
Modern Information Retrieval

Chapter 10

Parallel and Distributed IR

with Eric Brown

Introduction
A Taxonomy of Distributed IR Systems
Data Partitioning
Parallel IR
Cluster-based IR
Distributed IR
Federated Search
Retrieval in Peer-to-Peer Networks

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 1

Introduction
The volume of online content today is staggering and it
has been growing at an exponential rate

On at a slightly smaller scale, the largest corporate
intranets now contain several million Web pages

As document collections grow larger, they become
more expensive to manage

In this scenario, it is necessary to consider alternative
IR architectures and algorithms

The application of parallelism and distributed computing
can greatly enhance the ability to scale IR algorithms

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 2

A Taxonomy of
Distributed IR Systems

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 3

A Taxonomy
Taxonomy of distributed and parallel IR systems

One Processor Multiple Processors

Same Software Same Software Various Software

Internal Standard Parallel Search Parallel Search
Communication Search SIMD MIMD

Local Area n/a Cluster-based Local
Communication Search Federated Search

Broadband n/a Distributed Search Federated Search
Communication (P2P) (P2P)

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 4

Data Partitioning

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 5

Data Partitioning
IR tasks are typically characterized by a small amount
of processing applied to a large amount of data

How to partition the document collection and the
index ?

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 6

Data Partitioning
Figure below presents a high level view of the data
processed by typical search algorithms

D
o
c
u
m
e
n
t
s

Indexing Items

k1 k2 . . . ki . . . kt

d1 w1,1 w2,1 . . . wi,1 . . . wt,1

d2 w1,2 w2,2 . . . wi,2 . . . wt,2

. .
dj w1,j w2,j . . . wi,j . . . wt,j

. .
dN w1,N w2,N . . . wi,N . . . wt,N

Each row represents a document dj and each column
represents an indexing item ki

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 7

Data Partitioning
Document partitioning slices the matrix horizontally,
dividing the documents among the subtasks

The N documents in the collection are distributed
across the P processors in the system

During query processing, each parallel process
evaluates the query on N/P documents

The results from each of the sub-collections are
combined into a final result list

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 8

Data Partitioning
In term partitioning , the matrix is sliced vertically

It divides the indexing items among the P processors

In this way, the evaluation procedure for each document
is spread over multiple processors

Other possible partition strategies include divisions by
language or other intrinsic characteristics of the data

It may be the case that each independent search server
is focused on a particular subject area

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 9

Collection Partitioning
When the distributed system is centrally
administered , more options are available

The first option is just the replication of the collection
across all search servers

A broker routes queries to the search servers and
balances the load on the servers:

Broker

Search
Engine

Search
Engine

Search
Engine

Search
Engine

Search
Engine

User
Query

Result

User
Query

Result

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 10

Collection Partitioning
The second option is random distribution of the
documents

This is appropriate when a large document collection
must be distributed for performance reasons

However, the documents will always be viewed and
searched as if they are part of a single, logical collection

The broker broadcasts every query to all search servers
and combines the results for the user

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 11

Collection Partitioning
The final option is explicit semantic partitioning of the
documents

Here the documents are either already organized into
semantically meaningful collections

How to partition a collection of documents to make
each collection “well separated” from the others?

Well separated means that each query maps to a distinct
collection containing the largest number of relevant documents

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 12

Collection Partitioning
To construct such a mapping, Puppin et al used query
logs

They represent each document with all the queries that
return that document as an answer

This representation enables to build clusters of queries
and clusters of documents

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 13

http://portal.acm.org/citation.cfm?id=1146847.1146881

Collection Selection
In many cases, the collections are predetermined and
cannot be changed

In that case, collection selection is the process of
determining which of the document collections are most
likely to contain relevant documents for each query

One approach is to always assume that every collection
is equally likely to contain relevant documents

When collections are semantically partitioned, the
collections can be ranked according to their likelihood of
containing relevant documents

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 14

Collection Selection
The basic technique is to treat each collection as if it
were a single large document

Then, we can evaluate the query against the collections
to produce a ranked listing of collections

Let wc,ij refer to the weight of term ki in collection Cj:

wc,ij = fc,ij × IDFc,i

where

fc,ij is the total frequency of occurrence of term ki in all
documents of collection Cj

IDFc,i is the inverse collection frequency

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 15

Collection Selection
That is,

IDFc,i = log

(

Nc

nc,i

)

where

Nc is the number of collections

nc,i is the number of collections in which term ki occurs

These weights are then used to assemble query and
collection vectors

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 16

Collection Selection
A problem is that may happen that there are no relevant
documents within a collection that receives a high
relevance score

Moffat and Zobel avoid this problem

They propose to index each collection as a series of blocks,
where each block contains B documents

Voorhees proposes to use training queries to build a
content model for the distributed collections

The GlOSS system ranks collections based on:

The number of documents containing a query term, and

The total weight of a term over all documents

The CORI system ranks collections as if they were
documents, using the Inquery inference network

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 17

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.7407
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.2482
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.8617
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.8448

Inverted Index Partitioning
We first discuss inverted indexes that employ document
partitioning, and then we cover term partitioning

In both cases we address the indexing and the basic
query processing phase

There are two approaches to document partitioning in
systems that use inverted indexes

Logical document partitioning

Physical document partitioning

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 18

Logical Document Partitioning
In this case, the data partitioning is done logically using
the same inverted index as in the original algorithm

The inverted index is extended to give each processor
direct access to their portion of the index

Each term dictionary entry is extended to include P
pointers into the corresponding inverted list

The j-th pointer indexes the block of document entries
in the inverted list associated with the sub-collection in
the j-th processor

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 19

Logical Document Partitioning
Extended dictionary entry for document partitioning

term i

P0

P1

P2

P3

Dictionary Inverted List
 Term i

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 20

Logical Document Partitioning
When a query is submitted to the system, the broker
initiates P parallel processes to evaluate the query

Each process executes the same document scoring
algorithm on its document sub-collection

The search processes record document scores in a
single shared array of document score accumulators

Then, the broker sorts the array of document score
accumulators and produces the final ranking

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 21

Logical Document Partitioning
At inverted index construction time, the indexing
process can exploit the parallel processors

First, the indexer partitions the documents among the
processors

Next, it assigns document identifiers such that all
identifiers in partition i are less than those in partition
i + 1

