
Modern Information Retrieval

Chapter 13

Structured Text Retrieval

with Mounia Lalmas

Introduction
Structuring Power
Early Text Retrieval Models
Evaluation
Query Languages

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 1



Introduction
Text documents often contain structural information

Structural information can be exploited at several
stages of the information retrieval process

Indexing stage

Retrieval stage

Result presentation stage

Querying stage

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 2



Structuring Power

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 3



Structuring Power
Until the 1990s, various structured text retrieval models
appeared in the literature

They comprise three main parts:

a model of the text, which specifies the character set, synonyms,
stop words, stemming;

a model of the structure, which specifies the markup language,
the index structure, the type of structuring; and

a query language, which specifies what can be asked, and what
the answers are

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 4



Structuring Power
We contrast the structuring power of structured text
retrieval models according to three main aspects:

explicit vs. implicit structure

static vs. dynamic structure

single vs. multiple hierarchical structure

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 5



Explicit vs. Implicit Structure
Most structured text retrieval models are based on the
explicit structure of the documents

They work on the basis that the documents are composed by
sections, chapters, titles, and so on

The structure is usually provided through the use of a
markup language

For example,

section CONTAINS "red wine"

Will return all sections that contain the sentence “red
wine”

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 6



Explicit vs. Implicit Structure
Implicit structure : the structure of the document is not
explicitly distinguished from its text content

Documents are modeled as sequences of tokens without
distinguishing a word token from a markup token

A structural element is therefore constructed at
querying time

An example of a query that refers to an implicit structure
is as follows:

("<section>" FOLLOWING "</section>")
CONTAINS "red wine"

The section element only exists at querying time

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 7



Static vs. Dynamic Structure
Some text retrieval models allow the specification of
dynamic structures in the query

This allows the systems to return elements that have
not been explicitly marked-up in the the documents

In XQuery and XQuery Full-Text, this is done by element
construction

In other models, dynamic structure is a natural part of the model

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 8



Static vs. Dynamic Structure
Consider the following structured text document:

SPIRE, “Patagonia, Chile”, 2001, The conference

....

Let us assume that the above document is explicitly
structured by the following grammar that acts as a
document schema:

entry := conference ’ , ’ area ’ , ’ year ’ , ’ content’.’ ;

conference := text ;

area := ’ “’ text ’ ”’ ;

year := digit digit digit digit ;

content := text ;

text := ( letter | ’ ’ )+ ;

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 9



Static vs. Dynamic Structure
Every document instance must conform to the grammar

The instance takes the form of a parsed string called “p-string”

With this schema, the area symbol does not distinguish
the country “Chile” and the region “Patagonia"

This distinction can be done at query time by
introducing a small grammar fragment:

AreaG := { area := ( region ’ , ’ )+ country ;

country := letter + ;

region := letter + ; }

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 10



Static vs. Dynamic Structure
The p-strings model provides a simple query language
for adding additional grammar fragments

Given the document dj , the following query returns a
p-string containing the area element with a given
country and region explicitly identified:

(area in dj) reparsed by AreaG

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 11



Single vs. Multiple Hierarchies
The type of structure most used with structured text
retrieval models is a hierarchical organization

Text retrieval models using implicit structure assume, for
simplicity, a single hierarchy

Approaches based on explicit structure assume that
multiple structural hierarchies are present on the same
document

Querying with these models has only been possible
with respect to a single hierarchy

It is not possible to query mixing hierarchies because many
undefined cases appear

That is, queries must be resolved in one hierarchy and
then projected to another hierarchy

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 12



Single vs. Multiple Hierarchies
This has changed with the work of Alink et al

In this work, additional XPath based navigational steps have been
introduced to allow moving from one hierarchy to another

Example of query:
$doc//paragraph[

./select-narrow::Verb CONTAINS
"hiking" and

./select-narrow::Region CONTAINS
"Patagonia"
]

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 13



Early Text Retrieval Models

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 14



Early Text Retrieval Models
We discuss now two early structured text retrieval
models

We use:

The term match point to refer to the position in the text of a word
which matches the user query

The term region to refer to a contiguous portion of the text

The term node to refer to a structural component of the document

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 15



Non-Overlapping Lists
Burkowski divided the whole text of each document into
non-overlapping text regions collected in a list

Since there are multiple ways to divide a text in
non-overlapping regions, multiple lists are generated

Text regions from distinct lists might overlap

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 16

http://portal.acm.org/citation.cfm?id=144906


Non-Overlapping Lists
Example of the representation of the structure in the
text of a document through four separate (flat) indexing
lists

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 17



Non-Overlapping Lists
A single inverted index is built in which each structural
component stands as an entry in the index

Associated with each entry, there is a list of text regions
as a list of occurrences

Moreover, such list could be easily merged with the
traditional inverted index for the words in the text

Since the text regions are non-overlapping, the types of
queries which can be asked are simple:

select a region that contains a given word
(and does not contain other regions)

select a region A that does not contain any other region B (where
B belongs to a list distinct from the list for A)

select a region not contained within any other region

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 18



Proximal Nodes Model
Baeza-Yates and Navarro proposed a model based on
proximal nodes

This model allows defining independent hierarchical
indexing structures over the same document text

These indexing structures are strict hierarchies
composed of chapters, sections, paragraphs, pages,
and lines, which are called nodes

Two distinct hierarchies might refer to overlapping text
regions

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 19

http://portal.acm.org/citation.cfm?id=215336


Proximal Nodes Model
Given a user query, the compiled answer is formed by
nodes that all come from only one of the hierarchies

This is to allow for faster query processing at the expense of less
expressiveness

Nested text regions are allowed in the answer set

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 20



Proximal Nodes Model
They use a hierarchical index for structural components
and a flat index for words:

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 21



Proximal Nodes Model
The query language allows:

the specification of regular expressions

the reference to structural components by name

the combination of these

In this sense, the model can be viewed as a
compromise between expressiveness and efficiency

