations (using HSpice
MOSRA) in Section V to emulate the device aging and
evaluate the vulnerability/resistance of both corresponding
SABL and masked SABL circuits against static and dynamic
power analysis attacks. At the end, Section VI concludes the
conducted research.

II. BACKGROUND
In the following, we shortly give the basics of underlying
logic style SABL, and that of CMOS device aging.

A. SENSE AMPLIFIER BASED LOGIC
SABL [29], [32] is a Dual-Rail Pre-charge (DRP) logic
style that carries both input and output signals on com-
plementary wires. As Figure 1 depicts, each SABL cell
includes two cross-coupled inverters and a differential pull-
down network (DPDN). While other parts of the circuit are
the same for every SABL cell, the DPDN is responsible for
the functionality of the cell and is made of only NMOS
transistors. Each SABL cell has two operational phases: pre-
charge and evaluation. In the pre-charge phase, clk is low,
hence nodes n1 and n6 are set to high. Therefore, at the end
of this phase, output signals out and out are pre-charged to
low. The same holds for the input signals as they are driven
by preceding SABL cells (or the circuit’s primary inputs). At
the beginning of the evaluation phase, i.e., positive edge of
c1k, the SABL cell (through the DPDN) starts evaluating the
output once all its dual-rail inputs are complementary. During
this phase, all internal nodes of DPDN go to low, while only
one of the complementary outputs out and out goes high,
depending on which node n2 and n2 goes low earlier. This
way, no glitch happens in either internal or output signals,
and for each clock cycle, it is guaranteed to have only one
falling transition at the start of the pre-charge phase, and only
one rising transition during the evaluation phase. Supposing
a balance between capacitive load of dual rails, dynamic
power consumption of each cell (resp. the circuit) should be
independent of processed data.

Following [32], DPDN should fulfill some requirements:
• It should be always-connected, i.e., all its internal nodes
should be charged in the pre-charge phase and dis-
charged during the evaluation phase.
• It should be balanced, i.e., all possible paths to GND
should have equivalent resistance. Hence, each route
should include an equal number of transistors with
identical parameters.

FIGURE 1. General structure of an SABL cell, taken from [18].
B. AGING MECHANISMS

Due to the device aging, the performance of a circuit degrades over time, and eventually it fails to meet its frequency requirements [2], [22]. Among all aging mechanisms, Bias Temperature-Instability (BTI) and Hot Carrier Injection (HCI) are two leading factors in circuit degradation over time [3], [11].

The BTI (including Negative and Positive BTI referred to as NBTI and PBTI, respectively) results in an increase in the threshold voltage (V_{th}) of transistors over time. NBTI and PBTI occur in PMOS and NMOS transistors, respectively. The impact of NBTI is more dominant than PBTI beyond the 45 nm technology node. However, PBTI effects have also received significant attention in smaller technology nodes [33].

A PMOS transistor experiences two phases of NBTI. The stress phase occurs when the transistor is “on” ($V_{gs} < V_{th}$). In this phase, the positive interface traps are generated at the Si-SiO$_2$ interface resulting in V_{th} increase. In the second phase (i.e., recovery) which occurs when the transistor is “off”, the V_{th} drift is partially recovered. The BTI effects depend on the specification of the transistor under-stress, supply voltage, temperature, and stress time [11]. The last three parameters (which are actually external) can be used to accelerate the aging. The NBTI effect is high in the first couple of weeks but the V_{th} tends to saturate for long stress times. The PBTI affects NMOS transistors in a similar way that NBTI affects PMOS transistors.

Figure 2 shows the V_{th} drift of a PMOS transistor continuously under stress for 6 months and the one alternating stress/recovery phases every other month. As shown, NBTI effect is high in the beginning but the threshold voltage tends to saturate for long stress times. The impact is exacerbated with thinner gate oxide and higher operating temperature [1].

HCI occurs when hot carriers are injected into the gate dielectric during transistor switching and remain there. HCI is a function of switching activity, and results in shifting the threshold voltage and the drain current of transistors under stress [25]. HCI depends on temperature, clock frequency, usage time, and activity factor of the transistor under stress, i.e., the percentage of cycles in which the transistor is switching [22]. Unlike BTI, HCI does not have any recovery phase.

