
Clindex: Clustering for Similarity Queries

in High-Dimensional Spaces

Chen Li, Edward Chang, Hector Garcia-Molina

James Ze Wang and Gio Wiederhold

Department of Computer Science, Stanford University

Paper Number 128

Abstract

In this paper we present a clustering and indexing paradigm (called Clindex) for high-
dimensional search spaces. The scheme is designed for approximate searches, where one
wishes to �nd many of the data points near a target point, but where one can tolerate
missing a few near points. For such searches, our scheme can �nd near points with high
recall in very few IOs and performs signi�cantly better than other approaches. Our scheme
is based on �nding clusters, and then building a simple but e�cient index for them. We
analyze the tradeo�s involved in clustering and building such an index structure, and present
experimental results based on a 30,000 image database.
Keywords: similarity search, multidimensional indexes.

1 Introduction

Similarity search has generated a great deal of interest lately because of applications such as

similar text/image search and document/image copy detection. These applications characterize

objects (e.g., images and text documents) as feature vectors in very high-dimensional spaces

[6, 15]. A user submits a query object to a search engine, and the search engine returns objects

that are similar to the query object. The degree of similarity between two objects is measured

by the Euclidean distance between their feature vectors. The search is performed by returning

the objects that are nearest to the query object in high-dimensional spaces.

Nearest neighbor search is inherently expensive, especially when there are a large number of

dimensions. There is simply no way to build an index on disk such that all nearest neighbors to

any query point are physically near on disk. (We discuss this \curse of dimensionality" in more

detail in Section 2.) Fortunately, in many cases it is su�cient to perform an approximate search

that returns many but not all nearest neighbors [2, 8, 18, 23, 24]. (A feature vector is often

an approximate characterization of an object, so we are already dealing with approximations

anyway.) For instance, in content-based image retrieval [6, 10] and document copy detection

[5, 11] it is usually acceptable to miss a small fraction of the target objects, so it is not necessary

to pay the high price of exact search.

We present in this paper a new similarity search paradigm: a clustering/indexing combined

scheme that achieves approximate similarity search with high e�ciency. We call this scheme

Clindex (CLustering for INDEXing). Under Clindex, the dataset is �rst partitioned into \sim-

ilar" clusters. Clindex can be used with a variety of clustering algorithms, but in this paper

1

we explore a very natural algorithm that can be considered a simpli�ed version of the CLIQUE

Algorithm [1]. To improve IO e�ciency, each cluster is then stored in a sequential �le, and a

mapping table is built for indexing the clusters. To answer a query, clusters that are near the

query point are retrieved.

Both clustering and indexing have been intensively researched, but these two subjects have

been studied separately for di�erent optimization objectives: clustering optimizes classi�cation

accuracy [1, 9, 27, 36] while indexing maximizes IO e�ciency for information retrieval. Because

of these di�erent goals, the indexing schemes often do not preserve the clusters of the dataset

and randomly project objects that are close (hence similar) in high-dimensional spaces onto a

2D plane (the disk geometry). This is analogous to breaking a vase (cluster) apart to �t it

into the minimum number of small packing boxes (disk blocks). Although the space required

to store the vase may be reduced, �nding the boxes in a high-dimensional warehouse to restore

the vase requires a great deal of e�ort.

The contributions made by this paper are as follows:

�We study how clustering and indexing can be e�ectively combined. Note that we are not

proposing a new clustering nor a new indexing scheme. Instead, we are showing how a rather

natural clustering scheme (using grids as in [1]) can lead to an extremely simple index that

performs very well for approximate similarity searches. We believe that simplicity is one of

the major strengths of our approach.

�We experimentally evaluate the Clindex approach, using a 30,000 image database. Our results

show that Clindex achieves very high recall. That is, it can typically return more than 90%

of what we call the \golden" results (i.e., the best results produced by a linear scan over the

entire dataset) with a few IOs.

�We also compare Clindex with other traditional approaches, to evaluate how e�ective Clindex's

clustering is, and to understand the gains achievable by pre-processing data to �nd clusters.

� If data does not have natural clusters, then Clindex will not improve searches. Fortunately,

real datasets rarely occupy a large-dimensional space uniformly [30, 36]. Our experimental

results con�rm that, in the speci�c case of image data, signi�cant clusters are formed, and

that they can be exploited to noticeably improve search times.

�We discuss how Clindex parameters can be tuned to improve performance. We also show

experimental results that provide insights into the tuning process.

The rest of the paper is organized as follows. Section 2 discusses the shortcomings of

some traditional approaches employed to conduct similarity queries in high-dimensional spaces.

Section 3 presents Clindex and shows how a similarity query is conducted using our scheme.

Section 4 presents the results of our experiments and compares the e�ciency and accuracy of

our approach with that of some traditional index structures. Finally, we o�er our conclusions

in Section 5.

2

2 Background

Many tree structures have been proposed to index high-dimensional data (e.g., R�-tree [3, 16],

SS-tree [35], SR-tree [22], TV-tree [25], X-tree [4], M-tree [7], and K-D-B-tree [28]). A tree struc-

ture divides the high-dimensional space into a number of subregions, each containing a subset

of objects that can be stored in a small number of disk blocks. Given a vector that represents

an object, a similarity query takes the following three steps in most systems [12]:

1. It performs a where-am-I search to �nd out in which subregion the given vector resides.

2. It then performs a nearest-neighbor search to locate the neighboring regions where similar

vectors may reside. This search is often implemented using a range search, which locates all

the regions that overlap with the search sphere, i.e., the sphere centered at the given vector

with a diameter d.

3. Finally, it computes the Euclidean distances between the vectors in the nearby regions

(obtained from the previous step) and the given vector. The search result includes all the

vectors that are within distance d from the given vector.

The performance bottleneck of similarity queries lies in the �rst two steps. In the �rst step,

if the index structure does not �t in the main memory and the search algorithm is ine�cient,

a large portion of the index structure must be fetched from the disk. In the second step, the

number of neighboring subregions can grow exponentially with respect to the dimension of the

feature vectors. If D is the number of dimensions, the number of neighboring subregions can

be on the order of O(3D) [12]. Reading in the data from all neighboring regions can thus take

an exponential number of IOs. (Even if one can use intelligent schemes to cut down the search

space, e.g., [29], the reduced search space is still on the order of O(3D).)