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 22



Proximal Nodes Model
Consider, for instance, the query

( * section) with ("Patagonia")

It searches for sections, subsections, or subsubsections
which contain the word “Patagonia”

A simple query processing strategy is:

to traverse the inverted list for the term “Patagonia”

for each entry in the list, search the hierarchical index looking for
sections, subsections, and subsubsections containing that
occurrence of the term

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 23



Proximal Nodes Model
A more sophisticated query processing strategy is as
follows:

For the first entry in the list for “Patagonia”, search the
hierarchical index as before

Verify whether the innermost matching component also matches
the second entry in the list

If it does, we immediately conclude that the larger structural
components above it (in the hierarchy) also do

Proceed then to the third entry in the list, and so on

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 24



Proximal Nodes Model
The query processing is accelerated because only the
nearby nodes need to be searched at each time

This is the reason for the term “proximal nodes”

This model allows formulating queries that are more
complex than those based on non-overlapping lists

To speed up query processing, however, only nearby
nodes are looked at, which imposes restrictions on the
answer set retrieved

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 25



XML Retrieval

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 26



XML Retrieval

Nowadays, XML retrieval is almost a synonym for
structured text retrieval

INEX provided test sets and a forum for the evaluation
and comparison of XML retrieval approaches

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 27



Challenges in XML Retrieval
XML Retrieval Task: to exploit the structure of XML
documents to select the best document components

These answers should be ranked according to their
likelihood of relevance to the queries

Classic information retrieval models make use of term
statistics, such as TF and IDF, to rank documents

Indexing algorithms for XML retrieval require similar
terms statistics, but at the element level

One could simply replace document by element and
define:

within-element term frequency, ETF

inverse element frequency, IEF

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 28



Challenges in XML Retrieval
Not all element types will satisfy the users when
returned as answers to queries

Some elements may be too small, or be of a type that does not
contain informative text

The challenges are:

to determine what are the best categories of elements to return
as answers to a query, and

how to use this information to rank elements

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 29



Challenges in XML Retrieval
XML documents are not just documents composed of
elements of various types and sizes

There are also relationships among the elements, as
provided by the logical structure of the XML markup

These relationships among elements can be used to
improve XML retrieval

For instance, consider a collection of scientific articles

It is reasonable to assume that the “abstract" is a better
indicator of what the article is about than a section on
“future work"

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 30



Challenges in XML Retrieval
Two distinct tasks:

To provide a score expressing how relevant an element is to a
query

To decide, from several overlapping relevant elements, which one
to return as the best answer

This is because of the nested nature of XML documents

If an element has been estimated relevant to a query, it is likely
that its parent element will also be estimated relevant to the query

However, returning a paragraph and its enclosing
section should be avoided

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 31



Challenges in XML Retrieval
The final challenge is how to interpret structural
constraints

Early work in XML retrieval required query constraints
to be strictly matched by the results returned

However, specifying structural constraints in the query
is not an easy task

Users may not have a clear idea of the structural nature
of the searched collection

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 32



Indexing Strategies
In XML retrieval, in contrast to retrieval of “flat”
documents, there are no a priori fixed retrieval units

The simplest approach to allow the retrieval of elements
at any level of granularity is to index all elements

Each element thus corresponds to a document, and conventional
information retrieval indexing techniques can be used

Term statistics are calculated based on the
concatenation of the text of the element and that of its
descendants

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 33



Indexing Strategies
With respect to the calculation of IEF , the previous
approach ignores the issue of nested elements

Alternatively, IEF can be estimated across elements of
the same type or across documents

The former greatly reduces the impact of nested elements on the
IEF value of a term, but does not eliminate it as elements of the
same type can be nested within each other

The latter is the same as using inverse document frequency,
which completely eliminates nested elements

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 34



Indexing Strategies
We can aggregate the term statistics of an element with
the statistics of each of its children elements

This overcomes the issue of calculating IEF across nested
elements

Aggregated-based ranking uses the aggregated
representation of elements to rank elements

An alternative approach is to only index leaf elements

This implies that term statistics will only be calculated for leaf
elements, which can then be used to rank the leaf elements
themselves

This also overcomes the issue of calculating IEF
across nested elements

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 35



Indexing Strategies
It has also been common to discard elements smaller
than a given threshold

They are often considered not meaningful retrieval units

However, they should still be indexed, in particular when
a propagation mechanism for scoring is used

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 36



Indexing Strategies
In Mass and Mandelbrod, a separate index is built for
each selected element type

For a collection of scientific articles, for instance, these types may
include article, abstract, section, subsection, paragraph

The statistics for each index are then calculated
separately

In this case, the term statistics are likely to be more
uniform and consistent

Further, this approach greatly reduces the term
statistics issue arising from nested elements

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 37

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.104.7907


Indexing Strategies
It is not yet clear which indexing strategy is the best, as
which approach to follow would depend on the
collection

In addition, the choice of the indexing strategy has an
effect on the ranking strategy

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 38



Ranking Strategies
Many of the retrieval models for plain text documents
have been adapted to XML retrieval

These models have been used to estimate the
relevance of an element based on its content

However, to use evidence coming from the context of
the element increases retrieval performance

Depending on the indexing strategy, specific strategies
are needed to rank elements at all levels of granularity

Finally, structural constraints must be processed to
provide results that satisfy the structural criteria of a
query

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 39



Ranking Strategies
For illustration purpose, we will use the sample XML
document shown below

<article>
<sec>
<subsec>
<p> ... wine ... patagonia ... </p>
<p> ... wine ... </p>
<p> ... patagonia ... </p>
</subsec>
<subsec>
<p> ... </p>
<p> ... </p>
</subsec>
</sec>
<sec>
<p> ... </p>
<p> ... wine ... </p>
<p> ... </p>
<p> ... </p>
</sec>
</article>

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 40



Ranking Strategies
The tree structure of our sample XML document

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 41



Element Scoring
All ranking strategies require a scoring function that
estimates the relevance of an element for a given query