The indexer then runs a separate indexing process on
each processor in parallel

After all of the batches have been generated, a merge
step is performed to create the final inverted index

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 22

Physical Document Partitioning
In this second approach, the documents are physically
partitioned into separate sub-collections

Each sub-collection has its own inverted index and the
processors share nothing during query evaluation

When a query is submitted to the system, the broker
distributes the query to all of the processors

Each processor evaluates the query on its portion of the
document collection, producing a intermediate hit-list

The broker then collects the intermediate hit-lists from
all processors and merges them into a final hit-list

The P intermediate hit-lists can be merged efficiently
using a binary heap-based priority queue

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 23

Physical Document Partitioning
Each process may require global term statistics in order
to produce globally consistent document scores

There are two basic approaches to collect information
on global term statistics

The first approach is to compute global term statistics at indexing
time and store these statistics with each of the sub-collections

The second approach is to process the queries in two phases

1. Term statistics from each of the processes are combined into
global term statistics

2. The broker distributes the query and global term statistics to
the search processes

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 24

Physical Document Partitioning
To build the inverted indexes for physically partitioned
documents, each processor creates its own index

In the case of replicated collections, indexing the
documents is handled in one of two ways

In the first method, each search server separately indexes its
replica of the documents

In the second method, each server is assigned a mutually
exclusive subset of documents to index and the index subsets are
replicated across the search servers

A merge of the subsets is required at each search
server to create the final indexes

In either case, document updates and deletions must
be broadcast to all servers in the system

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 25

Comparison
Logical document partitioning requires less
communication than physical document partitioning

Thus, it is likely to provide better overall performance

Physical document partitioning, on the other hand,
offers more flexibility

E.g., document partitions may be searched individually

The conversion of an existing IR system into a parallel
system is simpler using physical document partitioning

For either document partitioning scheme, threads
provide a convenient programming paradigm for
creating the search processes

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 26

Term Partitioning
In term partitioning, the inverted lists are spread across
the processors

Each query is decomposed into items and each item is
sent to the corresponding processor

The processors create hit-lists with partial document
scores and return them to the broker

The broker then combines the hit-lists according

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 27

Term Partitioning
The queries can be processed concurrently, as each
processor can answer different partial queries

However, the query load is not necessarily balanced,
and then part of the concurrency gains are lost

Hence, the major goal is to partition the index such that:

The number of contacted processors/servers is minimal; and

Load is equally spread across all available processors/servers

We can use query logs to split the index vocabulary
among the processors to achieve the goal above

A complementary technique is to process the query
using a pipeline of processors

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 28

Overall Comparison
Document partitioning affords simpler inverted index
construction and maintenance than term partitioning

Assuming each processor has its own I/O channel and
disks, document partitioning performs better

When terms are uniformly distributed in user queries,
term partitioning performs better

In fact, Webber et al show that term partitioning results
in lower utilization of resources

More specifically, it significantly reduces the number of
disk accesses and the volume of data exchanged

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 29

http://portal.acm.org/citation.cfm?id=1265490

Overall Comparison
The major drawback of document partitioned systems:

Many not needed operations are carried out to query
sub-collections possibly containing few relevant documents

The main disadvantage of term partitioning:

It have to build and maintain the entire global index, which limits
its scalability

In addition, term partitioning has a larger variance
regarding answer time and fixing this needs more
complicated balancing mechanisms

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 30

Suffix Arrays
We can apply document partitioning to suffix arrays in a
straight forward fashion

As before, the document collection is divided among the
P processors and each partition is treated as an
independent collection

The system can then apply the suffix array construction
techniques to each of the partitions

During search, the broker broadcasts the query to all of
the search processes

Then the intermediate results are merged into a final
hit-list

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 31

Suffix Arrays
If all of the documents will be kept in a single collection,
we can still exploit the parallel processors to reduce
indexing time

In the suffix array construction algorithm for large texts,
each of the merges of partial indexes is independent

Therefore all of the O((n/M)2) merges may be run in
parallel on separate processors

After all merges are complete, the final index merge
may be performed

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 32

Suffix Arrays
In term partitioning for a suffix array, each processor is
responsible for a lexicographical interval of the array

During query processing, the broker distributes the
query to the processors that contain the relevant
portions of the suffix array and merges the results

Note that when searching the suffix array, all of the
processors require access to the entire text

However, on a single parallel computer with shared
memory, the text may be cached in shared memory

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 33

Signature Files
To implement document partitioning in a system that
uses signature files, the documents are divided among
the processors as before

Each processor generates signatures for its document
partition

At query time, the broker generates a signature for the
query and distributes it to all of the parallel processors

Each processor evaluates the query signature locally as
if its partition was a separate collection

Then the results are sent to the broker, which combines
them into a final hit-list for the user

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 34

Signature Files
To apply term partitioning, we would have to use a
bit-sliced signature file and partition the bit slices across
the processors

The amount of sequential work required severely limits
the speedup S available with this organization

Accordingly, this organization is not recommended

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 35

Parallel IR

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 36

Parallel Computing
Processors can be combined in a variety of ways to
form parallel architectures

Flynn has defined a commonly used taxonomy of
parallel architectures that includes four classes:

SISD: single instruction stream, single data stream;

SIMD: single instruction stream, multiple data stream;

MISD: multiple instruction stream, single data stream;

MIMD: multiple instruction stream, multiple data stream

The SISD class includes the traditional von Neumann
computer running sequential programs,

E.g., uniprocessor personal computers

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 37

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1447203

Parallel Computing
SIMD computers consist of N processors operating on
N data streams, and are often computers with:

Many relatively simple processors running the same program

A communication network between the processors

A control unit that supervises the synchronous operation of the
processors

The processors may use shared memory, or each
processor may have its own local memory

Sequential programs require significant modification to
make effective use of a SIMD architecture

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 38

Parallel Computing
MISD computers use N processors operating on a
single data stream in shared memory

MISD architectures are relatively rare and systolic arrays are the
best known example

MIMD is the most general and most popular class of
parallel architectures

A MIMD computer contains N processors, N instruction streams,
and N data streams

In this architecture, each processor has its own control unit,
processing unit, and local memory

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 39

Parallel Computing
The processors can work on separate, unrelated tasks,
or they can cooperate to solve a single task

Tightly coupled : MIMD systems with a high degree of
processor interaction

Loosely coupled : systems with a low degree of
processor interaction

MIMD can also characterize distributed computing
architectures

In distributed computing, multiple computers connected by a local
or wide area network cooperate to solve a single problem