In addition to being copious these IOs can be random and hence exceedingly expensive.1 An

example can illustrate what we call the random-placement syndrome faced by the traditional

index structures. Figure 1(a) shows a 2-dimensional Cartesian space divided into 16 equal stripes

in both the vertical and the horizontal dimensions, forming a 16�16 grid structure. The integer

in a cell indicates how many points (objects) are in the cell. Most index structures divide the

space into subregions of equal points in a top-down manner. Suppose each disk block holds 40

objects. One way to divide the space is to �rst divide it into three vertical compartments, left,

middle, and right, and then to divide the left compartment horizontally. We are left with four

subregions A, B, C, and D containing about the same number of points. Given a query object

residing near the border of A, B and D, the similarity query has to retrieve blocks A, B and D.

The number of subregions to check for the neighboring points grows exponentially with respect

to the data dimension.

Furthermore, since in high-dimensional spaces the neighboring subregions cannot be ar-

ranged in a manner sequential to all possible query objects, the IOs must be random. Fig-

ure 1(b) shows a 2-dimensional example of this random phenomenon. Each grid in the �gure,

such as A and B, represents a subregion that corresponds to a disk block. The �gure shows

1To transfer 100 KBytes of data on a modern disk with eight KBytes block size, doing a sequential IO is
more than ten times faster than doing random IOs. The performance gap widens as the size of the data transfer
increases.

3

1 5 6 5

6 7 6 5

5 6 5

2 4 4 2

7 3 2

5 2 1

2 1

1 3 4 4 6

2 3 3 6

1 2 1 4

1 3

1 1 3

5

5

A

D

CB

(a) Clustering by Indexing

A B C

D E F

G H

Object y

Object z

Object x

(b) Random Placement

Figure 1: The Shortcomings of Tree Structures.

three possible query objects x, y and z. Suppose that the neighboring blocks of each query

object are its four surrounding blocks. For instance, blocks A, B, D and E are the four neigh-

boring blocks of object x. If the neighboring blocks of objects x and y are contiguous on disk,

then the order must be C, F , E, B, A, D, or the reverse order. Then it is impossible to store

the neighboring blocks of query object z contiguously on disk, and this query must su�er from

random IOs. This example suggests that in high-dimensional spaces, the neighboring blocks of

a given object must be dispersed randomly on disk by tree structures.

Theoretical studies [2, 18, 23] have con�rmed the cost of exact search, independent of the

data structure used. In particular, it has been shown that if N is the size of a dataset, D is

the dimension, and D >> log N , then no nearest neighbor algorithm can be signi�cantly faster

than a linear search.

2.1 Approximate Similarity Search

Many studies propose conducting approximate similarity search for applications where trading a

small percentage of recall for faster search speed is acceptable. For example, instead of searching

in all the neighboring blocks of the query object, the study of [34] proposes performing only the

where-am-I step of a similarity query and returning only the objects in the disk block where

the query object resides. Take Figure 1(a) as an example. Suppose the query object is in the

circled cell in the �gure, which is near the border of regions A, B and D. If we return only the

objects in region D where the query object resides, we miss many nearest neighbors in A.

Many nearest-neighbor search techniques have been proposed to do similarity search in high-

dimensional spaces. However, due to the curse of dimensionality, many recent studies suggest

doing only "-approximate nearest neighbor searches, for " > 0 [2, 8, 18, 23]. Let d denote the

function computing the distance between two points. We say that p 2 P is an "-approximate

nearest neighbor of q if for all p0 2 P we have d(p; q) � (1+")d(p0; q). Indyk and Motwani [18, 19]

propose "-approximate algorithms that enjoy improved performance bounds over Kleinberg's

algorithms [23]. But the study of Kushilevitz et al. [24] points out that the recall of the

algorithms proposed in [19] can be low since the search distance can be increased from a very

4

small � to something that is much larger than (1 + ")�. To improve recall, a follow-up study

of [19] builds multiple locality-preserving indexes on the same dataset [17]. This is analogous

to building n tree indexes on the same dataset, and each index distributes the data into data

blocks di�erently. To answer a query, one retrieves one block following each of the indexes and

combines the results. Obviously, this approach achieves better recall than is achieved by having

only one index. But in addition to the n times pre-processing overhead, it has to replicate the

data n� 1 times to ensure that sequential IOs are possible via every index.

Two other approaches have also been proposed to deal with the curse of dimensionality:

reducing the dimensionality [20, 21], and using parallel resources. These techniques make it

feasible to do similarity search in some high-dimensional applications, but neither of them

confronts the core issue of doing similarity search directly.

Finally, clustering techniques have been studied in statistics, machine learning, and database

communities. Recent work in the database community includes CLARANS [27], BIRCH [36],

DBSCAN [9], CLIQUE [1], and CURE [14]. These techniques have a high degree of success

in identifying clusters in a very large dataset, but they do not deal with the e�ciency of data

search and retrieval.

3 Clindex Algorithm

Since the traditional approaches su�er from a large number of random IOs, our design objectives

are 1) to reduce the number of IOs and 2) to make the IOs sequential as much as possible. To

accomplish these objectives, we propose a clustering/indexing scheme.

The focus of our scheme are to

� Cluster similar data on disk to minimize disk latency for retrieving similar objects, and

� Build an index on the clusters to minimize the cost of looking up a cluster.

We call our scheme Clindex (CLustering for INDEXing).

In this paper we use a very simple clustering scheme that divides space into grids, as done

in [1]. Thus, the scheme we use can be viewed as a simpli�ed version of the algorithm in [1].

As stated earlier, our goal is not to de�ne a new clustering algorithm, but rather to show that

a very simple scheme works well in support of indexing.

Clindex consists of the following steps:

1. It divides the ith dimension into 2� stripes. In other words, at each dimension, it chooses

2� � 1 points to divide the dimension. (We describe how to adaptively choose these dividing

points in Section 3.4.) This way, using a small number of bits (� bits in each dimension) we

can encode to which cell a feature vector belongs.

2. It groups the cells into clusters. A cell is the smallest building block for constructing

clusters of di�erent shapes. This is similar to the idea in calculus of using small rectangles to

approximate polynominal functions of any degree. The �ner the stripes, the smaller the cells

and the �ner the building blocks that approximate the shapes of the clusters (the details are

described in Section 3.1). Each cluster is stored as a sequential �le on disk.

5

3. It builds an index structure to refer to the clusters. A cell is the smallest addressing unit.

A simple encoding scheme can map an object to a cell ID and retrieve the cluster it belongs

to in one IO (the details are described in Section 3.2).