III. CONCEPT

A. INFORMATION LEAKAGE IN SABL

Side-channel data leakage is an unintended dependency between externally-measurable characteristics of a device such as power consumption and its processed data. Such a dependency can be observed in both dynamic [13] and static power [19]. In advanced semiconductor technologies the leakage current increase due to lower threshold voltages, shorter channel lengths, and thinner gate oxides, results in higher static power side-channel leakage [9]. On the other hand, decrease of supply voltage and parasitic capacitances in such new technologies have led to lower dynamic power consumption in the new generation of integrated circuits. In the case of SABL, the most important source of information leakage through dynamic power is an imbalance between complementary rails, including their loads and path delays [18]. In contrast, dependency of static power (leakage current) to the value of the circuit’s signals generally relies on source-drain current I_{sd}, gate-source current I_{gs}, and gate-drain current I_{gd} of off-state transistors as well as I_{gs} and I_{gd} of on-state transistors [9].

Since all inputs and outputs of an SABL cell are low during the pre-charge phase, its information leakage through static power can only be relevant in the evaluation phase, i.e., when c_{1k} is high and all its inputs are complementary and stable. In this state, all n_1 to n_4 nodes and consequently all internal nodes of DPDN are connected to GND (see Figure 1). Therefore, source and drain of all NMOS transistors in DPDN are connected to GND, hence having only I_{gs} and I_{gd} passing through the transistors’ gate to GND. As stated in Section II-A with respect to the DPDN’s requirements, for every input combination, the same number of transistors in DPDN is in on- or off-state. Hence, ignoring process variation, the DPDN’s leakage current is expected to be just slightly different for various inputs. On the other hand, the leakage current of the cross-coupled inverters is almost due to I_{sd}, which is actually the dominant part of static power. Since the cross-coupled inverters are ideally symmetric, their leakage current is also independent of the inputs. As a result, in an ideal SABL cell, we expect no dependency between the circuit’s static power and its inputs. However, in practice due to process variation, the circuit faces some asymmetry affecting its information leakage via both dynamic and static power profiles.
B. AGING-INDUCED DELAY CHANGE

By the first set of experiments, we shortly examine the effect of NBTI aging on the propagation delay of primitive logic gates. To this end, we simulated different standard and SABL gates and observed their propagation delay when aged over a period of 6 months. For the simulations, we made use of Synopsys Hspice and MOSRA level 3 model to simulate the aging effects. Both HCI and BTI flags have been activated. As a side note, in our simulations we did not consider any parasitic capacitances originating from the layout. However, those which are made by the topology of the circuit (fanouts and fanins) are inherently covered. Figure 3 shows the corresponding results for each classic (i.e., unprotected) primitive logic gate as well as their SABL-protected counterpart over time when these gates are fed with randomly generated inputs between 1 and 6 months.

As shown in Fig. 3, each primitive gate experiences different amount of delay change related to its transistor level topology. This observation confirms that each path in a cryptographic device may degrade with a different rate based on the type of its underlying gates, and the input values feeding it. The takeaway point from this observation is that aging can result in imbalances in the power consumption of each gate, each path, and in sum in the total power consumption of a device during the time even if the device is equipped with randomly generated inputs.

As a side note, in our simulations we did not consider any parasitic capacitances originating from the layout. However, those which are made by the topology of the circuit (fanouts and fanins) are inherently covered. Figure 3 shows the corresponding results for each classic (i.e., unprotected) primitive logic gate as well as their SABL-protected counterpart over time when these gates are fed with randomly generated inputs between 1 and 6 months.

As stated, we made use of Synopsys Hspice and MOSRA level 3 model to simulate the aging effects. As a side note, our simulations are based on a 40 nm commercial library. For the simulations, the circuit’s input was kept constant during the aging phase to simulate BTI effect while clk was still provided by a periodic signal. Therefore, the SABL gates were switching between precharge and evaluation phases, hence the cross-coupled inverters in each SABL cell switch and simulate HCI effect. In short, these simulations cover both BTI and HCI aging mechanisms.