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 40

Performance Measures
When we employ parallel computing, we usually want to
know what is the performance improvement

A number of metrics are available to measure the
performance of a parallel algorithm

One such measure is the speedup , defined as:

S =
Running time of best available sequential algorithm

Running time of parallel algorithm

Ideally, when running a parallel algorithm on N
processors, we would obtain perfect speedup, or S = N

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 41

Performance Measures
In practice, perfect speedup is unattainable either
because:

the problem cannot be decomposed into N equal independent
subtasks

the parallel architecture imposes control and communication
overheads, or

the problem contains an inherently sequential component

Amdahl’s law:

S ≤
1

f + (1 − f)/N
≤

1

f

where f is the fraction of the problem that must be
computed sequentially

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 42

Performance Measures
Another measure of parallel performance is efficiency ,
given by:

φ =
S

N

where S is the speedup and N is the number of
processors

Ideal efficiency occurs when φ = 1 and no processor is
ever idle or performs unnecessary work

As with perfect speedup, ideal efficiency is unattainable
in practice

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 43

Performance Measures
Ultimately, the performance improvement of a parallel
program over a sequential program is viewed as the
combination of:

the reduction in real time required to complete the task

the additional monetary cost associated with the parallel
hardware required to run the parallel program

This gives the best overall picture of parallel program
performance and cost effectiveness

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 44

Parallel IR
We can approach the development of parallel IR
algorithms from two different directions

One possibility is to develop new retrieval strategies
that directly lend themselves to parallel implementation

For example, a text search procedure can be built on top of a
neural network

The other possibility is to adapt existing, well studied IR
algorithms to parallel processing

This later approach is considered next

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 45

Parallel IR
The modifications required to adapt an existing
algorithm depend on the target parallel platform

We investigate techniques for applying a number of retrieval
algorithms to the MIMD and SIMD architectures

Parallel computing is the simultaneous application of
multiple processors to solve a single problem

The overall time required to solve the problem can be
reduced to the time required by the longest running part

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 46

Parallel IR on MIMD Architectures
MIMD architectures offer a great deal of flexibility in how
parallelism is defined and exploited to solve a problem

The simplest way in which a retrieval system can exploit
a MIMD computer is through the use of multitasking

Each of the processors in the parallel computer runs a
separate, independent search service

The submission of user queries to the search services
is managed by a broker

The broker accepts search requests and distributes the
requests among the available search services

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 47

Parallel IR on MIMD Architectures
Parallel multitasking on a MIMD machine

Broker

Search
Engine

Search
Engine

Search
Engine

Search
Engine

Search
Engine

User
Query

Result

User
Query

Result

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 48

Parallel IR on MIMD Architectures
Care must be taken to properly balance the hardware
resources on the system

Search processes running on the different processors
can perform I/O and compete for disk access

A bottleneck at the disk will be disastrous for
performance and could eliminate the throughput gains

In addition to adding more disks to the computer, the
index data must be distributed over the disks

At one extreme, replicating the entire index on each
disk eliminates disk contention at the cost of increased
storage requirements and update complexity

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 49

Parallel IR on MIMD Architectures
Alternatively, heavily accessed data can be replicated
and less frequently accessed data can be distributed

Yet another approach is to install a disk array and let
the operating system handle partitioning the index

As in sequential systems, caching is another important
technique that improves performance

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 50

Parallel IR on MIMD Architectures
To improve query response time, the computation
required to evaluate a single query must be:

partitioned into subtasks

distributed among the multiple processors

Broker

Search
Process

User
Query

Result

Sub−query/
 Results

Search
Process

Search
Process

Search
Process

Search
Process

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 51

Parallel IR on SIMD Architectures
SIMD architectures lend themselves to a more
restricted domain of problems than MIMD architectures

Perhaps the best known SIMD architecture is the
Thinking Machines Connection Machine 2 (CM-2)

This computer was discontinued during the 1990’s

The CM-2 was used to support both signature file and
inverted index based information retrieval algorithms

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 52

Inverted Indexes
Inverted indexes are somewhat awkward to implement
on SIMD machines

Nevertheless, Stanfill have proposed two adaptations of
inverted indexes for the CM-2

In its simplest form, an inverted list contains a posting
for each document in which a given term appears

A posting is a tuple of the form (ki, dj), where ki is a
term identifier and dj is a document identifier

Depending on the retrieval model, postings may
additionally contain weights or positional information

If positional information is stored, then a posting is
created for each occurrence of ki in dj

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 53

http://portal.acm.org/citation.cfm?id=75335.75345

Inverted Indexes
The first parallel inverted index for the CM-2 used the
two standard structures: a postings table and an index

The postings table contains the document identifiers from the
postings

The index (vocabulary) maps terms to their corresponding entries
in the postings table

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 54

Inverted Indexes
Parallel inverted index

Documents

This little piggy went
to market.

This little piggy
stayed home.

This little piggy had
roast beef.

Postings

beef 2
had 2
home 1
little 0
little 1
little 2
market 0
piggy 0
piggy 1
piggy 2
roast 2
stayed 1
this 0
this 1
this 2
to 0
went 0

Index

First Last

Term Row Pos Row Pos

beef 0 0 0 0
had 0 1 0 1
home 0 2 0 2
little 0 3 1 1
market 1 2 1 2
piggy 1 3 2 1
roast 2 2 2 2
stayed 2 3 2 3
this 3 0 3 2
to 3 3 3 3
went 4 0 4 0

Postings Table

2 2 1 0

1 2 0 0

1 2 2 1

0 1 2 0

0

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 55

Inverted Indexes
At search time these data structures are used to rank
documents as follows

First, the retrieval system loads the postings table onto
the back-end processors

For each query term, an index lookup returns the range
of postings table entries that must be processed

For each row of this range, the processors that contain
entries for the current term are activated

Then, the associated document identifiers are used to
update the scores of the corresponding documents

Document scores are built up in accumulators, which
are allocated in a parallel array similar

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 56

Inverted Indexes
The complete algorithm for scoring a weighted term is

score_term(P_float Doc_score[], P_posting Posting[],term_t term) {

int i, first_pos, last_pos;

P_int Doc_row, Doc_pos;