With the propagation strategy, the scoring function is
applied to the leaf elements only

In other cases, it is applied to all the retrievable
elements

The scoring function is usually based on standard IR
models

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 42



Element Scoring
To illustrate, we describe how XML-specific features
can be incorporated in a language modeling framework

Given

a query q = (k1, k2, ..., kn)

an element e and its corresponding element language model Me

The elements are ranked in decreasing order of P (e|q)
as follows:

P (e|q) ∝ P (e)P (q|Me)

where

P (e) is the prior probability of relevance for element e and

P (q|Me) is the probability of a query being generated by the
element language model Me

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 43



Element Scoring
Using a multinomial language model, for instance,
P (q|Me) can be calculated as:

P (q|Me) =
∏

ki∈q

P (ki|Me, λ)

If the term probabilities are computed based on
Jelinek-Mercer smoothing, we obtain

P (ki|Me, λ) = λP (ki|e) + (1 − λ)P (ki|C)

where

P (ki|e) is the probability of query term ki in element e

P (ki|C) is the probability of query term ki in the collection

λ is the smoothing parameter

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 44



Element Scoring
P (ki|e) is the element model based on element term
frequency, ETF

P (ki|C) is the collection model based for instance on
inverse element frequency, IEF

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 45



Element Scoring
Statistics for our sample XML document (λ = 0.8)

Elements P (wine|e) P (wine|Me) P (patag....|e) P (patag....|Me) length(e)

para111 0.2 0.180 0.333 0.327 15
para112 0.6 0.500 0 0.060 10
para113 0 0.020 0.25 0.260 12

para121 0 0 0 0 8
para122 0 0 0 0 10

para21 0 0 0 0 20
para22 0.5 0.420 0 0.060 14
para23 0 0 0 0 10
para24 0 0 0 0 18

subsec11 0.243 0.215 0.216 0.233 37
subsec12 0 0 0 0 18

sec1 0.155 0.144 0.138 0.170 58
sec2 0.113 0.110 0 0.060 62

article 0.127 0.122 0.063 0.111 126

P (ki|C) 0.1 λ = 0.8 0.3 λ = 0.8

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 46



Element Scoring
The term statistics are based on the content of the
elements and of their descendants

length(e) is the number of terms in e

The length of an inner element is the sum of the length
of each of its children elements

Elements with no query terms are ignored

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 47



Element Scoring
The ranking of the elements forming our sample
document is given below

0.0588 para111

0.0500 subsec11

0.0300 para112

0.0252 para22

0.0246 sec1

0.0135 article

0.0066 sec2

0.0052 para113

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 48



Element Scoring
Here, we have assumed a constant prior relevance
probability, so P (e) was ignored

However, with the above language modeling framework,
XML-specific features can be incorporated through P (e)

For instance, a bias towards long elements can be
incorporated by setting:

P (e) =
length(e)∑
e′ length(e′)

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 49



Element Scoring
Other XML-specific features that can be incorporated
into a language modeling framework include:

the number of topic shifts in an element

the path length of an element

Overall, accounting for element length is crucial in XML
retrieval

Other XML-specific features can help, depending on the
retrieval task

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 50



Contextualization
The context of an element can provide valuable
evidence on what an element is or is not about

This is because all the terms in the document can be
used to score the element for a given query

For instance, the fact that an element does not contain all query
terms, but is contained in a document that contains all query
terms, is likely to be of importance when assessing relevance

This strategy can be implemented by combining the
element score with the document score

The process of combining the score of the element and
that of its context is referred to as contextualization

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 51



Contextualization
A contextualization technique is to use the document
containing the root element as context

This means combining the score of the element to that
of the XML document containing that element

The combination can be as simple as the average of
the two scores

A scaling factor can be used to emphasize the
importance of one score compared to the other

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 52



Contextualization
Some or all ancestors of an element can also be used
as context

For instance, the parent element alone can be used as context

Using the context is nothing else than capturing
relationships between elements in XML retrieval

Properly accounting for these relationships consistently
improves retrieval performance

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 53



Propagation
A propagation strategy is required when the indexing
strategy indexes only leaf elements

The retrieval score of an inner element is calculated on
the basis of the scores of its descendant elements

Let e be a non-leaf (inner) element, eℓ a leaf element
contained in e and q a query

Let score(.) be the scoring function used to rank
elements, then

score(eℓ, q) is calculated directly from the index of eℓ

score(e, q) is calculated by a propagation mechanism

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 54



Propagation
The most common propagation mechanism consists of
a weighted sum of the retrieval scores

The number of children elements of an element can be
used as a weight

For instance, in the GPX approach, score(e, q) is
calculated as follows:

score(e, q) = D(m) ×

∑

ec

score(ec, q)

where

ec is a child element of e

m is the number of retrieved children elements of e

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 55



Propagation
D(m) = 0.49 if m = 1 (e has only one retrieved child
element) and 0.99, otherwise

The value of D(m), called the decay factor, depends on
the number of retrieved children elements

If e has one retrieved child:

the decay factor of 0.49 means that an element with only one
retrieved child will be ranked lower than its child

If e has several retrieved children:

the decay factor of 0.99 means that an element with many
retrieved children will be ranked higher than its children

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 56



Propagation
We use the GPX technique to illustrate the propagation
strategy applied to our sample XML document

We take the scores of the leaf elements produced by
the element-only scoring strategy

As subsec11 has three children elements, then
D(3) = 0.99 since m = 3

Thus score( subsec11 , {wine, patagonia}) =
0.99 × (0.0588 + 0.0300 + 0.0052) = 0.0931

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 57



Propagation
Ranking using the GPX propagation strategy, showing
the damping factors D(m) between () , we get:

0.0931 subsec11 (0.99)

0.0588 para111

0.0574 article (0.99)

0.0456 sec1 (0.49)

0.0300 para112

0.0252 para22

0.0123 sec2 (0.49)