In order to extract dynamic power (current) signals, for each given 4-bit input to the underlying S-box, we simulated the circuit for a total of 4 clock cycles to allow SABL-cells’ internal latches to gain correct complementary values. We further continued each simulation for a very long time with stable inputs in the evaluation phase (clk being high) to let the circuit’s current and voltage settle on their steady-state values thereby emulating static-power measurements [19]. Therefore, we collected 16 dynamic power traces associated to 16 different S-box inputs, and respectively 16 static power singular values. This process has been identically repeated 8 more times after the circuit is aged for a week, i.e., a set of simulations after each week (totally 8 weeks). Note that during aging, we set the S-box input to a fixed value (all zero) and the temperature to 90° C while keeping the clock signal active, i.e., interchanging between pre-charge and evaluation phases. While the dynamic power signals have been collected at nominal temperature 21°C, the static-power measurements have been conducted at 90°C (as suggested in [12], [19]).

Figure 4(a) shows the collected static power values as well as their variance over the aging time. As expected, the amount of leakage current is reduced over time (as the transistors’ threshold voltage increased); more importantly – aligned with our predictions – their diversity (resp. variance) is increased. This can potentially lead to a higher vulnerability to power analysis attacks, which we investigate in Section V. The same concept is shown by Figure 4(b), representing the variance of a part of dynamic power traces in the evaluation phase.
and all operations are performed on shared values. If im-
culated as
XORing the output shares, e.g.,
y

circuit are first masked using uniformly-distributed random

cell. This imbalancedness originates from the un-
equal switching activity of the PMOS transistors of the cross-
coupled inverters during the aging period (see Figure 1).

In short, our solution, as a proactive countermeasure, tries

look for a technique to somehow force the corresponding

perspective [8], [14], few studies concern the impact of aging

been proposed to mitigate the aging effects from a reliability

statement in Section II-B – is one of the dominant factors among

the aging mechanisms. Although several techniques have

been proposed to mitigate the aging effects from a reliability

perspective [8], [14], few studies concern the impact of aging

on the circuits security [15]. Since aging is inevitable, we

look for a technique to somehow force the corresponding

transistors to age identically, rather than avoiding the HCI.

In short, our solution, as a proactive countermeasure, tries

to randomize the switching activity of the aforementioned

PMOS transistors. This can mitigate the HCI’s impact on in-

formation leakage originating from such an imbalancedness.

In order to achieve our goal, we borrow the concept of
gate-level masking employed in Masked Dual-rail Pre-charge

Logic (MDPL) [24]. We, however, first shortly review the

basics of masking schemes. Based on secret sharing, in the

simplest form of masking, a secret value x is represented by

two shares (x₀, x₁) in such a way that ∀x₀, x₁, x = x₀ ⊕ x₁,

with ⊕ being the addition modulo 2 (XOR). Having only x₀

or x₁, no information about x should be revealed. Therefore,

each of them should have a uniform distribution. To this

end, x₀ can be selected uniformly as random and x₁ can be

calculated as x ⊕ x₀. More precisely, the primary inputs of

the circuit are first masked using uniformly-distributed random

numbers and at the end of the computations, the primary

outputs are unmasked before being sent outside (naturally by

XORing the output shares, e.g., y₀ ⊕ y₁). All intermediate

values of the circuit are similarly presented by two shares

and all operations are performed on shared values. If im-

plemented correctly, this avoids the leakages of the circuit

to be exploitable through ordinary (first-order) SCA attacks.

For more information on this topic, the interested reader is

referred to [21].

The goal of MDPL is to relax the necessity of symmetric

routing of dual rails [24]. Its basic idea is based on the

aforementioned masking technique, but it uses masking to

randomly swap the dual rails at every clock cycle. For this

purpose, it uses a randomly-generated single-bit mask m to

toggle all signals of the circuit. More precisely, instead of

representing an exemplary complementary signal by (x, x),

its masked form (x ⊕ m, x ⊕ m) is used. This holds for all

complementary signals of the circuit; hence, every gate

should additionally receive the complementary signal (m, m).

Note that, in contrast to an ordinary masked implementation,

a single-bit mask m is used to mask all signals of the circuit.

For simplicity, we can suppose that for m = 0 the circuit oper-

ates as a normal dual-rail (not masked) design, and for m = 1

all cells’ input and output signals toggle their values (dual

rails swapped). Note that independent of this feature, MDPL

suffers from data-dependent time-of-evaluation, degrading its

promised security [28], which has been corrected in the

successor’s design improved MDPL (iMDPL) [23]. Both use

the same concept of single-bit gate-level masking, and their
difference is in the design of gates to avoid early-propagation
effect [28].