P_float Weight;

for (i = term.first_row; i <= term.last_row; i++) {

first_pos = (i == term.first_row ? term.first_pos : 0);

last_pos = (i == term.last_row ?

term.last_pos : N_PROCS - 1);

where (Position >= first_pos && Position <= last_pos) {

Doc_row = Posting[i].row;

Doc_pos = Posting[i].pos;

Weight = term.weight * Posting[i].weight;

[Doc_pos]Doc_score[Doc_row] += Weight;

}

}

}

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 57

Inverted Indexes
It is expensive to send posting weights to accumulators
on different processors

To address this problem, Stanfill proposed the
partitioned postings file

This structure stores the postings and accumulator for a given
document on the same processor

This proposal eliminates the communication required in the
previous algorithm

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 58

http://portal.acm.org/citation.cfm?id=98247

Inverted Indexes
The Figure below shows how the postings can be
loaded into a table for two processors

In this Figure, documents 0 and
1 were assigned to processor 0
and document 2 was assigned
to processor 1

home 1 beef 2

little 0 had 2

little 1 little 2

market 0 piggy 2

piggy 0 roast 2

piggy 1 this 2

stayed 1

this 0

this 1

to 0

went 0

(a)

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 59

Inverted Indexes
Notice that the postings for the term this are skewed
and no longer span consecutive rows

To handle this situation, we ap-
ply the second trick of the par-
titioned postings file: segment
the postings such that every
term in segment i is lexico-
graphically less than or equal to
every term in segment i + 1

home 1 beef 2

little 0 had 2

little 1 little 2

market 0 piggy 2

piggy 0 roast 2

piggy 1

stayed 1 this 2

this 0

this 1

to 0

went 0

(b)

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 60

Inverted Indexes
The postings table and index undergo a few more
modifications before reaching their final form:

Index

First Last

Term Partition Partition Tag

beef 0 0 0
had 0 0 1
home 0 0 2
little 0 0 3
market 1 1 0
piggy 1 1 1
roast 1 1 2
stayed 2 2 0
this 2 2 1
to 3 3 0
went 3 3 1

Postings Table

2 1 0 0
3 0 1 0
3 1 3 0

0 0 1 0
1 0 2 0
1 1

0 1 1 0
1 0
1 1

0 0
1 0

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 61

Inverted Indexes
The modified term scoring algorithm is below

Here N_ROWS is the number of rows per partition

ppf_score_term (P_float Doc_score[], P_posting Posting[],term_t term) {

int i;

P_int Doc_row;

P_float Weight;

for (i = term.first_part * N_ROWS;

i < (term.last_part + 1) * N_ROWS; i++) {

where (Posting[i].tag == term.tag) {

Doc_row = Posting[i].row;

Weight = term.weight * Posting[i].weight;

Doc_score[Doc_row] += Weight;

}

}

}

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 62

Cluster-based IR

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 63

Cluster-based IR
Cluster computing is an intermediate case between
parallel and distributed computing

A cluster of servers is a distributed system that has
many computers, all physically close and usually
connected through a fast local area network

As local networks become faster, a cluster presents
behavior that resembles that of a parallel machine

One important problem in cluster computing is to
balance the workload among the servers

Load balancers : special nodes that balance the load
among different machines

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 64

Cluster-based IR
There are many different types of clusters

For instance, clusters targeted to high-availability have redundant
nodes

Other clusters are used primarily for computational
purposes, as the following two cases:

Beowulf Clusters are clusters of homogeneous nodes that are
run on a dedicated network

Grid Computing allows the allocation of jobs to computers that
perform the work independently of the rest of the cluster

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 65

Cluster-based IR
The same measures that we mentioned in parallel IR
can be applied to cluster-based computing

The equivalent to efficiency is called load balancing

For example, we can measure the fraction of the
highest deviation from the average load ℓ:

LB =
n

max
i=1

(

|loadi − ℓ|

ℓ

)

where ℓ = sumn
j=1

loadj/n

Notice that LB can range from:

LB = 0 (perfect balance) to

LB = n − 1 (complete imbalance)

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 66

Cluster-based IR
Load balance can be achieved by the combination of
several techniques

The simplest one is to have a special broker, a load
balancer, which takes care of the job

However in some cases that is not possible and specific
load balancing algorithms are needed

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 67

Cluster-based IR
To program a cluster, there are middleware software
such as:

MPI (Message Passing Interface)

PVM (Parallel Virtual Machine)

Another possibility is the map-reduce parallel
computing paradigm introduced by Dean et al

It is available as open source software in the
Hadoop package

Current research is focused on extending the power of
the map-reduce paradigm

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 68

http://portal.acm.org/citation.cfm?id=1327452.1327492
http://hadoop.apache.org/

Distributed IR

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 69

Distributed Computing
Distributed systems typically consist of:

a set of server processes, each running on a separate node, and

a designated broker process

The broker:

accepts and distributes the requests to the servers,

collects intermediate results from the servers, and

combines the intermediate results into a final result for the client

The communication between the subtasks is performed
using a network protocol such as TCP/IP

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 70

Distributed Computing
Distributed computing uses multiple computers
connected by a network to solve a single problem

A distributed computing system can employ a
heterogeneous collection of processors in the system

In fact, a single processing node in the distributed system could
be a parallel computer in its own right

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 71

Distributed Computing
The cost of inter-processor communication is
considerably higher in a distributed computing system

As such, distributed programs are usually coarse
grained

Granularity refers to the amount of computation relative to the
amount of communication performed by the program

Coarse grained programs perform large amounts of computation
relative to the communication cost

Of course, an application may use different levels of
granularity at different times to solve a given problem

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 72

Distributed Computing
Further, in distributed computing each processor has its
own local memory

On the other hand, a distributed system is also in
practice a parallel system

In a distributed system, we have four elements that are
crucial for scalability:

Partitioning deals with data scalability and, in a large IR system,
implies partitioning the document collection and the index

Communication deals with processing scalability, which in our
case is query processing

A system is dependable if its operation is free of failures

The external factors are the external constraints on the system

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 73

Goals and Key Issues
Applications that lend themselves well to a distributed
implementation usually involve:

Computation and data that can be split into coarse grained
operations, and

Relatively little communication is required between the operations

Parallel information retrieval based on document
partitioning fits this profile well

Document partitioning can be used to divide the search task into
multiple, self contained subtasks

Each subtask involves extensive computation and data
processing with little communication among them