0.0052 para113

The length of the path between an inner element and its
leaf elements can be used as weight

In the XFIRM system, this distance is used in the
propagation mechanism

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 58



Propagation
The (simplified) score of an inner element e for a query
q is given as follows:

score(e, q) = ρ × m ×

∑

eℓ

αd(e,eℓ)−1 × score(eℓ, q)

+(1 − ρ) × score(root, q)

where

m is the total number of retrieved leaf elements contained in e

d(e, eℓ) is the distance between elements e and eℓ in the
document tree

score(root, q) is the retrieval score of the root element

ρ emphasizes the importance of the element score versus that of
the document score in the contextualization strategy

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 59



Propagation
Propagation mechanisms led to good retrieval
performance

Particularly, the GPX propagation mechanism produced
top performance for the retrieval tasks of the INEX
campaigns, showing its versatility for XML retrieval

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 60



Aggregation
Aggregation is based on the work of Chiaramella et al
on structured document retrieval

The representation of an XML element can be viewed
as the aggregation of:

its own content representation, and

the content representations of structurally related elements

Retrieval can be based on these aggregated
representations

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 61

http://portal.acm.org/citation.cfm?id=502102.502103


Aggregation
An element’s content representation is generated using
standard indexing techniques

An aggregation function is used to generate the
representation of the non-leaf elements

The aggregation function can include parameters
specifying how the representation of an element is
influenced by that of its children elements

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 62



Aggregation
To illustrate, we describe an approach based on the
language modeling framework

For an element e, the probability of a query term term ki

given a language model based on the own element
content Meown

is given by:

P (ki|Meown
) = (1 − λ)P (ki|eown) + λP (ki|C)

where

λ is the smoothing parameter controlling the influence of the
background collection model C

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 63



Aggregation
In our working example, only leaf elements own content

All inner elements are made of the content of their
children elements

If we assume λ = 0.8, the P (ki|Meown
) are given below

elements P (wine|Mown) P (patagonia|Mown)

para111 0.180 0.327

leaf para112 0.500 0.060

elements para 113 0.020 0.260

para22 0.420 0.060

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 64



Aggregation
Now assume that e has several children, ej, each with
their own language model Mej

Then, the aggregation function can be implemented as
a linear interpolation of language models:

P (ki|Me) =
∑

ej

ωjP (ki|Mej
)

where
∑

ej
ωj = 1

The ω parameters model the contribution of each
language model to the aggregation

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 65



Aggregation
For our working example, we assume equal contribution
from each of the children

It means dividing P (ki|Mej
) by the number of children

We obtain the aggregated term statistics shown below

elements P (wine|Me) P (patagonia|Me)

subsec11 0.233 0.216

inner sec1 0.117 0.108

elements sec2 0.105 0

article 0.111 0.054

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 66



Aggregation
For instance, since subsec11 has three children, the
aggregated score for the term wine is then

P (wine|Msubsec11) = 1/3 × (0.180 + 0.500 + 0.020) = 0.233

w = 1/3 since we have equal contribution by all involved
element language models

The ranking is produced by estimating the probability
that each element generates the query

Other approaches for dealing with aggregation use
fielded BM25 and probabilistic models

An important issue with the aggregation method is the
estimation of parameters

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 67

http://www.springerlink.com/content/q42k01qt4608105j/


Merging
Mass and Mandelbrod used an indexing strategy where
a separate index is created for each element type

Let us assume that a retrieval model is used to rank the
elements in each index

This results in separate ranked lists, one for each index,
that will be merged to return to the user a single list

For this, normalization is necessary to take into account
the variation in size of the elements of the indexes

For each index, the score(q, q) is calculated, which is the
score of the query as if it were an element in the
collection

For each index, the element score is normalized with
score(q, q)

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 68

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.104.7907


Processing Structural Constraints
At INEX, structural constraints are viewed as hints as to
where to look to find valuable information

The reason for this view is two-fold

First, it is well known that users of IR systems do not always
properly express their information need

For instance, a user asking for a paragraph on a given topic
may not realize that valuable content is scattered across
several paragraphs

Second, the belief that satisfying the content criterion is, in
general, more important that satisfying the structural criterion

For example, the content in a title is probably the most
important content of a section of a document

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 69



Processing Structural Constraints
A first approach is to build a dictionary of tag synonyms

For example, consider the elements:

<p> that corresponds to paragraph type

<p1> that corresponds to the first paragraph in a sequence of
paragraphs

It would be quite logical to consider <p> and <p1> as
equivalent tags

The dictionary can also be built from processing past
relevance data

If query asks for <section> elements, then all types of elements
assessed as relevant for that query are considered equivalent to
the <section> tag

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 70



Processing Structural Constraints
A second technique is that of structure boosting

In this technique, the element score is first generated
ignoring the structural constraint of the query

Then, the element score is boosted according to how
the structural constraint is satisfied by the element

Consider the following content-and-structure query q
expressed in the NEXI query language:

//article[about(., wine)]//sec[about(., patagonia)]

This query will be divided into two subqueries:

q1 = //article[about(., wine)]

q2 = //sec[about(., patagonia)]

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 71



Processing Structural Constraints
The element scoring strategy applied to subquery q2
yields these scores for the content criteria (c_score):

elements c_score s_score

para111 0.327 0.4

para113 0.261 0.4

subsec11 0.233 0.6

sec1 0.170 1

article 0.111 0.7

The table also show the structure scores with respect to
matching section elements (s_score) for the each
element type (tag)

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 72



Processing Structural Constraints
Let us assume that the content-based scores are
boosted as follows for q2 :

b_score(e, q2) = 0.8 × c_score(e, q2) + 0.2 × s_score(e, sec)

The boosted scores, b_score, are shown below

elements c_score s_score b_score

para111 0.327 0.4 0.341

para113 0.261 0.4 0.288

subsec11 0.233 0.6 0.293

sec1 0.170 1 0.336

article 0.111 0.7 0.378

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 73



Processing Structural Constraints
For simplicity, for query q1 we only consider articles as
results