Here, we make use of the same concept and swap the

SABL dual rails based on a random mask bit in order to

equally distribute the aging effect on both rails independent

of processed data. Figure 5(a) shows all possible input states

and their corresponding outputs for an SABL AND/NAND

cell. It can be seen that naturally only one of the outputs

differently affected by the HCI aging. It means that they are
differently affected by the HCI aging.

Now, consider a situation where we mask all signals of

the SABL AND/NAND gate by a single-bit mask bit m. Fig-

ure 5(b) shows the corresponding timing diagram. Suppose

that the mask bit m is taken from a uniform distribution

independent of the other signals. A single Linear Feedback

Shift Register (LFSR) with e.g., 64-bit state is a resource-

efficient solution to generate such a pseudo-random mask bit

per clock cycle. In that case, out ⊕ m and out ⊕ m have

the same switching rate (each 4 out of 8, see Figure 5(b)).

Therefore, the corresponding transistors of the cross-coupled

inverters would have the same switching rate; hence, both

sides of the cross-coupled inverters (corresponding to out

and out) age identically from the HCI perspective. Further,

as shown in Figure 5(b), the output rails are balanced in terms

of duration of 0 and 1, hence balancing the BTI effect as

well. This concept is our basic idea to design masked SABL

to keep the balancedness thereby preventing aging-induced

information leakage in SABL circuits.

In order to design a masked SABL cell, we need to add a

randomly-generated single-bit mask m and its complementary
As a reference, the DPDN structure of the SABL (Figure 5(a)) and the masked SABL (Figure 5(b)) are shown in Figure 6. Following the procedure given in [32], we need to construct enhanced DPDNs fulfilling the below given two requirements. Note that, the two other requirements indicated in Section II-A are inherently fulfilled.

- For any complementary input combination, each internal node of the DPDN should be connected to either n_1 or n_2 nodes. This way, all internal nodes are discharged during the evaluation phase and charged during the precharge phase.
- The evaluation depth of the DPDN should be the same for all input combinations.

The evaluation depth is defined as the total resistance between the nodes n_1/n_2 and the circuit’s common GND. Hence, the number of transistors in each route between n_1/n_2 and n_3/n_4 should be the same. If different routes have different number of transistors, we insert a path-gate in the route that has fewer transistors. A path-gate is a parallel combination of two transistors driven by a signal and its complement. Therefore, a path-gate is always “on” for complementary inputs, and it is just used to balance the resistance between different routes. Figure 7 shows the structure of DPDN of the masked SABL AND/NAND and XOR/XNOR gates. As an example, transistors M_1, M_2 as well as M_8, M_9 form a path-gate in masked SABL AND/NAND gate (Figure 7(a)). Note that the AND/NAND gate can be easily turned into the OR/NOR gate by swapping the complementary inputs and output signals.

V. ANALYSIS

Based on the implementation and the setup introduced in Section III, we constructed the equivalent circuit (PRESENT S-box) using our designed masked SABL cells. To this end, every SABL cell is exchanged with its masked counterpart and the complementary mask signals ($\overline{m}, \overline{m}$) are connected to all cells. Naturally, we repeated all simulations with identical settings as for the SABL, explained in Section III-C. Compared to before, here we needed to conduct the simulations once for $m = 0$ and one more time for $m = 1$. Since the mask bit is supposed to be out of control of the adversary and should have a uniform distribution (essential requirements of masking schemes [18]), we took the average of every two simulations associated to different routes. Figure 7 shows the structure of DPDN of the masked SABL AND/NAND and XOR/XNOR gates. As an example, transistors M_1, M_2 as well as M_8, M_9 form a path-gate in masked SABL AND/NAND gate (Figure 7(a)).

As the first analysis step, we show the variance of both static and dynamic simulation data over aging time in Figure 8, which clearly represents the benefit of our construction compared to the SABL in Figure 4. In short, it can be seen that – in contrast to SABL – the variance of leakages in our construction decreases when the circuit is aged. We also like to highlight that the gray curves, shown in Figure 8, which clearly represents the benefit of our construction compared to the SABL, such a high similarity between the curves is not observed in those plotted in Figure 4.