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 74

Goals and Key Issues
The ultimate goal of a distributed IR system is to answer
queries well and fast in a large document collection

That implies three different goals that we detail next

Scalability : the IR system needs to cope with content growth
and change

Capacity : the system must also provide high capacity

Quality : the system must not compromise quality of answers, as
it is easy to output bad answers quickly

These main goals are shared by all the modules of an
IR system

The goals above are crucial for Web retrieval

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 75

Goals and Key Issues
Main modules of a distributed IR system, and key
issues for each module

Module Communication Dependability External

(synchronization) factors

Indexing Reindexing

Partial indexing

Updating

Merging

Content growth

Content change

Global statistics

Querying
Replication

Caching

Rank aggregation

Personalization

Changing user needs

User base growth

DNS

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 76

Dependability
A classic way of coping with faults is replication

There are different aspects to replicate: network
communication, functionality, and data

To replicate network communication, we replicate the
number of links, making sites multi-homed

There are two possible levels of replication for
functionality and data:

In a single site , if either functionality or data is not replicated,
then a single fault can render a service unavailable

Using multiple sites increases the likelihood that there is always
some server available to perform the request

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 77

Communication
A major drawback that arises from the distributed
system is that the servers have to communicate

Network communication can be a bottleneck as
bandwidth is often a scarce resource

As a simple example, suppose we model a front-end
server as a queueing system G/G/c

In this model, the c servers correspond to the threads
that serve requests on, for example, a Web server

The response of each thread to a request depends
upon the communication of this thread with other parts
of the system

In this case, bandwidth and message latency contribute
to the response time

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 78

Communication
Maximum capacity of a front-end server using a
G/G/150 model

0

2

4

6

8

01

21

41

61

01 001 0001

M
a

x
im

u
m

 n
u

m
b

e
r

o
f

re
q

u
e

s
ts

 p
e

r
s
e

c
o

n
d

)sm(emit ecivres egarevA

051/G/G

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 79

Indexing
One way to partition the index across the query
processors is to consider the topics of the documents

Routing the queries according to their topic involves
identifying the topics of both documents and queries

However, topic distribution might have a negative effect
on the performance of the distributed retrieval system

Changes in the topic distribution can result in either:

the resources not being exploited to their full extent, or

allocation of fewer resources to popular topics

A possible solution to this challenge is the automatic
reconfiguration of the index partition, considering
information from the query logs of the IR system

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 80

Indexing
Partitioning the index according to the language of
queries is also a suitable approach

A challenge in routing queries using language is the
presence of multilingual documents such as in the Web

For example, documents describing technical content can have a
number of English terms

In addition, queries can be multilingual, involving terms
in different languages

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 81

Indexing
Building an index in a distributed fashion is a
challenging problem

So far, very few papers suggest approaches to build an
inverted index in a distributed fashion

For example, a possible approach is to organize the
servers in a pipeline

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 82

Dependability
The distributed search system depends upon the
existence of index structures that enable query resolution

For example, if enough index servers fail, then the service as a
whole also fails

Another issue with dependability is the update of the
index

In some systems it is crucial to have the latest results for queries
and content changes very often

In this case, it is important that the index data available at a given
moment reflects all the changes in a timely fashion

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 83

Dependability
If a server of the system fails, it is impossible to recover
the content of that server unless it is replicated

If this is not the case, then a possible inefficient way to
recover is to rebuild the entire index

Another possibility would be to make the partitions
partially overlapping

Document partitioned systems are more robust with
respect to servers failures

Suppose that a server fails

The system might still be able to answer queries possibly without
losing too much effectiveness

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 84

Communication
The distributed merge operations of the indexing
process can impact the communication among servers

A practical approach for achieving this goal is a
map-reduce approach

Indexes are usually rebuilt from scratch after each
update of the underlying document collection

This update operation usually requires locking the
index, jeopardizing the whole system performance

Terms that require frequent updates might be spread
across the servers, thus amplifying the lockout effect

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 85

http://portal.acm.org/citation.cfm?id=1327452.1327492

External Factors
In distributed IR systems there are several bottlenecks
to deal with

In a document partitioned IR system is necessary to
compute values for some global parameters such as

the collection frequency, and

the inverse document frequency of a term

There are two possible approaches:

One can compute the final global parameter by aggregating all
the local statistics available after the indexing phase

The problem of computing global statistics can be moved to the
system’s broker

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 86

External Factors
To compute such statistics, the broker usually resolves
queries using a two-round protocol

In the first round the broker requests local statistics from each
server

In the second, it requests results from each server, piggybacking
global statistics onto the second message containing the query

The question at this point is:

Given a smart partitioning strategy using local instead of global
statistics, what is the impact on the final system effectiveness?

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 87

External Factors
In a real world search engine, in fact, it is difficult to
define what is a correct answer for a query

Thus, it is difficult to understand whether using only
local statistics makes a difference

Furthermore, note that if we make use of a collection
selection strategy, using the global statistics is not
feasible

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 88

Query Processing
In a distributed IR system, it is important to determine
which resources to allocate to process a given query

The pool of available resources comprises components
having one of the following roles:

Coordinator, cache, or query processor

A coordinator makes decisions on how to route the
queries to different parts of the system

The query processors hold index or document
information

Cache servers can hold results for the most frequent or
popular queries

They can reduce query latency and load on servers

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 89

Query Processing
An important assumption is that one or more servers
implement each of these components

This assumption is particularly important for large-scale systems

Designing components in such a way that we can add
more physical servers to increase the overall system
capacity is fundamental for such large-scale systems

In fact, separating parts of the system into component roles is
already an attempt to promote scalability as a single monolithic
system cannot scale in an unrestricted way

As these servers can be in different physical locations,
we call site to each group of collocated servers

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 90

Query Processing
Instance of a distributed query processing system

WAN
Client

1
2

3

Site A

Region X

Site B

Region Y

Site C

Region Z

Query processor : matches

documents to the received queries

Coordinator : receives queries and

routes them to appropriate sites

Cache : stores results from

previous queries

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 91

Query Processing
We classify a distributed query processing system
according to four attributes:

Number of components

Connectivity

Distinction of roles

Interaction

The number of components determines the amount of
resources available for processing queries

The choices on the allocation of components change as
different choices lead to different performance values

In fact, minimizing the amount of resources per query is
in general an important goal