Now for the full query q, we need to combine:

the boosted score of each element retrieved for query q2 , and

the boosted score of the article containing that element and
retrieved for query q1

This can be defined, for instance, as follows:

s_score(e, q) = b_score(e, q2) × b_score(article, q1)

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 74



Processing Structural Constraints
The resulting ranked list of elements is given below

0.0459 article

0.0415 para111

0.0409 sec1

0.0373 subsec11

0.0350 para113

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 75



Processing Structural Constraints
An important issue here is to determine the actual level
of imprecise matching

For our example, this would translate into how should
we set the values of the structure scores s_score

The techniques described here were evaluated in the
context of INEX, where the relevance of an element
was assessed based on its content only

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 76



Removing Overlaps
An XML retrieval system aims at returning the most
relevant elements for a given user’s query

When an element has been estimated relevant to a
given query, it is likely that its ancestors will also be
estimated as relevant

Thus, several elements may be contained in the result
list, eventually leading to a considerable amount of
redundant information being returned to users

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 77



Removing Overlaps
Returning redundant information has been shown to be
distracting for the users

Thus, it is necessary to decide which of these relevant
but overlapping elements should be returned

A first approach is to remove overlapping elements
directly from the ranked list of elements

Another approach is to select the highest ranked
element from the result list, removing any ancestor and
descendant elements with lower ranks

The process is then applied recursively

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 78



Removing Overlaps
A number of approaches have been developed where
the actual structure of the document is considered

Mass and Mandelbrod look at the distribution of retrieved
elements in the XML document structure in addition to their score

Overall, techniques that consider the document tree
structure tend to outperform those that do not

There is, however, the issue of answer time, as the
removal of overlaps is done at query time

An interesting question to investigate is the effect of the
original result list on the overlap removal strategy

There are indications that a good initial result list might
lead to a better overlap-free results list

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 79

http://www.springerlink.com/content/hm57r328227223tt/


XML Retrieval Evaluation

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 80



XML Retrieval Evaluation
Research on structured text retrieval grew with:

the adoption of XML as the markup language for structured
documents

the setup of the INitiative for the Evaluation of XML retrieval
(INEX), the equivalent of TREC for evaluating XML retrieval
effectiveness

INEX established an infrastructure in the form of large
test collections and appropriate measures

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 81



Document Collections
The document collection used in INEX up to 2004
consisted of 12,107 articles marked-upin XML

The articles were selected from 12 magazines and 6
transactions of the IEEE Computer Society

On average, an article contains 1,532 XML nodes,
where the average depth of the node is 6.9

In 2005, the collection was extended with further
publications from the IEEE Computer Society

A total of 4,712 new articles were added, giving a total
of 16,819 articles and 11 million elements

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 82



Document Collections
Since 2006, INEX uses a different document collection,
made from English documents from Wikipedia

The collection consists of the full-texts, of 659,388
articles in XML from the Wikipedia project

On average, an article contains 161.35 XML nodes,
where the average depth of an element is 6.72

This collection has a richer set of tags (1,241 unique
tags compared to 176 in the IEEE collection)

It also includes a large number of cross-references
(represented with XLink)

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 83



Topics
INEX identified two types of topics:

Content-only (CO) topics , which are information need
statements that ignore the document structure

Content-and-structure (CAS) topics , which are information
need statements that refer to both the content and the structure
of the elements

CO and CAS topics reflect users with varying levels of
knowledge about the structure of the collection

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 84



Topics
CAS topics fit the needs of users who want to take
advantages of knowledge on the document structure to
improve the quality of the results

CAS topics are more likely to fit the needs of expert
users, such as librarians or patent experts

As in TREC, an INEX topic consists of the standard
title, description, and narrative fields

For CO topics, the title is a sequence of terms

For CAS topics, the title is expressed using NEXI, a
path-based query language for XML

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 85



Topics
In 2005, the CO topics were extended into
Content-Only + Structure (CO+S) topics

The CO+S topics included a CAS title (<castitle> )
field

This field includes knowledge in the form of structural
constraints

CAS titles were expressed in the NEXI query language

An example of a CO+S topic is given in the next slide

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 86



Topics: CO+S from INEX 2005

<inex_topic topic_id="231" query_type="CO+S">

<title>Markov chains in graph related algorithms</title>

<castitle>

//article//sec[about(., +"markov chains" +algorithm +gr aphs)]

</castitle>

<description>Retrieve information about the use of markov

chains in graph theory and in graphs-related algorithms.

</description>

<narrative>I have just finished my Msc. in mathematics, in

the field of stochastic processes. My research was in a subje ct

related to Markov chains. My aim is to find possible

implementations of my knowledge in current research. I’m ma inly

interested in applications in graph theory, that is, algori thms

related to graphs (...)

</narrative>

</inex_topic>

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 87



Retrieval Tasks
XML retrieval systems need to determine the
appropriate level of element granularity to return to the
users

In INEX, a relevant element is defined to be at the right
level of granularity if it:

discusses all the topics requested in the user query – it is
exhaustive to the query

does not discuss other topics – it is specific to that query

Up to 2004, the task of an XML retrieval system in INEX
was to return those elements that are most relevant

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 88



Retrieval Tasks
Within this generic task, two main sub-tasks were
defined:

CO sub-task , which makes use of the CO topics, where an
effective XML retrieval system is one that:

retrieves the most specific elements
retrieves only those which are relevant to the requested topic

CAS sub-task , which makes use of CAS topics, where an
effective system is one that:

retrieves the most specific document components
match the structural constraints specified in the query

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 89



Retrieval Tasks
This led to two CAS sub-tasks:

SCAS sub-task (strict content-and-structure)

VCAS sub-task (vague content-and-structure)

The following two sub-tasks were defined in 2005:

Focused sub-task

Thorough sub-task

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 90



Relevance
In XML retrieval, the relevance evaluation is
complicated by the need to consider the structure in the
documents