A. LEAKAGE ANALYSIS

In contrast to simulation, experimental SCA measurements are affected by noise originating from the measurement setup and environmental parameters. Hence, the aim of a proper SCA evaluation in the simulation domain is to examine
the success of corresponding attacks over the noise level. Considering a Gaussian noise, Information-Theoretic (IT) analysis [27] evaluates the amount of information in SCA leakages associated with processed data. In short, it estimates mutual information utilizing conditional entropy as

$$I(S; L) = H[S] - H[S|L],$$

where L denotes the SCA leakages and S the selected intermediate value (the S-box input in our case study). The conditional entropy can be estimated by means of integral over l as

$$H[S|L] = - \sum_s Pr[s] \int Pr[l|s] \cdot \log_2 Pr[l|s] \, dl.$$

This analysis, which is suitable to compare different countermeasures under similar settings, extracts a curve for mutual information over noise standard deviation. It identifies the necessary noise level to entirely hide the information leakage. The lower the required noise, the higher is the robustness as the leakage can more easily (with lower noise) be hidden. It is worth mentioning that such a technique has been considered as a valid analysis scheme for DPA-resistant logic styles (see for example [16], [26]).

We performed this analysis on static power simulation data which we have collected from both original and masked SABL circuits for all aging times. The corresponding result, shown in Figure 9(a) confirms the ability of our construction...
to better hide the information leakage when the device is aged. The SABL circuit needs more noise over aging time, while this is opposite in our masked SABL variant. Note that since we considered the SCA leakages associated to the input of an S-box instance, the maximum of the extracted mutual information curves is 4, as the S-box has a 4-bit input.

We repeated the same procedure for all sample points of dynamic power simulation data sets. This way, a mutual information curve for each sample point and each aging time is extracted. To be able to compare the results, for each given noise standard deviation, we need to observe the maximum of mutual information for all sample points. This had led to the results shown in Figure 9(b). The benefit is not as significant as that for static power measurements. However, as the most important fact, in contrast to the SABL circuit, the leakage of the masked SABL design (slightly) decreases over aging time.

B. ATTACKS

In addition to the IT analysis which presents the minimum amount of noise to hide the remaining leakages, we conducted state-of-the-art attacks to obtain an overview on the number of measurements required to exploit the leakages. To this end, we apply Moment-Correlating DPA (MC-DPA) [20], which – compared to the other DPA attacks – relaxes the necessity of having a hypothetical power model. In particular, we conducted collision MC-DPA, which examines the exploitability of leakages. It divides the traces into two equal-size groups: one to extract the model (through average in case of first-order MC-DPA), and the other one to conduct the attack based on the extracted model. If successful, MC-DPA in general recovers the linear difference (XOR) of secret keys associated to the two aforesaid groups of traces.

Since the simulation data are noise-free, we need to artificially add Gaussian noise to the collected simulation data set to emulate an experimental situation. As stated, for each circuit and for each aging time, we have a vector of 16 elements as noise-free static power values associated to the S-box input values (this holds for each sample point in case of dynamic power traces). Therefore, for the given noise standard deviation σ, by gathering the noisy values, we obtain a set of let say n samples (either for static power or for each sample point of dynamic power traces). More precisely, a 16-element vector is repeated a required number of times to reach the desired size n. Afterwards, it is added with n noise samples, taken from a Gaussian distribution with standard deviation σ, to form a vector of n noisy measurements.

By gradually increasing n, and conducting the MC-DPA attack following the explanation above, we obtained the minimum number of measurements leading to a successful attack. Since this conclusion depends on the Gaussian (but randomly) added noise, we repeated this process 100 times and took average of minimum number of required measurements. Repeating the same procedure on all data sets (static, dynamic, and all aging times) led to the curves presented in Figure 10. Aligned with the IT-based analysis, equivalent attacks on SABL circuit need less traces when the device is aged. In contrast, the attacks on our masked SABL construction become harder over the device lifetime.
TABLE 1. Overhead of masked SABL versus SABL, based on an implementation of the PRESENT S-box.