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 92

Query Processing
In practice, partitioning the data potentially enhances
the query throughput performance

In the case of document partitioning, we could select only a
subset of the machines in the search server that ideally contain
relevant results

However, the ability of retrieving the largest number of
relevant documents is, as we already discussed, the
collection selection or query routing problem

In the case of term partitioning, effective collection
selection is not a hard problem

The solution in this case consists in selecting the server that
holds the information on the particular terms of the query

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 93

Query Load Balancing
The major issue for query throughput, in fact, is an
uneven distribution of the load across the servers

The Figure below illustrates the average busy load for
each of the 8 servers of a document partitioned system
(left) and a pipelined term partitioned system (right)

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 94

Query Load Balancing
In the term partitioned system, there is an evident lack
of balance in the distribution on the load of the servers

To overcome this issue, one could take into account estimates of
the index access patterns to distribute the query load

In the case of partitioning documents randomly across
servers, all servers receive all queries

This in principle is a perfect load balance

However, the amount of work per server is not necessarily the
same, and then a random partitioning does not guarantee an
even query load balance

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 95

Query Load Balancing
For a term partitioned system, Moffat et al show that it
is possible to balance the load

Their approach exploit information on the frequencies of terms
occurring in the queries and postings list replication

They abstract the problem of partitioning the vocabulary in a term
partitioned system as a bin-packing problem

Each bin represents a partition and each term represents an
object to put in the bin

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 96

http://portal.acm.org/citation.cfm?id=1148232

Dependability
Query processors cannot fulfill client requests without
the processing capacity and the data they store

Also, due to the large amount of data they handle, it is
challenging to determine good replication schemes

Having all query processors storing the same data, the
system achieves the best availability level possible

This is likely to impose a significant and unnecessary
overhead, also reducing the total storage capacity

Thus, an open question is how to replicate data with
minimal storage overhead

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 97

Dependability
Multiple query processors enable a more dependable
system, as well as a more scalable solution

Availability for caches can also refers to failures of
query processors

If a query processor is temporarily unavailable, we can serve
cached results during the period of the outage

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 98

Dependability
Consistency is also often a very important goal for
online systems

There are techniques from distributed algorithms to
implement fault-tolerant services

The main challenge is to apply such techniques on
large-scale systems

It is also possible to use techniques that enable stale
results thus implementing weaker consistency
constraints

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 99

Dependability
A system design can consider a caching system as
either an alternative or a complement to replication

Upon query processor failures, the system returns cached results

An important question is how to design such a cache
system to be effective in coping with failures

Of course, a good design has also to consider the
primary goals of a cache system, which are:

reducing the average response time,

balance the load on the query processing servers, and

good bandwidth utilization

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 100

Communication
Distributed systems need to consider the overheads
imposed by the communication of its components

A term partitioned system using pipelining routes
partially resolved queries among servers

If the index includes the position of terms, the
communication overhead between servers increases

In such a case, the position information needs to be
compressed efficiently

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 101

Communication
In the case of a document partitioned system, query
processors send the query results to the coordinator

The coordinator may become a bottleneck while merging the
results from a large number of query processors

In such a case, it is possible to use a hierarchy of
coordinators

Furthermore, the response time depends on the
response time of its slowest component

This constraint depends on the disk caching
mechanism, the amount of memory, and the number of
servers

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 102

Communication
When multiple processors participate in the resolution
of a query, the communication latency can be significant

One way to mitigate this problem is to adopt an
incremental query processing approach

In this approach, the faster query processors provide an initial set
of results

Other remote query processors provide additional results with a
higher latency and users continuously obtain new results

However, more relevant results may appear later due to
latencies

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 103

Communication
Sometimes, the query processing involves adaptation of
the search results according to the interests of the user

Each user profile represents a state, which must be the
latest state and be consistent across replicas

Alternatively, a system can implement personalization
as a thin layer on the client-side

However, this last approach restricts the user to always
using the same terminal

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 104

Communication
Since user behavior changes over time, one should be
able to update the model accordingly

A simple approach is to schedule updates of the model
at fixed time intervals

However, a higher update frequency implies a higher
network traffic and a lower query processing capacity

Ideally, the system communication adapts to variations
of the underlying model whenever they occur

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 105

Communication
In addition, in a large IR system, there are hundreds of
thousands to millions of queries per day

Logging these actions and using them effectively is
challenging because the volume of data is extremely
high

In fact, moving this data from server to server is rarely a
possibility due to bandwidth limitations

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 106

External Factors
The design of large IR systems includes users in
different ways

Similarly, the design and analysis of caching policies
require information on users, or a user model

User behavior, however, is an external factor, which
cannot be controlled by the IR system

For example, the topics the users search for have slowly changed
in the past

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 107

External Factors
A change in user behavior can also affect the
performance of caching policies

Sometimes it is necessary to provide mechanisms that enable
automatic reconfiguration of the system

The challenge would then be to determine online when
users change their behavior significantly

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 108

Web Issues
The distributed techniques can be used directly in the
Web, as if it were any other large document collection

This is the approach currently taken by most of the popular Web
search services

Alternatively, we can spread the work of collecting,
organizing, and searching all of the documents

This is the approach taken by the Harvest system and
newer distributed Web search architectures

Harvest comprises a number of components for gathering,
summarizing, replicating, distributing, and searching documents

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 109

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.334

Web Issues
Queries are processed by brokers , which collect and
refine information from gatherers and other brokers

The information at a particular broker is typically related
to a restricted set of topics

This allows users to direct their queries to the most
appropriate brokers

A central broker registry helps users find the best
brokers for their queries

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 110

Federated Search

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 111

Federated Search
A federated search system relies on a collection of
heterogeneous servers to answer user queries

The critical engineering issues are basically three:

defining the search protocol for transmitting requests and results,

designing a server that can efficiently accept a request and
initiate a thread to service, and the request

designing a broker that can submit asynchronous search
requests to multiple servers and combine the results

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 112

Federated Search
The algorithmic issues are also three:

how to distribute documents across the distributed search servers

how to select which servers should receive a particular query

how to process the queries and combine the results from the
different servers

The search protocol specifies:

the syntax and semantics of messages transmitted between
clients and servers

the sequence of messages required to establish a connection
and carry out a search operation

the underlying transport mechanism for sending messages

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 113

Federated Search
At a minimum, the protocol should allow a client to:

obtain information about a search sever, e.g., a list of databases
available for searching at the server

submit a search request for one or more databases using a well
defined query language

receive search results in a well defined format

retrieve items identified in the search results

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 114

Federated Search
For closed systems, a custom search protocol may be
most appropriate