3.1 The CF Algorithm: Clustering Cells

To perform e�cient clustering in high-dimensional spaces, we use the algorithm cluster-forming

(CF). To illustrate the procedure, Figure 2(a) shows some points distributed on a 2D evenly

divided grid. The CF algorithm works in the following way:

1 5 6 5

6 7 6 5

5 6 5

2 4 4 2

7 3 2

5 2 1

2 1

1 3 4 4 6

2 3 3 6

1 2 1 4

1 3

1 1 3

5

5

(a) Before Clustering

 5 6 5

6 7 6 5

5 6 5

2 4 4 2

7 3 2

5 2 1

2 1

1 3 4 4 6

2 3 3 6

2 2 1 4

1 3

1 1 3

5

5

A

D

C

B

(b) After Clustering

Figure 2: The Grid Before and After CF.

1. CF �rst tallies the height (the number of objects) of each cell.

2. CF starts with the cells with the highest point concentration. These cells are the peaks

of the initial clusters. (In the example in Figure 2(a), we start with the cells marked 7.)

3. CF descends one unit of the height after all cells at the current height are processed. At

each height, a cell can be in one of three conditions: it is not adjacent to any cluster, it is

adjacent to only one cluster, or it is adjacent to more than one cluster. The corresponding

actions that CF takes are

(a) If the cell is not adjacent to any cluster, the cell is the seed of a new cluster.

(b) If the cell is adjacent to only one cluster, we join the cell to the cluster.

(c) If the cell is adjacent to more than one cluster, the CF algorithm invokes the cli�-

cutting algorithm (CC) to determine to which cluster the cell belongs, or if the

clusters should be combined.

4. CF terminates when the height drops to a threshold, which we call the horizon. The cells

that do not belong to any cluster (i.e., that are below the horizon) are grouped into an

outlier cluster and stored in one sequential �le.

6

Figure 2(b) shows the result of applying the CF algorithm to the data presented in Fig-

ure 2(a). In contrast to how the traditional indexing schemes split the data (shown in Fig-

ure 1(a)), the clusters in Figure 2(b) follow what we call the \natural" clusters of the dataset.

The formal description of the CF algorithm is presented in Figure 3. The input to CF

includes the dimension (D), the number of bits needed to encode each dimension (�), the

threshold to terminate the clustering algorithm (�), and the dataset (P). The output consists

of a set of clusters (�) and a heap structure (H) sorted by cell ID for indexing the clusters. For

each cell that is not empty, we allocate a structure C that records the cell ID (C:id), the number

of points in the cell (C:#p), and the cluster the cell belongs to (C:�). The cells are inserted

into the heap. CF is a two-pass algorithm. After the initialization step (step 0), its �rst pass

(step 1) tallies the number of points in each cell. For each point p in the data set P , it maps

the point into a cell ID by calling the function Cell. The function Cell divides each dimension

into 2� regions. Each value in the feature vector is replaced by an integer between 0 and 2��1,

which depends on where the value falls in the range of the dimension. The quantized feature

vector is the cell ID of the object. The CF algorithm then checks whether the cell exists in the

heap (by calling the procedure HeapFind, which can be found in a standard algorithm book).

If the cell exists, the algorithm increments the point count for the cell. Otherwise, it allocates

a new cell structure, sets the point count to one, and inserts the new cell into the heap (by

calling the procedure HeapInsert, also in standard textbooks).

In the second pass, the CF algorithm clusters the cells. In step 2 in the �gure, CF copies

the cells from the heap to a temporary array S, then, in steps 3 and 4 it sorts the cells in the

array in descending order on the point count (C:#p). In the �fth step, the algorithm checks if

a cell is adjacent to some existing clusters starting from the cell with the greatest height down

to the termination threshold �. If a cell is not adjacent to any existing cluster, a new cluster �

is formed in step 5.2(a). The CF algorithm records the centroid cell for the new cluster in �:C

and inserts the cluster into the cluster set �. If the cell is adjacent to more than one cluster, the

algorithm calls the procedure CC (cli� cutting) in step 5.2(b) to determine which cluster the

cell should join. (Procedure CC is described shortly.) In step 5.3, the cell joins the identi�ed

cluster (new or existing). Finally, the cells that are below the threshold are grouped into one

cluster in steps 6 to 8 as outliers.

In the Cli�-Cutting (CC) procedure we need to decide to which cluster the cell belongs, or

if necessary, we can merge some of the adjacent clusters. Many heuristics can be followed in

this procedure. For example, we can choose a neighboring cluster with the minimal number

of objects so that the cluster sizes are balanced. Or we can set an upper limit for cluster size

so that there are not too many objects in a cluster. We can also try to make the \shape"

of each cluster \roundish" to avoid a situation in which a cluster has a snake-like shape in a

high-dimensional space. The snake-like shape is bad for a similarity search, since the distance

between two objects within the cluster can be too large in that con�guration. In order to keep

all clusters in a desirable shape, we can compute the centroid of each, and pick the cluster whose

centroid is closest to the cell. Another possible heuristic is to replicate some popular boundary

cells in more than one cluster. Which heuristics are better may depend on the dataset and the

recall requirement of the application.

7

The Cluster Forming Algorithm

� Input:
�D, �, �, P ;

�Output:
��; /* cluster set */

�H ; /* heap */

�Variables:
� � , , S;

�Execution Steps:
0: Init:
 0; � ;; S ;;

1: for each p 2 P
1.1: � Cell(p); /* Map point p to a cell id */

1.2: C HeapFind(H; �)

1.3(a): if (C 6= nil)
C:#p C:#p+ 1;

1.3(b): else
new C;

C:id � ; C:#p 1;

HeapInsert(H;C);

2: S fCjC 2 Hg; /* S is a temp array holding a copy of all cells */

3: Sort(S); /* sort cells in descending order on C:#p */

4: i 0; C S[i];

5: while ((C 6= nil) and (C:#p � �))
5.1: 	 FindNeighborClusters(S;C:id) /* 	 contains cell C's neighboring clusters */

5.2(a): if (= ;) /* not attach to any cluster */
new �; /* � holds a new cluster structure */

�:C C:id;

� � [f�g; /* Insert the new cluster into the cluster set */

5.2(b): else If (j	j > 1) /* If the cell is adjacent to more than one cluster */
� CC(C;	;�; H; S); /* CC returns which cluster cell C should join */

5.3: C:� �; /* Update to which cluster the cell belongs */

5.4: i i+ 1;

6: new �; �:C 0; /* Group remaining cells into an outlier cluster */

7: � � [f�g;

8: for (C = S[i];C 6= nil; i++) C:� �;

Figure 3: The Cluster Forming (CF) Algorithm.

8

Time Complexity:

We now analyze the time complexity of the CF algorithm. Let N denote the number of objects

in the dataset and M be the number of nonempty cells. Assume that it takes O(D) to compute

the cell ID of an object and that it takes O(D) time to check whether two cells are adjacent.

During the �rst pass of the CF algorithm, we can use a heap to keep track of the cell IDs

and their heights. Given a cell ID, it takes O(D � log M) time to locate the cell in the heap.