<table>
<thead>
<tr>
<th>Overhead</th>
<th>Masked SABL vs SABL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>+ 18.7%</td>
</tr>
<tr>
<td>Power</td>
<td>+ 1.07%</td>
</tr>
<tr>
<td>Delay</td>
<td>+ 13.8%</td>
</tr>
</tbody>
</table>

It might be seen questionable that we could perform successful attacks on an SABL circuit without considering imbalances originating from process variations. Note that the parasitic elements cause DPDN to switch (very slightly) differently for various inputs. Therefore, considering no noise (or very little noise) the traces captured by Hspice simulations can show the data dependency of the traces, and hence the SABL circuit could be successfully attacked. As shown in [17] any DPA-resistant logic style (including SABL) can be attacked given very low (or zero) amount of noise.

C. OVERHEAD

We would also like to point out that the application of our masked SABL cells leads to a higher overhead compared to the original ones. As the most obvious fact, the dual-rail mask signal \((m, \overline{m}) \) should be routed to all cells of the circuit. This slightly increases the complexity of the design process, although the facility of routing clock signal can be re-used for this purpose. Further, 6 and 8 more NMOS transistors are used in AND/NAND and XOR/XNOR cells compared to SABL. This makes the corresponding DPDNs larger which for sure have some impact on the power and delay of the circuit.

We assessed this fact using the above-explained case study, i.e., the PRESENT S-box. In total, the masked SABL S-box requires 112 more NMOS transistors. This leads to around 18.7% larger area compared to the circuit constructed using SABL cells, based on the used 40nm commercial library. Note that both circuits have the exact same topology, while being only different in the type of the instantiated gates. Our investigations show that their amount of power consumption (averaged over all possible input values) are very similar while our masked SABL circuit exhibits around 13.8% higher delay. For the delay, we considered the average time the circuit requires to evaluate the S-box output for all possible input values. Table 1 summarizes these results. The takeaway point from all these observations is that employing our-designed masked SABL cells can maintain the security of the circuit over its lifetime, with an acceptable overhead.

VI. CONCLUSIONS

In this paper, we focused on DPA-resistant dual-rail pre-charge logic styles, in particular on SABL. Such countermeasures are supposed to harden power analysis attacks by means of equalizing the amount of power consumption independent of the circuit’s activity. We showed that DPA resistance of SABL circuits can be affected by the aging-induced change of the device specifications over time, which results in imbalances in dual rails and in turn increases the vulnerability of the circuit to key-recovery SCA attacks. We proposed to integrate a gate-level masking into the SABL cells’ structure thereby randomly swapping the content of dual rails. This avoids the transistors associated to a certain rail of a gate to switch more than the others, hence balancing the effect of aging on both rails independent of the gate’s input. The analysis results based on both dynamic and static power profiles confirm the efficacy of our proposed technique in maintaining the security of the corresponding circuits to power analysis attacks over the device lifetime.

REFERENCES

BIJAN FADAENIA received the B.Sc. and M.Sc. degrees in Electrical Engineering from University of Tabriz and Iran University of Science and Technology, Iran in 2001 and 2004, respectively. Afterwards, till 2019 he worked as a lecturer at the department of electrical engineering, Islamic Azad University of Hamadan, Iran. Currently, he is a Ph.D. student and scientific research assistant at the chair for Security Engineering, Horst-Göttz Institute for IT-Security, Ruhr-Universität Bochum, Germany. His research interests include physical security of embedded devices particularly hardware-based countermeasures.

AMIR MORADI received the M.Sc. and Ph.D. degrees in computer engineering from Sharif University of Technology, Tehran, Iran, in 2004 and 2008 respectively. Afterwards, till 2015 he worked as a Post-Doctoral researcher at the chair for Embedded Security, Ruhr Universität Bochum, Germany. In 2016 after obtaining the Habilitation degree, he joined the faculty of electrical engineering and information technology at Ruhr University Bochum, and since 2021 has become a professor at the same faculty. His current research interests include physical security of embedded systems, passive and active physical attacks, and the corresponding countermeasures. To date, he has published over 120 peer-reviewed journal articles and conference papers, in both destructive and constructive aspects of side-channel analysis. He also served as Program Committee Member (and the Chair) of several security- and cryptography-related conferences and workshops.

BIJAN FADAENIA et al.: Masked SABL: a Long Lasting Side-Channel Protected Design Methodology