An element and one of its children elements can both
be relevant to a given query

However, the child element may be more focused on
the topic of the query than its parent element, which
may contain additional irrelevant content

In this case, the child element is a better element to
retrieve than its parent element

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 91



Relevance
To accommodate the specificity aspect, INEX defined
relevance along two dimensions:

Exhaustivity , which measures how exhaustively an element
discusses the topic of the user’s request

Specificity , which measures the extent to which an element
focuses on the topic of request

In addition, a scale is necessary to allow the
representation of how exhaustive or how specific is an
element

Binary values of relevance cannot reflect this difference

For example, a system that retrieve the only relevant section in a
book is more effective than one that returns a whole chapter

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 92



Relevance
INEX therefore adopted a four-point relevance scale for
the exhaustivity and specificity dimensions:

Not – Marginally – Fairly – Highly

Each year, assessors provided the relevance
assessments through a relevance assessment tool

The assessment process is composed of two phases

In the first phase, assessors highlighted text fragments containing
only relevant information

In the second phase, for all elements within highlighted
passages, assessors were asked to assess their exhaustivity

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 93



Relevance
INEX 2006 assessment interface:

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 94



Relevance
Statistical analysis of the INEX 2005 results showed
that, in terms of comparing retrieval performance,
ignoring the exhaustivity dimension led to similar results

As a result, in INEX 2006 relevance has been defined
along the specificity dimension only

In future INEX campaigns, researchers will examine a
greater range of focused retrieval tasks

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 95



Measures
Measuring XML retrieval effectiveness requires
considering the dependencies among the elements

Users may locate additional relevant information by
browsing or scrolling down the elements

This motivates the need to consider elements from
where users can access relevant content

The alternative would lead to a much too strict
evaluation scenario

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 96



Measures
From 2002 to 2004, INEX used inex_eval , which
applies the measure of precall to XML elements

Inex_eval is based on the number of retrieved and
relevant elements

Systems that return relevant but overlapping elements
will be evaluated as more effective than those that do
not return overlapping elements

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 97



Measures
The classic definition of precision and recall can be
modified to reflect this view:

Precision =
amount of relevant information retrieved

total amount of information retrieved

Recall =
amount of relevant information retrieved

total amount of relevant information

Instead of counting the number of relevant items
retrieved, we are measuring the amount of relevant text
retrieved

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 98



Measures
More formally, let:

hlength(e) be the length in characters of highlighted content in
element e for a given topic

length(e) be the total number of characters contained in e

Trel be the total amount of (highlighted) relevant information in
the collection for the topic

erank(i) be a function that returns the element at rank i

Precision at rank r, indicated by P@r, is the fraction of
retrieved relevant information up to rank r:

P@r =

r∑
i=1

hlength(erank(i))

r∑
i=1

length(erank(i))

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 99



Measures
Recall at rank r, indicated by R@r, is the fraction of
relevant information retrieved up to rank r:

R@r =
1

Trel
×

r∑

i=1

hlength(erank(i))

The definition of Trel depends on whether returning
overlapping elements is allowed or not

For the thorough sub-task, Trel is the total number of highlighted
characters across all elements

For the focused sub-task, Trel is the total number of highlighted
characters across all documents

Other measures include precision values at fixed recall
levels, and mean average precision have been defined

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 100



Query Languages

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 101



Query Languages
When searching unstructured text, users are naturally
limited in the expressive power of their queries

With structured text and a query language that supports
its use, users can write more precise queries

For example, “I want a paragraph discussing penguin near to a
picture labeled South Pole”

Query languages are an integral part of XML and
structured text retrieval

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 102



Characteristics
The requirements for query languages for structured
text retrieval can be divided into three main classes:

content constraints

pattern matching constraints

structural constraints

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 103



Content Constraints
These are concerned with the specification of the
content aspect of the information need

Various types of content constraints exist:

Word: the document fragments to be returned should contain or
approximate the query words

Context: conditions imposed on the positions of the words in the
text

Weight: conditions on the importance of words and/or context
constraints in the document fragments

Boolean: where all the above can be combined using Boolean
operators

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 104



Content Constraints
In (traditional) databases, processing a query yields a
non-ranked list of document fragments

In IR, the list would be ranked

Also, in databases, it is commonly the case that the
words must be contained in the fragment to be returned

In IR, containment is replaced by aboutness

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 105



Pattern Matching Constraints
These allow the retrieval of text fragments that match
some specified pattern such as strings, prefixes,
suffixes, substrings, or regular expressions in general

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 106



Structural Constraints
These allow the specification of the structural aspect of
the information need

There are three main types of structural constraints:

Target result: users have the opportunity to specify which
particular structural results they are targeting

Support condition: structure can be used to specify structural
constraints other than that of the desired results

Result construction: results can be built from several fragments
within or across documents

It should however be noted that an increase in
expressiveness entails an increase in time complexity

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 107



Classification of Languages
XML query languages can be classified as

content-only

content-and-structure query languages

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 108



Content-only Queries
Content-only queries make use of content constraints to
express user information needs

They are suitable for XML search scenarios in which
users do not know the document structure

XML retrieval systems must still determine what are the
best fragments

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 109



Content-and-structure Queries
This type of query provides a means for users to specify
their content and structural information needs

It is towards the development of this type of queries that
most research on XML query languages lies

There are three main categories of
content-and-structure query languages, namely:

tag-based languages

path-based languages

clause-based languages

The complexity and the expressiveness of these
languages increase from tag to clause-based queries

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 110



Tag-based queries
These queries allow users to annotate words that
specifies a structural constraint to target as the result

For example, the information need “retrieve sections
about red wine” would be expressed as follows:

section: red wine

They do not cater for support conditions and result
constructions

An example of a tag-based query language is XSEarch

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 111

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.7423


Path-based Queries
These queries are based upon the syntax of XPath to
encapsulate the document structure in the query