Therefore, the time complexity of the �rst phase is O(N �D � logM).

During the second pass, the time to �nd all the neighboring cells is O(minf3D;Mg). The

reason is that there are at most three neighboring stripes of a given cell in each dimension. We

can either search all the neighboring cells, which are at most 3D � 1, or search all nonempty

cells, which are at mostM . In a high-dimensional space2, we believe thatM << 3D. Therefore,

the time complexity of the second phase is O(D �M2).

The total time complexity is O(N �D � log M) +O(D �M2). Since the clustering phase

is done o�ine, the pre-processing time may be acceptable in light of the speed that is gained

in query performance.

Remarks:

The clustering algorithm we have described often �nds clusters faster than most clustering

and "-approximate nearest-neighbor algorithms. If D is large and the dataset is not uniformly

distributed in the feature space, both M << N and M << 3D hold. In this case, many

clustering algorithms require a pre-processing time that grows exponentially with D, which is

much worse than our time. IfM � 3D or the data is uniformly distributed in the space, Clindex

su�ers from the curse of dimensionality as other schemes do.

The reason the other clustering algorithms are more expensive is that they are much more

sophisticated and are better at �nding clusters. For example, the CLIQUE algorithm ([1]) on

which our is based, �nds clusters in all possible reduced-dimension spaces, while our simple

algorithm only searches in the full dimensional space. However, as we will see, the harder-to-

�nd clusters often have \shapes" that are harder to exploit for storage and indexing. Thus,

the \coarse" clusters found by the simple scheme are often most useful, and the extra e�ort of

�nding more re�ned clusters does not pay o�.

3.2 The Indexing Structure

In the second step of the CF algorithm, an indexing structure is built to support fast access

to the clusters generated by the CF algorithm. As shown in Figure 4, the indexing structure

includes two parts: a cluster directory and a mapping table. The cluster directory keeps track

of the information about all the clusters, and the mapping table is maintained to map a cell to

the cluster where the cell resides.

All the objects in a cluster are stored in sequential blocks on disk, so that these objects can

be retrieved by e�cient sequential IOs. The cluster directory records the information about

2Take an image database as an example. Many image databases use feature vectors with more than 100
dimensions. Clearly, an image database stores only a tiny fraction of 3100 images.

9

....

D
is

k

....

....

M
a
p

p
in

g
 T

a
b

le
C

lu
ste

r
 D

ir
e
c
to

r
y

C
e
ll ID

C
lu

s
te

r ID

0
0
0
0
0
0
1
0

0
0
0
0
0
0
1
1

0
0
0
0
0
1
0
1

0
0
0
0
0
1
1
1

1
1
0
0
0
0
1
0

1
1
1
1
1
0
0
1

1
1
1
1
1
1
0
0

6

2
8

2
8

1
5
8 2 2 6

ID
 =

 1
5

8

c
e
n

tro
id

 =
 (...)

file
n

a
m

e
=

"
file

1
5

8
"

ID
 =

 1
file

n
a
m

e
 =

 "
file

1
"

c
e
n

tro
id

 =
 (...)

ID
 =

 2
file

n
a
m

e
 =

 "
file

2
"

c
e
n

tro
id

 =
 (...)

F
igu

re
4:

T
h
e
In
d
ex

S
tru

ctu
re.

a
ll
th
e
clu

sters,
su
ch

a
s
th
e
clu

ster
ID
,
th
e
n
am

e
of

th
e
�
le
th
at

stores
th
e
clu

ster
an
d
a

ag

in
d
icatin

g
w
h
eth

er
th
e
clu

ster
is
a
n
ou
tlier

clu
ster.

T
h
e
clu

ster's
cen

troid
,
w
h
ich

is
th
e
cen

ter

of
all

th
e
cells

in
th
e
clu

ster,
is
a
lso

stored
.
W
ith

th
e
in
form

ation
in

th
e
clu

ster
d
irectory,

th
e

o
b
jects

in
a
clu

ster
can

b
e
retrieved

from
d
isk

on
ce

w
e
k
n
ow

th
e
ID

of
th
e
clu

ster.

T
h
e
m
ap
p
in
g
tab

le
is
u
sed

to
su
p
p
ort

fast
lo
ok
u
p
from

a
cell

to
th
e
clu

ster
w
h
ere

th
e
cell

resid
es.

E
ach

en
try

h
as

tw
o
va
lu
es:

a
cell

ID
an
d
a
clu

ster
ID
.
T
h
e
n
u
m
b
er

o
f
en
tries

in
th
e

m
ap
p
in
g
tab

le
is
th
e
n
u
m
b
er

of
n
on
em

p
ty

cells
(M

),
an
d
th
e
em

p
ty

cells
d
o
n
ot

tak
e
u
p
sp
ace

in
th
e
m
ap
p
in
g
tab

le.
In

th
e
w
orst

case,
w
e
h
ave

on
e
cell

for
each

ob
ject,

so
th
ere

are
at

m
ost

N
cell

stru
ctu

res.
T
h
e
ID

o
f
each

cell
is
a
b
in
ary

co
d
e
w
ith

th
e
size

D
�
�
b
its,

w
h
ere

D
is
th
e

d
im

en
sion

a
n
d
�
is
th
e
n
u
m
b
er
o
f
b
its

w
e
ch
o
ose

for
each

d
im

en
sion

.
S
u
p
p
ose

th
at

each
clu

ster

ID
is
rep

resen
ted

a
s
a
tw
o-b

y
te

in
teger.

T
h
e
total

storage
req

u
irem

en
t
for

th
e
m
ap
p
in
g
tab

le

is
M
�
(D
�
�
=8

+
2)

b
y
tes.

In
th
e
w
orst

case,
M

=
N
,
an
d
th
e
total

storage
req

u
irem

en
t
for

th
e
m
ap
p
in
g
tab

le
is
on

th
e
o
rd
er

of
O
(N
�
D
).
T
h
e
d
isk

storage
req

u
irem

en
t
of

th
e
m
ap
p
in
g

ta
b
le
is
co
m
p
a
rab

le
to

th
at

o
f
th
e
in
terior

n
o
d
es

in
a
tree

in
d
ex

stru
ctu

re.

N
o
te
th
a
t
th
e
cell

ID
s
ca
n
b
e
sorted

an
d
stored

seq
u
en
tially

on
d
isk

.
G
iven

a
cell

ID
,
w
e
can

ea
sily

search
its

corresp
on
d
in
g
en
try

b
y
d
oin

g
a
b
in
ary

search
.
T
h
erefore,

th
e
n
u
m
b
er

of
IO
s

to
lo
o
k
u
p
a
clu

ster
is
O
(log

M
),
w
h
ich

is
com

p
arab

le
th
e
cost

of
d
oin

g
a
w
h
ere-am

-I
sea

rch
in

a
tree

in
d
ex

stru
ctu

re.