Alternatively, a standard protocol may be used, allowing
the system to interoperate with other search servers:

Z39.50 is the standard for client/server information retrieval

STARTS, Stanford Proposal for Internet Meta-Searching

STARTS included features intended to solve the related
algorithmic issues, such as merging results from
heterogeneous sources

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 115

http://cypress.dev.oclc.org:12345/~rrl/docs/dublincoreandz3950.html
http://portal.acm.org/citation.cfm?id=253262.253299

Query Processing
Query processing in a federated IR system proceeds as
follows:

1. select the collections to search

2. distribute the query to the selected collections

3. process the query at each of the distributed collections in parallel

4. combine the partial results into a final result

Step 1 may be eliminated if the query is always
broadcast to every document collection in the system

The participating servers evaluates the query on the
selected collections using its own local search algorithm

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 116

How to merge the results?
First, if the query is Boolean and the servers return
Boolean result sets, all of the sets are simply joined

If the query involves free-text ranking, a number of
techniques are available

The simplest approach is to combine the ranked hit-lists
using round robin interleaving

An improvement on this process is to merge the hit-lists
based on their relevance scores

Unless proper global term statistics are used to compute the
document scores, we may get incorrect results

If the distributed document collections are semantically
partitioned, then re-ranking must be performed

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 117

How to merge the results?
Callan proposes re-ranking documents by weighting
document scores based on their collection similarity
computed during the source selection step

The weight for a collection is computed as

w = 1+ | C |×
s − s̄

s̄

where

| C | is the number of collections searched

s is the collection’s score

s̄ is the mean of the collection scores

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 118

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.8448

How to merge the results?
The most accurate technique for merging ranked
hit-lists is to use accurate global term statistics

The broker can include these statistics in the query
when it distributes the query to the remote search
servers

If a collection index is unavailable, query distribution
can proceed in two rounds of communication:

In the first round, the broker distributes the query and gathers
collection statistics from each of the search servers

Then, these statistics are combined by the broker and distributed
back to the search servers

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 119

How to merge the results?
The search protocol can require that search servers
return global and per-document query term statistics

The broker can then re-rank documents using the query
term statistics and a ranking algorithm of its choice

The end result is a hit-list that contain documents in the
same order as if all of the documents had been indexed
in a single collection

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 120

Retrieval in
Peer-to-Peer Networks

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 121

Retrieval in Peer-to-Peer Networks
A peer or node is an arbitrary computer which, when
connected to the Internet, joins a peer-to-peer
network , conforming a peer-to-peer (P2P) system

IR algorithms can take advantage of resources
distributed across Internet, in particular file sharing

The first file sharing systems, such as Napster,
Gnutella, and Freenet, differed in how the data of the
peers was found

Napster was the most efficient system using a central index
server, but was also the one most vulnerable to attacks

Gnutella, on the other hand, used a flooding query model that
was inefficient, but highly fault tolerant

Freenet used a more efficient heuristic, but did not guarantee that
an existing file would be found

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 122

Retrieval in Peer-to-Peer Networks
The solution to this problem was a distributed hash
table (DHT)

DHTs are a middleware layer to provide the following
characteristics:

Decentralization : the peers collectively form the system without
any central coordination

Scalability : the system functions efficiently even with millions of
peers, as is the case of Internet

Fault tolerance : the system is as reliable as possible, even with
peers continuously joining, leaving, and failing

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 123

Retrieval in Peer-to-Peer Networks
To achieve these goals, one of the peers can coordinate
with only a few other peers in the network

commonly Θ(log n) for a system with currently n peers

This limits the amount of work needed when a peer
joins or leaves the network

In addition, DHTs must deal with problems such as load
balancing, data integrity, and performance

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 124

Retrieval in Peer-to-Peer Networks
DHTs are based in an abstract numerical key space,
where the keys identify any resource

Then, using a partitioning scheme, the ownership of the
key space is divided among the participating peers

An overlay network then connects the peers, allowing
them to find the owner of any given key in the key space

The first four DHTs were introduced more or less at the
same time:

CAN (for content addressable network)

Chord

Pastry

Tapestry

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 125

http://portal.acm.org/citation.cfm?id=383072
http://portal.acm.org/citation.cfm?id=383071
http://portal.acm.org/citation.cfm?id=646591.697650
file:portal.acm.org/citation.cfm?id=894116

Retrieval in Peer-to-Peer Networks
The partitioning scheme usually employs some variant
of consistent hashing

Consistent hashing defines a distance function δ among keys

Then, a peer identified with the ID (key) i will own all the
keys for which i is the closest key under δ

Consistent hashing has the essential property that
removing or adding a peer changes only the set of keys
owned by the peers with adjacent IDs

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 126

Retrieval in Peer-to-Peer Networks
The overlay network is based on a routing table where
each peer maintains the set of neighbouring peers

The main property is that each peer owns a particular
key k or has a neighbor that is closer to the owner of k

A simple greedy algorithm forwards messages to the
neighbor peer whose ID is closest to k

This algorithms guarantees finding k in time bounded
by the diameter of the overlay network, but it is not
necessarily optimal

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 127

Retrieval in Peer-to-Peer Networks
To store a document with given file name, we produce a
key k using a hashing function over the file name

Then we send a message (k, document) to the overall
system that will be routed through neighbor peers

This will be forwarded from peer to peer until it reaches
the single peer responsible for the key k

In this peer, which is specified by the partitioning of the
key space, the tuple (k, document) is finally stored

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 128

Retrieval in Peer-to-Peer Networks
To retrieve the document we reverse the process:

The peer finds k by hashing the file name and sending a query to
find the data associated with k in the network

The message will again be routed through the overlay
network to the peer responsible for k

Then, the peer will send back directly the data stored
associated with that key

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 129

Retrieval in Peer-to-Peer Networks
The main retrieval drawback is that DHTs only support
exact-match search, rather than keyword search

P2P-IR, and in particular full text retrieval, has been
investigated for various P2P network organizations

Search techniques in unstructured networks are usually based on
broadcast, thus suffering from high bandwidth consumption

Hence approaches based on random walks have been
proposed to reduce the traffic in a P2P network