Examples of path-based query languages: XPath 1.0,
XIRQL, and NEXI

The information need “retrieve sections about red wine
in documents about Chile” expressed in NEXI:

//document[about(.,Chile)]//section[about(.,red)]

Path-based queries allow for expressing target results
(“section” element above) and support conditions
(“document ” about “Chile”)

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 112

http://www.w3.org/TR/xpath
http://portal.acm.org/citation.cfm?id=984321.984326
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.5160


Path-based Queries
XIRQL allows for weights to be assigned to structural
constraints

For instance, the following XIRQL query:
//section[0.6 .// * $cw$ "Chile" + 0.4 .//section $cw$ "wine"]

Any tag-based query can be rewritten using a
path-based query language

For example, in NEXI as follows:

//section[., about(red wine)]

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 113



Path-based Queries
Moreover, any content query can be expressed as a
path-based query

For example as follows in the NEXI query language:

// * [., about(red wine)]

This query asks for any element and at any level of
granularity about “red wine”

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 114



Clause-based queries
These queries use nested clauses to express
information needs, very similarly to SQL

The most prominent clause-based language for XML
retrieval is XQuery, the W3C proposed standard

A typical clause-based query is made of three clauses:

a for clause to specify support conditions

a where clause to specify content constraints

a return clause to specify target fragments and the construction
of new fragments as result

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 115

http://www.w3.org/TR/xquery/


Clause-based queries
The following information need “retrieve document
sections with the title penguins” would be expressed as
follows in XQuery:

for $x in /document/section

where $x/title=penguins

return $x/section

XQuery Full-Text extends XQuery with powerful text
search operations, including:

context constraints

ranking functionality

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 116

http://portal.acm.org/citation.cfm?id=1150714


XML Query Languages
XML content-only query languages are specified in the
same way as in flat text retrieval

We present here:

two path-based query languages: XPath and NEXI, and

two clause-based query languages, namely XQuery and XQuery
Full-Text

These query languages provide a good overview of the
most recent developments on XML query languages

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 117



XPath
XPath (XML Path language) is a query language
defined by the W3C, which primary purpose is to
access or navigate to components of an XML document

In addition, XPath provides facilities for the manipulation
of strings, numbers and Boolean operations

The most important type of expressions in XPath is the
location path. For example:

book/publisher/@isbn

is a location path, where:
book and publisher are steps that navigate to children
elements with names “book” and “publisher”

@isbn is a step that navigates to attributes with name “isbn”

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 118



XPath
All the steps are separated by “/”

This means, for example, that the location path selects the isbn

attributes that are directly below publisher elements

Publisher elements are referred to as children of book
elements

The navigation steps can be separated by “//”

This means that the location path navigates to the current
element and all its descendant elements before it applies the next
step

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 119



XPath
For example:

book//title navigates to all title elements that are directly or
indirectly below a book element,

//title will select all title elements in the document

Special steps include the self step denoted “.” and the
parent step denoted “..”

For example:

.//book returns any book elements contained in the current
node

../publisher returns the publisher elements of the parent of
the current node

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 120



XPath
Also, XPath uses wildcards such as “*” and “@*” to
navigate to elements and attributes with any name

E.g. book/ * and book/publisher/@ *

At each step, predicates can be specified between “[ ]”,
which must be satisfied for the nodes to be selected

For example, //book[@year=2002]/title

The standard comparison operators =, ! = , < and <=
can also be used in the predicates

Existential predicates are used to check whether a
certain path expression returns a non-empty result

For example, //publisher[city] selects publishers for which
the city information is given

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 121



XPath
Positional predicates are used to navigate according to
the position of an element in the document tree

For example, //publisher/country[1]/city

The comparisons and existential conditions can be
combined with and , or and not()

For example, not(@year = 2002)

An important function in XPath is the Boolean function
contains()

It takes two string arguments and returns true if the first string
contains the second string, and false otherwise

This function can be used to check whether an element contains
in its text a specified string

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 122



XPath
As such, XPath is not a query language that can be
directly used for content-oriented XML retrieval

XPath is, however, used by other XML query languages
or has inspired other XML query languages

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 123



NEXI
The Narrowed Extended XPath I (NEXI) was developed
at INEX

It has been used by INEX participants to express
realistic content-and-structure queries to form the test
collection

The enhancement comes from the introduction of a new
function, named about()

This function requires an element to be about the
content

This is to reflect that an element can be relevant to a
given query without actually containing any of the words
used in the query

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 124

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.5160


NEXI
The reasons for choosing a small subset of XPath were
two-fold:

First, the queries to INEX showed high syntactic and semantic
error rates in the use of XPath path location

The second reason was that NEXI was defined for the purpose of
performing retrieval evaluation

Positional predicates are not allowed, as they do not
bring anything in terms of effectiveness evaluation

Also, all target elements must have at least one content
condition, i.e., one about() function

It is indeed a mechanical process to return, for instance,
the title of sections on a given topic

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 125



NEXI
An example of a NEXI query is:

//article[about(.//body, "artificial intelligence")]/ /

body[about(., chess) and about(., algorithm)]

NEXI was developed to construct topics for the purpose
of evaluating XML retrieval effectiveness

It is therefore the task of the XML retrieval system to
interpret a NEXI query

The interpretation is with respect to the about()
condition and the structural constraint

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 126



XQuery
XQuery includes XPath as a sub-language

Additionally, it allows to query multiple documents and
combine the results into new XML fragments

The core expressions of XQuery are the FLWOR
expressions

The following XQuery expression lists the publishers
whose average price of books is less than 50 euros:

for $pub in distinct-values (doc("pub.xml")//publisher)

let $a := avg(doc("bib.xml")/book[publisher = $pub]/pric e)

where $a < 50

order by $pub/name

return <publisher> { $pub/name , $a } </publisher>

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 127



XQuery
A FLWOR expression starts with one or more for and
let clauses, each binding a number of variables

The variables bound within the for clause are used to iterate
over the elements of the result sequence of an expression