3
.3

C
o
n
tro

l
P
a
ra
m
e
te
rs

T
h
e
gran

u
la
rity

o
f
th
e
clu

sters
is
con

trolled
b
y
fou

r
p
aram

eters:

�
D
:
th
e
n
u
m
b
er

o
f
d
ata

d
im

en
sio

n
s
or

ob
ject

featu
res.

�
�
:
th
e
n
u
m
b
er

o
f
b
its

u
sed

to
en
co
d
e
each

d
im

en
sion

.

�
N
:
th
e
n
u
m
b
er

of
o
b
jects.

�
�:

th
e
h
o
rizon

p
a
ram

eter.

T
h
e
n
u
m
b
er

o
f
cells

is
d
eterm

in
ed

b
y
p
aram

eters
D

an
d
�
an
d
can

b
e
w
ritten

as
2
D
�
�.

T
h
e
av
era

ge
n
u
m
b
er

of
o
b
jects

of
each

cell
is

N

2
D
�
�
.
T
h
is
m
ean

s
th
at

w
e
are

d
ealin

g
w
ith

tw
o

co
n

ictin

g
o
b
jectives.

O
n
th
e
o
n
e
h
an
d
,
w
e
d
o
n
ot

w
an
t
to

h
ave

low
p
oin

t
d
en
sity,

b
ecau

se
low

p
o
in
t
d
en
sity

resu
lts

in
a
la
rge

n
u
m
b
er

of
cells

b
u
t
a
relativ

ely
sm

all
n
u
m
b
er

of
p
oin

ts
in

each

10

cell and hence tends to create many small clusters. On the other hand, we do not want to have

densely populated cells either since having high point density results in a small number of very

large clusters, which cannot help us to tell objects apart.

The value of � a�ects the number and the size of the clusters. Figure 5(a) shows an example

in a one-dimensional space. The horizontal axis is the cell IDs and the vertical axis the number

of points in the cells. The � value set at the t level threshold forms four clusters. The cells whose

heights are below � = t are clustered into the outlier cluster. If the threshold is reduced, both

the cluster number and the cluster size increase, and the size of the outlier cluster decreases. If

the outlier cluster has a relatively small number of objects, then it can �t into a few sequential

disk blocks to improve its IO e�ciency. On the other hand, it might be good for the outlier

cluster to be relatively large, because then it can keep the other clusters well separated. In order

to decide on what tradeo� is best for the two aims, we can tune the values of � and � properly

by considering the data distribution and the desirable cluster size. Section 4.4 discusses how

and when � and � are tuned.

3.4 Adaptive Clustering

Due to the uneven distribution of the objects, it is possible that some areas are sparsely pop-

ulated and others densely populated. To handle this situation, we need to be able to perform

adaptive clustering.

Suppose we divide each dimension into 2� stripes. Regions that have more points, we can

divide into smaller substripes. This way, we may avoid very large clusters, if this is desirable.

In a way, this approach is similar to the extensible hashing scheme: for buckets that have too

many points, the extensible hashing scheme splits the buckets. In our case, we can build clusters

adaptively with di�erent resolutions by choosing the dividing points carefully based on the data

distribution. For example, for image feature vectors, since the luminescence is neither very high

nor very low in most pictures, it makes sense to divide the luminescence spectrum coarsely at

the two extremes and �nely in the middle. This adaptive clustering step can be done in Step

1:1 in Figure 3. When the Cell procedure quantizes the value in each dimension, it can take the

statistical distribution of the dataset in that dimension into consideration. This step, however,

requires an additional data analysis pass before we execute the CF algorithm so that the Cell

procedure has the information to determine how to quantize each dimension properly.

To summarize, CF is a bottom-up clustering algorithm that can approximate the cluster

boundaries to any �ne detail and is adaptive to data distributions. Since each cluster is stored

contiguously on disk, a cluster can be accessed with much more e�cient IOs than in traditional

index-structure methods.

3.5 Similarity Search

Given a query object, similarity search is performed in two steps. First, Clindex maps the

query object's feature vector into a binary code as the ID of the cell where the object resides. It

then looks up in the mapping table the entry of the cell. The search takes the form of di�erent

actions depending on whether or not the cell is found:

11

Cell ID

of objects

t

Cluster 1 Cluster 2 Cluster 3 Cluster 4

(a) Clustering Example

B

A
x

C

E
D

y

(b) Search Example

Figure 5: Illustrating Examples.

� If the cell is found, we obtain the cluster ID to which the cell belongs. We �nd the �le name

where the cluster is stored in the cluster directory. We then read the cluster from disk into

memory.

� If the cell is not found, the cell must be empty. We then �nd the cluster closest to the feature

vector by computing and comparing the distances from the centroids of the clusters to the

query object. We read the nearest cluster into main memory.

If high recall is desirable, we read in more nearby clusters. After we read candidate objects

into main memory, we sort and return the objects to the user according to their distances to

the query object.

Remarks:

Our search can return more than one cluster whose centroid is close to the query object by

checking the cluster directory. Since the number of clusters is much smaller than the number

of objects in the dataset, the search for the nearest clusters can very likely be done via an

in-memory lookup. If the number of clusters is very large, one may consider treating cluster

centroids as points and apply clustering algorithms on the centroids. This way, one can build a

hierarchy of clusters and narrow down the search space to those clusters (in a group of clusters)

that are nearest to the query object. Another alternative is to precompute the k-nearest clusters

and store their IDs in each cluster.

As we show in Section 4, returning the top three to four clusters can achieve very high recall

(more then 90%) with very little time.

Example:

Figure 5(b) shows a 2D example of how a similarity search is carried out. In the �gure, we have

�ve clusters: A, B, C, D and E. The areas not covered by these clusters are grouped into an

outlier cluster.

Suppose a user submits x as the query object. Since the cell of object x belongs to cluster

A, we return the objects in cluster A and sort them according to their distances to x. If high

recall is required, we return more clusters. In this case, since clusters B and C are nearby, we

12

also retrieve the objects in these two clusters. All the objects in clusters A, B and C are ranked

based on their distances to object x, and the nearest objects are returned to the user.

If the query object is y, which falls into the outlier cluster, we �rst retrieve the outlier

cluster. By de�nition, the outlier cluster stores all outliers, and hence the number of points in

the outlier that can be close to y is small. We also �nd the two closest clusters D and E and

return the nearest objects in these two clusters.