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 130

Retrieval in Peer-to-Peer Networks
Peer-level document collection descriptions can be
used to identify nodes that can process the query

These descriptions guide the peer-selection process
and the document retrieval from the selected peers

Resources are ranked by their likelihood to return
relevant documents and top-ranked resources are
selected

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 131

Retrieval in Peer-to-Peer Networks
The federated search system described by Lu et al
uses a hierarchical P2P network organization

Minerva maintains a global index with peer selection
statistics

Minerva∞ is a P2P-IR system that is based on an order
preserving DHT

It relies on Term Index Networks (TINs) storing the global
inverted list of a term on several peers

The query is processed by a parallel top-k algorithm involving
nodes within TINs and across TINs

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 132

http://portal.acm.org/citation.cfm?id=956863.956903
http://portal.acm.org/citation.cfm?id=1076049
http://portal.acm.org/citation.cfm?id=1515890.1515894

Retrieval in Peer-to-Peer Networks
Document-level indexing approaches can potentially
deliver higher retrieval quality

On the other side, such approaches typically distribute
the complete index in a structured P2P network

Thus, it requires higher index maintenance costs

This approach faces significant scalability problems
caused by the high traffic costs required for intersecting
large posting lists

Thus, a number of solutions have been suggested to
resolve this issue

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 133

Retrieval in Peer-to-Peer Networks
Chen et al report 73% traffic reduction by applying an
optimal Bloom filter for DHT-based full text retrieval

However, Zhang et al shows that single-term indexing is
practically not scalable for Web sizes

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 134

http://portal.acm.org/citation.cfm?id=1367497.1367631
http://portal.acm.org/citation.cfm?id=1100599

Retrieval in Peer-to-Peer Networks
Top-k query processing has been employed to solve the
problem of extensive bandwidth consumption

The main idea is to terminate the processing of a query
when the top-k results obtained so far are correct

Early termination is particularly beneficial for distributed
intersections of posting lists

Top-k query processing algorithms tailored for P2P
networks include:

Distributed Pruning Protocol (DPP)

Three-Phase Uniform Threshold (TPUT) algorithm

A family of distributed threshold algorithms (DTA) with Bloom filter
optimizations

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 135

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.6196
http://portal.acm.org/citation.cfm?id=1011798
http://portal.acm.org/citation.cfm?id=1411944

Retrieval in Peer-to-Peer Networks
Michel et al proposed a family of approximate top-k
query processing algorithms called KLEE

With small penalties on the top-k result quality, KLEE algorithms
significantly reduce bandwidth consumption

The approach by Thau Loo et al suggests to
complement index-based query processing with
broadcasting

The authors suggest using flooding mechanisms to answer
popular queries, and resort to indexing only for rare queries

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 136

http://portal.acm.org/citation.cfm?id=1083592.1083667
http://portal.acm.org/citation.cfm?id=1316689.1316728

Retrieval in Peer-to-Peer Networks
A hybrid index partitioning scheme for keyword search
is proposed in Shi et al

All peers are clustered in groups and the indexing
technique employs term partitioning within the groups

Each query has to be broadcast to all the groups but
only several nodes do the actual processing

Since the document collection size within a group can
be bounded, this solution reduces latency and

Further, it efficiently distributes the bandwidth
consumption

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 137

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.7391

Retrieval in Peer-to-Peer Networks
Nguyen et al suggest an adaptive scheme aiming at
balancing the costs between indexing and query
processing

For an individual peer, groups of local documents are
created and represented as term sets

Thus, such a group-level indexing strategy is a
generalization of both indexing techniques:

peer-level (one group per peer)

document-level (one document per group)

The authors propose a probabilistic model to estimate
the cost associated with a given number of groups

Parallel and Distributed IR, Modern Information Retrieval, Addison Wesley, 2010 – p. 138

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.143.7915

	Introduction
	A Taxonomy
	Data Partitioning
	Data Partitioning
	Data Partitioning
	Data Partitioning
	Collection Partitioning
	Collection Partitioning
	Collection Partitioning
	Collection Partitioning
	Collection Selection
	Collection Selection
	Collection Selection
	Collection Selection
	Inverted Index Partitioning
	Logical Document Partitioning
	Logical Document Partitioning
	Logical Document Partitioning
	Logical Document Partitioning
	Physical Document Partitioning
	Physical Document Partitioning
	Physical Document Partitioning
	Comparison
	Term Partitioning
	Term Partitioning
	Overall Comparison
	Overall Comparison
	Suffix Arrays
	Suffix Arrays
	Suffix Arrays
	Signature Files
	Signature Files
	Parallel Computing
	Parallel Computing
	Parallel Computing
	Parallel Computing
	Performance Measures
	Performance Measures
	Performance Measures
	Performance Measures
	Parallel IR
	Parallel IR
	Parallel IR on MIMD Architectures
	Parallel IR on MIMD Architectures
	Parallel IR on MIMD Architectures
	Parallel IR on MIMD Architectures
	Parallel IR on MIMD Architectures
	Parallel IR on SIMD Architectures
	Inverted Indexes
	Inverted Indexes
	Inverted Indexes
	Inverted Indexes
	Inverted Indexes
	Inverted Indexes
	Inverted Indexes
	Inverted Indexes
	Inverted Indexes
	Inverted Indexes
	Cluster-based IR
	Cluster-based IR
	Cluster-based IR
	Cluster-based IR
	Cluster-based IR
	Distributed Computing
	Distributed Computing
	Distributed Computing
	Distributed Computing
	Goals and Key Issues
	Goals and Key Issues
	Goals and Key Issues
	Dependability
	Communication
	Communication
	Indexing
	Indexing
	Indexing
	Dependability
	Dependability
	Communication
	External Factors
	External Factors
	External Factors
	Query Processing
	Query Processing
	Query Processing
	Query Processing
	Query Processing
	Query Load Balancing
	Query Load Balancing
	Query Load Balancing
	Dependability
	Dependability
	Dependability
	Dependability
	Communication
	Communication
	Communication
	Communication
	Communication
	Communication
	External Factors
	External Factors
	Web Issues
	Web Issues
	Federated Search
	Federated Search
	Federated Search
	Federated Search
	Query Processing
	How to merge the results?
	How to merge the results?
	How to merge the results?
	How to merge the results?
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks
	Retrieval in Peer-to-Peer Networks