The variables bound within the let clause are used to iterate
over the entire sequence

An optional where clause specifies selection conditions

Further, an optional order by clause specifies sorting
criteria

Finally, a return clause specifies the results to be
returned

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 128



XQuery
Consider again our XQuery expression example:

for $pub in distinct-values (doc("pub.xml")//publisher)

let $a := avg(doc("bib.xml")/book[publisher = $pub]/pric e)

where $a < 50

order by $pub/name

return <publisher> { $pub/name , $a } </publisher>

The for clause binds the variable $pub such that it
iterates over the publisher elements in the document
entitled “pub.xml” in the order that they appear

The distinct-values function eliminates duplicates
in “pub.xml”

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 129



XQuery
The let clause binds the variable $a to the average
price of books from publisher $pub

Then, those publisher elements for which the condition
in the where clause is true are selected

The resulting bindings are sorted by the order by
clause on the publisher name in $pub ($pub/name)

The return clause creates a new publisher element
that contains the name element of the publisher $pub

The results are new fragments, as they were not in the
XML original documents

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 130



XQuery
XQuery is a powerful query language for XML retrieval,
and can be viewed as the SQL for XML

It is a language that is mostly appropriate for
data-centric XML retrieval

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 131



XQuery Full-Text
XQuery Full-Text is an XML query language that
extends XQuery with powerful text search capabilities

XQuery Full-Text allows to specify that the results
should be ranked according to how relevant they are

The added text search capabilities are the result of the
introduction of a new XQuery expression,
FTContainsExpr

For instance, the following FTContainsExpr expression:

//book[./title ftcontains {"red" "wine"} all]//author

returns the authors of books whose title contains all the
specified words, here “red” and “wine”

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 132

http://portal.acm.org/citation.cfm?id=1150714


XQuery Full-Text
XQuery Full-Text defines primitives for searching text,
such as phrase, word order, and word proximity

It also allows the specification of:

Letter cases in matched words, the use of stemming, thesauri,
stop words, content pattern matching, and many more

For instance, the following FTContainsExpr expression
restricts the proximity of the matched words to appear
within a window of six words:

//book[./title ftcontains {"red" "wine"}

all window at least 6 words]//author

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 133



XQuery Full-Text
The expression below looks for matches to the word
“growing” in its various forms, e.g. “grow”, “grows”:

//book[./title ftcontains "growing" with stems]//author

The ranking of results is provided with the introduction
of FTScoreClause expressions

We illustrate with an IR search-like example:

for $b score $s in //book[./title ftcontains {"red" "wine"} all]

order by $s descending

return <book isbn="{$b/@isbn}" score="{$s}"/>

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 134



XQuery Full-Text
XQuery Full-Text was not designed to implement a
specific scoring method, but to allow an implementation
to proceed as it wishes

XQuery Full-Text has all the characteristics required by
both data and document-centric XML retrieval
applications

From a content-oriented XML retrieval perspective,
XQuery Full-Text may be viewed as far too complex for
many end-users to master

Structured Text Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 135


	Introduction
	Structuring Power
	Structuring Power
	Explicit vs. Implicit Structure
	Explicit vs. Implicit Structure
	Static vs. Dynamic Structure
	Static vs. Dynamic Structure
	Static vs. Dynamic Structure
	Static vs. Dynamic Structure
	Single vs. Multiple Hierarchies
	Single vs. Multiple Hierarchies
	Early Text Retrieval Models
	Non-Overlapping Lists
	Non-Overlapping Lists
	Non-Overlapping Lists
	Proximal Nodes Model
	Proximal Nodes Model
	Proximal Nodes Model
	Proximal Nodes Model
	Proximal Nodes Model
	Proximal Nodes Model
	Proximal Nodes Model
	XML Retrieval
	Challenges in XML Retrieval
	Challenges in XML Retrieval
	Challenges in XML Retrieval
	Challenges in XML Retrieval
	Challenges in XML Retrieval
	Indexing Strategies
	Indexing Strategies
	Indexing Strategies
	Indexing Strategies
	Indexing Strategies
	Indexing Strategies
	Ranking Strategies
	Ranking Strategies
	Ranking Strategies
	Element Scoring
	Element Scoring
	Element Scoring
	Element Scoring
	Element Scoring
	Element Scoring
	Element Scoring
	Element Scoring
	Element Scoring
	Contextualization
	Contextualization
	Contextualization
	Propagation
	Propagation
	Propagation
	Propagation
	Propagation
	Propagation
	Propagation
	Aggregation
	Aggregation
	Aggregation
	Aggregation
	Aggregation
	Aggregation
	Aggregation
	Merging
	Processing Structural Constraints
	Processing Structural Constraints
	Processing Structural Constraints
	Processing Structural Constraints
	Processing Structural Constraints
	Processing Structural Constraints
	Processing Structural Constraints
	Processing Structural Constraints
	Removing Overlaps
	Removing Overlaps
	Removing Overlaps
	XML Retrieval Evaluation
	Document Collections
	Document Collections
	Topics
	Topics
	Topics
	Topics: CO+S from INEX 2005
	Retrieval Tasks
	Retrieval Tasks
	Retrieval Tasks
	Relevance
	Relevance
	Relevance
	Relevance
	Relevance
	Measures
	Measures
	Measures
	Measures
	Measures
	Query Languages
	Characteristics
	Content Constraints
	Content Constraints
	Pattern Matching Constraints
	Structural Constraints
	Classification of Languages
	Content-only Queries
	Content-and-structure Queries
	Tag-based queries
	Path-based Queries
	Path-based Queries
	Path-based Queries
	Clause-based queries
	Clause-based queries
	XML Query Languages
	XPath
	XPath
	XPath
	XPath
	XPath
	XPath
	NEXI
	NEXI
	NEXI
	XQuery
	XQuery
	XQuery
	XQuery
	XQuery
	XQuery Full-Text
	XQuery Full-Text
	XQuery Full-Text
	XQuery Full-Text