4 Evaluation

In our experiments we focused on queries of the form \�nd the top k most similar objects" or

k-Nearest Neighbor (abbreviated as k-NN). For each k-NN query, we return the top k nearest

neighbors of the query object. To establish the benchmark to measure query performance,

we scanned the entire dataset for each query object to �nd its top 20 nearest neighbors, the

\golden" results. There are at least three metrics of interest to measure the query result:

(a) Recall after X IOs: After X IOs are performed, what fraction of the k top golden results

have been retrieved?

(b) Precision after X IOs: After X IOs, what fraction of the objects retrieved are among the

top k golden results?

(c) Precision after R% of the top k golden objects have been found. We call this R-precision,

and it quanti�es how much \useful" work was done in obtaining some fraction of the golden

results.

Due to space limitation, we focus in this paper on recall results, and comment only brie
y on

R-precision. In our environment, we believe that precision is not the most useful metric since

the main overhead is IOs, not the number of non-golden objects that are seen.

We performed experiments with a dataset of 30; 000 images. The dataset, which was col-

lected from two commercially available image CDs, consists of images of di�erent content, such

as landscapes, portraits, and buildings. We converted each image to a 48-dimensional feature

vector by applying a wavelet transformation [6]. By setting � to zero and � to two (the process

is discussed in Section 4.4) we obtained 261 clusters with 115 objects in each cluster on average.

In addition to using Clindex, we indexed these feature vectors using three other schemes:

Equal Partition (EP), Vector Quantization (VQ) [13], and R�-tree:

� EP: To understand the role that clustering plays in Clindex, we devised a simple scheme, EP,

that partitions the dataset into sequential �les without performing any clustering. That is,

we partitioned the dataset into cells with an equal number of images, where each cell occupies

a contiguous region in the space and is stored in a sequential �le. Since EP is very similar

to Clindex except for the clustering, any performance di�erences between the schemes must

be due to the clustering. If the di�erences are signi�cant, it will mean that the dataset is not

uniformly distributed and that Clindex can exploit the clusters.

�VQ: To evaluate the e�ectiveness of Clindex's CF clustering algorithm, we replaced it with

a more sophisticated algorithm, and then stored the clusters sequentially as usual. The re-

13

placement algorithm used is VQ, a k-mean algorithm [26] implemented for clustering data

in high-dimensional spaces. It has been widely used in compression and lately in indexing

high-dimensional data for content-based image retrieval [31, 32].

� R�-tree: Tree structures are often used for similarity searches in multidimensional space. To

compare, we used the R�-tree structure implemented by Katayama and Satoh [22]. We studied

the IO cost and recall of using a tree-like structure to perform similarity search approximately.

Although R�-tree may not be the best implementation of a tree structure, we believe it is a

good representative. Note that the Clindex-R�-tree comparison will not be \fair" since R�-tree

performs no o�ine analysis (i.e., no clustering is done in advance). Thus, the results will

only be useful to quantify the potential gains that the o�ine analysis gives us, compared to

traditional tree-based similarity searching.3

As discussed in Section 3.5, Clindex always retrieves the next cluster whose centroid is

closest to the query object. We also added this intelligence to both VQ and EP to improve

their recall. For R�-tree, however, we did not add this optimization.

To measure recall, we used the cross-validation technique [26] commonly employed to eval-

uate clustering algorithms. We ran each test ten times; each time we set aside 100 images as

the test images and used the remaining images to build indexes. We then used these set-aside

images to query the database built under four di�erent index structures. We produced the

average query recall for each run by averaging the recall of 100 image queries. We then took

an average over 10 runs to obtain the �nal recall.

We were interested in �nding out the e�ects of the following two factors on recall: (1)

clustering algorithms and (2) block (cluster) size. We �rst collected the recall for 20-NN queries.

In Section 4.3, we present the recall for k-NN, where k = 1 to 20.

4.1 Recall versus Clustering Algorithms

Figure 6 compares the recall of Clindex, VQ, EP and R�-tree. In this experiment, all schemes

divided the dataset into about 256 clusters. Given one IO to perform, Clindex returns the

objects in the nearest cluster, which gives us an average of 62% recall (i.e., a return of 62% of

the top 20 golden results). After we read three more clusters, the accumulated recall of Clindex

increases to 90%. If we read more clusters, the recall still increases but at a much slower pace.

After we read 15 clusters, the recall approaches 100%. That is, we can selectively read in 6%

(15

261
= 6%) of the data in the dataset to obtain almost all top 20 golden results.

The EP scheme achieves much lower recall than Clindex. It starts with 30% recall after the

�rst IO is completed and slowly progresses to 83% after 30 IOs. The VQ structure, although it

does better than the EP scheme, still lags behind Clindex. It achieves 35% recall after one IO,

and the recall does not reach 90% until after ten IOs. The recall of Clindex and VQ converge

after 20 IOs. Finally, R�-tree su�ers from the lowest recall.

3A scheme like R�-tree could be modi�ed to pre-analyze the data and build a better structure. The results
would be presumably similar to the Clindex results, although with a much more complex algorithm. We did
not develop the modi�ed R�-tree scheme and hence did not verify our hypothesis that performance would be
equivalent.

14

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

Re
ca

ll

Number of IOs

Clindex
VQ
EP

R* Tree

Figure 6: Recall of Four Schemes (20-NN).

From Figure 6, we can draw the following conclusions:

1. Clustering indeed helps improve recall when a dataset is not uniformly distributed in the

space. This is shown by the recall gap between Clindex and EP.

2. Clindex achieves higher recall than VQ, EP and R�-tree because Clindex adjusts to wide

variances of cluster shapes and sizes. VQ and the other algorithms are forced to bound

a cluster by linear functions, e.g., a cube in 3-D space. Clindex is not constrained in this

way. Thus, if we have an odd cluster shape (e.g., with tentacles), Clindex will conform

to the shape, while VQ will either have to pick a big space that encompasses all the

\tentacles," or will have to select several clusters, each for a portion of the shape, and

will thereby inadvertently break some \natural" clusters as we illustrated in Figure 1(a).

It is not surprising that the recall of VQ converges to that of Clindex after a number of

IOs because VQ eventually pieces together its \broken" clusters.

3. Using Clindex to approximate an exact similarity search requires reading just a fraction

of the entire dataset. The performance is far better than that achieved by performing a

sequential scan on the entire dataset.

4. Clindex, VQ and EP enjoy a boost in recall in their �rst few additional IOs since they

always retrieve the next cluster whose centroid is closest to the query object. R�-tree,

conversely, does not store centroid information and cannot selectively retrieve blocks to

boost its recall in its �rst few IOs. (We have discussed the shortcomings of tree structures

in Section 2 in detail.)

Recall 60% 70% 80% 90% � 100%
of Golden Objects Retrieved 12 14 16 18 20

Clindex # of Objects Retrieved 115 230 345 460 1; 725
R-Precision 10:44% 6:09% 4:64% 3:91% 1:16%

R�-tree # of Objects Retrieved 2; 670 3; 430 4; 090 4; 750 5; 310
R-Precision 0:45% 0:41% 0:39% 0:379% 0:377%

Table 1: R-Precision of 20-NN
Figure 6 shows that in retrieving the same amount of data, Clindex has higher recall than

R�-tree and other schemes. Put another way, Clindex also enjoys higher R-precision because

retrieving the same number of objects from disk gives Clindex more golden results.

15

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 9001000

R
ec

al
l

Cluster Size (# of Objects)

Clindex
VQ
EP

R*-tree

(a) After One IO

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 9001000

R
ec

al
l

Cluster Size (# of Objects)

Clindex
VQ
EP

R*-tree

(b) After Five IOs

Figure 7: Recall versus Cluster Size.

Since a tree structure is typically designed to use a small block size to achieve high precision,

we tested R�-tree and compared its R-precision with that of Clindex. It took R�-tree 267 IOs on

average to complete an exact similarity search. Table 1 shows that the R-precision of Clindex

is more than ten times higher than that of R�-tree under di�erent recall values.

This result, though surprising, is consistent with that of many studies [22, 33]. The com-

mon �nding is that when the data dimension is high, tree structures fail to divide points into

neighborhoods and are forced to access almost all leaves. Therefore, the argument for using a

small block size to improve precision becomes weaker as the data dimension increases.

4.2 Recall versus Cluster Size

We de�ne cluster size as the average number of objects in a cluster. To see the e�ects of

the cluster size on recall, we collected recall values at di�erent cluster sizes for Clindex, VQ,

CF and R�-tree. Note that the cluster size of Clindex is determined by the selected values of �

and �. We thus set four di�erent � and � combinations to obtain recall values for four di�erent

cluster sizes. For EP, VQ and R�-tree, we selected cluster (block) sizes that contain from 50 up

to 900 objects. Figure 7 depicts the recall (y-axis) of the four schemes for di�erent cluster sizes

(x-axis) after one IO and after �ve IOs are performed.

Figure 7(a) shows that given the same cluster size, Clindex has a higher recall than VQ, EP

and R�-tree. The gaps between the schemes widen as the cluster size increases. We believe that

the larger the cluster size, the more important a role the quality of the clustering algorithms

plays. Clindex enjoys signi�cantly higher recall than VQ, EP and R�-tree because it captures

the clusters better than the other three schemes.

Figure 7(b) shows that Clindex still outperforms VQ, EP and R�-tree after �ve IOs. Clindex,

VQ and EP enjoy better improvement in recall than R�-tree because, again, Clindex, VQ and EP

always retrieve the next cluster whose centroid is nearest to the query object. On the other hand,

a tree structure does not keep the centroid information, and the search in the neighborhood

can be random and thus suboptimal. We believe that adding the centroid information to the

16

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

R
ec

al
l

Top k-NN

Clindex
VQ
EP

R*-tree

(a) After One IO

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

R
ec

al
l

Top k-NN

Clindex
VQ
EP

R*-tree

(b) After Five IOs

Figure 8: Recall of k-NN.

leaves of the tree structures can improve its recall.

4.3 Recall versus k-NN

So far we measured only the recall for returning the top 20 nearest neighbors. In this section

we present the recall when returning the top n = 1 to 19 nearest neighbors, after one and �ve

IOs are performed. In these experiments, we partitioned the dataset into about 256 clusters

(blocks) for all schemes (i.e., all schemes have about the same cluster size).

Figures 8(a) and 8(b) present the recall of the four schemes after one IO and �ve IOs are

performed, respectively. The x-axis in the �gures represents the number of nearest neighbors

requested and the y-axis the recall. For instance, when one and only one nearest object is

requested, Clindex returns the nearest object 79% of the time after one IO and 95% of the time

after �ve IOs.

Both �gures show that the recall gaps between schemes are insensitive to how many nearest

neighbors are requested. We believe that once the nearest object can be found in the returned

cluster(s), the conditional probability that additional nearest neighbors can also be found in

the retrieved cluster(s) is high. Of course, for this conclusion to hold, the number of objects

contained in a cluster must be larger than the number of nearest neighbors requested. (In our

experiment, an average cluster contains 115 objects and we tested up to 20 golden results.)

This leads us to the following discussion on how to tune Clindex's control parameters to form

clusters of a proper size.

4.4 The E�ects of the Control Parameters

We experimented with di�erent values of � and � to form clusters. Since the size of our dataset

is much smaller than the number of cells (2D��), many cells are occupied by only one object.

When we set � � 1, most points fell into the outlier cluster. We thus set � to zero.

17

To test the � values, we started with � = 2. We increased � by increments of one and

checked the e�ect on the recall. Figure 9 shows that the recall with respect to the number of

IOs decreases when � is set beyond two. This is because in our dataset D >> log N , and using

a � that is too large spreads the objects apart and thereby leads to the formation of too many

small clusters. By dividing the dataset too �nely one loses the bene�t of large block size for

sequential IOs and hence doing so is not bene�cial.

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

Re
ca

ll

of IOs

K = 2
K = 3

Figure 9: Recall versus �.

Although the proper values of � and � are dataset dependent, we empirically found the

following rules of thumb to be useful for �nding good starting values:

� Choose a reasonable cluster size: The cluster must be large enough to take advantage of

sequential IOs. It must also contain enough objects so that if a query object is near a cluster,

then the probability is high that a signi�cant number of nearest neighbors of the query object

are in the cluster. On the other hand, a cluster should not be so large as to prolong query time

unnecessarily. According to our experiments, increasing the cluster size to where the cluster

contains more than 300 objects (see Figure 7) does not further improve recall signi�cantly.

Therefore, a cluster of about 300 objects is a reasonable size.

�Determine the desired number of clusters: Once the cluster size is chosen, one can compute

how many clusters the dataset will be divided into. If the number of clusters is too large to

make the cluster table �t in main memory, we may either increase the cluster size to decrease

the number of clusters or consider building an additional layer of clusters.

�Adjust � and �: Once the desired cluster size is determined, we pick the starting values for �

and �. The � value must be at least two so that the points are separated, and the suggested

� is one so that the clusters are separated. After running the clustering algorithm with the

initial setting, if the average cluster is smaller than the desired size, we set � to zero to combine

small clusters. If the average cluster is larger than the desired size, we can increase either �

or � until the we obtain roughly the desired cluster size.

4.5 Summary

In summary, our experimental results show that:

18

1: Using a large block size is good for both IO e�ciency and recall.

2: Employing a better clustering algorithm improves recall.

3: Providing additional information such as the centroids of the clusters helps prioritize the

retrieval order of the clusters and hence improves the search e�ciency.

5 Conclusions

In this paper, we presented Clindex: a new paradigm for performing similarity search in high-

dimensional spaces to avoid the dimensionality curse. We cluster similar objects on disk and

perform a similarity search by �nding the clusters near the query object. This approach improves

the IO e�ciency by clustering and retrieving relevant information sequentially on and from the

disk. Its pre-processing cost is linear inD and polynomial inN and its query cost is independent

of D.

Experiments showed that Clindex typically can achieve 90% recall after performing just a few

sequential IOs. Clindex's recall is much higher than that of some traditional index structures.

Through experiments we also learned that Clindex works well because it uses large blocks, �nds

clusters more e�ectively, and searches the neighborhood more intelligently by using the centroid

information. These design principles can also be employed by other schemes to improve their

search performance. (For example, one may replace the clustering example in this paper with

one that is more suitable for a particular dataset.) We believe that for many high-dimensional

datasets that exhibit clustering patterns, e.g., documents and images, Clindex is an attractive

approach to support approximate similarity search both e�ciently and e�ectively.

References

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high
dimensional data for data mining applications. Proceedings of ACM SIGMOD, June 1998.

[2] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for approximate
nearest neighbor searching in �xed dimensions. Proceedings of the 5th SODA, pages 573{82, 1994.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an e�cient and robust
access method for points and rectangles. Proceedings of ACM SIGMOD, May 1990.

[4] S. Berchtold. The X-Tree: An index structure for high-dimensional data. Proceedings of the 22nd
VLDB, August 1996.

[5] S. Brin and H. Garcia-Molina. Copy detection mechanisms for digital documents. Proceedings of

ACM SIGMOD, May 1995.
[6] E. Chang, J. Wang, C. Li, and G. Wiederhold. RIME - a replicated image detector for the world-

wide web. Proc. of SPIE Symposium of Voice, Video, and Data Communications, November 1998.
[7] P. Ciaccia, M. Patella, and P. Zezula. M-Tree: An e�cient access method for similarity search in

metric spaces. Proceedings of the 23rd VLDB, August 1997.
[8] K. Clarkson. An algorithm for approximate closest-point queries. Proceedings of the 10th SCG,

pages 160{64, 1994.
[9] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in

large spatial databases with noise. Proceedings of the 2nd International Conference on Knowledge

Discovery in Databases and Data Mining, August 1996.
[10] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, and et al. Query by image and video

content: the QBIC system. IEEE Computer, 28(9):23{32, 1995.

19

[11] H. Garcia-Molina, S. Ketchpel, and N. Shivakumar. Safeguarding and charging for information on
the internet. Proceedings of ICDE, 1998.

[12] H. Garcia-Molina, J. Ullman, and J. Widom. Database System Implementation. Prentice Hall,
1999.

[13] A. Gersho and R. Gray. Vector Quantization and Signal Compression. Kluwer Academic, 1991.
[14] S. Guha, R. Rastogi, and K. Shim. Cure: An e�cient clustering algorithm for large databases.

Proceedings of ACM SIGMOD, June 1998.
[15] A. Gupta and R. Jain. Visual information retrieval. Comm. of the ACM, 40(5):69{79, 1997.
[16] A. Guttman. R-trees: a dynamic index structure for spatial searching. Proc. of ACM SIGMOD,

June 1984.
[17] P. Indyk, A. Gionis, and R. Motwani. Similarity search in high dimensions via hashing. Proceedings

of the 25th VLDB, September 1999 (to appear).
[18] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimen-

sionality. Proceedings of the 30th STOC, pages 604{13, 1998.
[19] P. Indyk, R. Motwani, and P. Raghavan. Locality-preserving hashing in multidimensional spaces.

Proceedings of the 29th STOC, pages 618{25, 1997.
[20] W. Johnson and J. Lindenstrauss. Extension of lipschitz mapping into hilbert space. Contemporary

Mathematics, 24:189{206, 1984.
[21] K. V. R. Kanth, D. Agrawal, and A. Singh. Dimensionality reduction for similarity searching in

dynamic databases. Proceedings of ACM SIGMOD, pages 166{76, 1998.
[22] N. Katayama and S. Satoh. The SR-Tree: An index structure for high-dimensional nearest neighbor

queries. Proceedings of ACM SIGMOD, May 1997.
[23] J. M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. Proceedings of

the 29th STOC, 1997.
[24] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. E�cient search for approximate nearest neighbor in

high dimensional spaces. Proceedings of the 30th STOC, pages 614{23, 1998.
[25] K.-L. Lin, H. V. Jagadish, and C. Faloutsos. The TV-tree: an index structure for high-dimensional

data. VLDB Journal, 3(4), 1994.
[26] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[27] R. T. Ng and J. Han. E�cient and e�ective clustering methods for spatial data mining. Proceedings

of the 20th VLDB, September 1994.
[28] J. T. Robinson. The K-D-B-Tree: A search structure for large multidimensional dynamic indexes.

Proceedings of ACM SIGMOD, April 1981.
[29] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. ACM Sigmod, pages 71{79,

1995.
[30] Y. Rubner, C. Tomasi, and L. Guibas. Adaptive color-image embedding for database navigation.

Proceedings of the the Asian Conference on Computer Vision, January 1998.
[31] J. Z. Wang, G. Wiederhold, O. Firschein, and S. X. Wei. Wavelet-based image indexing techniques

with partial sketch retrieval capability. Proceedings of the 4th ADL, May 1997.
[32] J. Z. Wang, G. Wiederhold, O. Firschein, and S. X. Wei. Content-based image indexing and

searching using daubechies' wavelets. International Journal of Digital Libraries, 1(4):311{28, 1998.
[33] R. Weber, H. Schek, and S. Blott. A quantitative analysis and performance study for similarity-

search methods in high-dimensional spaces. Proceedings of the 24th VLDB, pages 194{205, 1998.
[34] D. A. White and R. Jain. Similarity indexing: Algorithms and performance. Proc. SPIE Vol.2670,

San Diego, 1996.
[35] D. A. White and R. Jain. Similarity indexing with the SS-Tree. Proceedings of the 12th ICDE,

Feb. 1996.
[36] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An e�cient data clustering method for very

large databases. Proceedings of ACM SIGMOD, June 1996.

20

