Modern Information Retrieval

Chapter 8

Text Classification

Introduction A Characterization of Text Classification Unsupervised Algorithms Supervised Algorithms Feature Selection or Dimensionality Reduction Evaluation Metrics Organizing the Classes - Taxonomies

Introduction

- Ancient problem for librarians
 - storing documents for later retrieval
- With larger collections, need to label the documents
 - assign an unique identifier to each document
 - does not allow findings documents on a subject or topic
 - To allow searching documents on a subject or topic
 - group documents by common topics
 - name these groups with meaningful labels
 - each labeled group is call a class

Introduction

Text classification

- process of associating documents with classes
- if classes are referred to as categories
 - process is called text categorization
- we consider classification and categorization the same process

Related problem: partition docs into subsets, no labels

- since each subset has no label, it is not a class
- instead, each subset is called a **cluster**
- the partitioning process is called clustering
 - we consider clustering as a simpler variant of text classification

Introduction

- Text classification
 - a means to organize information
- Consider a large engineering company
 - thousands of documents are produced
 - if properly organized, they can be used for business decisions
 - to organize large document collection, text classification is used
 - **Text classification**
 - key technology in modern enterprises

Machine Learning

Machine Learning

- algorithms that learn patterns in the data
- patterns learned allow making predictions relative to new data
- Iearning algorithms use training data and can be of three types
 - supervised learning
 - unsupervised learning
 - semi-supervised learning

Machine Learning

Supervised learning

- training data provided as input
- training data: classes for input documents

Unsupervised learning

- no training data is provided
- Examples:
 - neural network models
 - independent component analysis
 - clustering

Semi-supervised learning

- small training data
- combined with larger amount of unlabeled data

The Text Classification Problem

A classifier can be formally defined

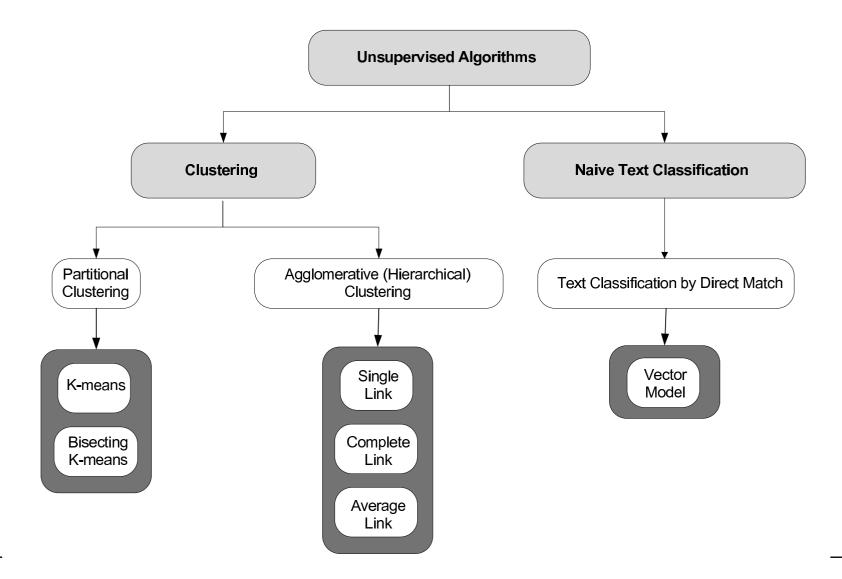
- $\square \mathcal{D}$: a collection of documents
- $\mathcal{C} = \{c_1, c_2, \dots, c_L\}$: a set of *L* classes with their respective labels
- a text classifier is a binary function $\mathcal{F} : \mathcal{D} \times \mathcal{C} \to \{0, 1\}$, which assigns to each pair $[d_j, c_p]$, $d_j \in \mathcal{D}$ and $c_p \in \mathcal{C}$, a value of
 - **1**, if d_j is a member of class c_p
 - **•** 0, if d_j is not a member of class c_p
- Broad definition, admits supervised and unsupervised algorithms
 - For high accuracy, use supervised algorithm
 - **multi-label**: one or more labels are assigned to each document
 - **single-label**: a single class is assigned to each document

The Text Classification Problem

Classification function \mathcal{F}

- defined as binary function of document-class pair $[d_j, c_p]$
- **a** can be modified to compute degree of membership of d_j in c_p
 - documents as *candidates* for membership in class c_p
 - a candidates sorted by decreasing values of $\mathcal{F}(d_j, c_p)$

Unsupervised algorithms we discuss

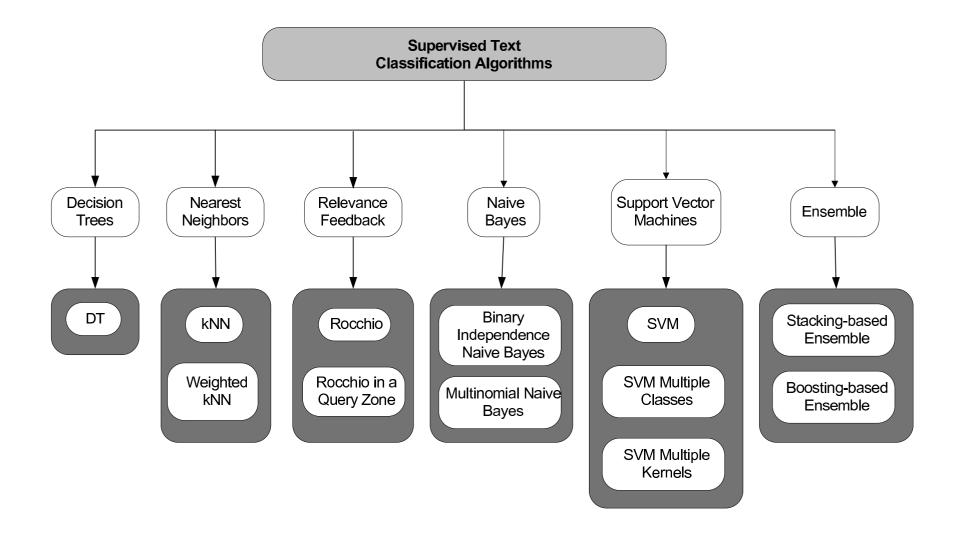


Supervised algorithms depend on a training set

- set of classes with examples of documents for each class
- examples determined by human specialists
- training set used to learn a classification function

- The larger the number of training examples, the better is the fine tuning of the classifier
 - **Overfitting:** classifier becomes specific to the training examples
 - To evaluate the classifier
 - use a set of <u>unseen</u> objects
 - commonly referred to as test set

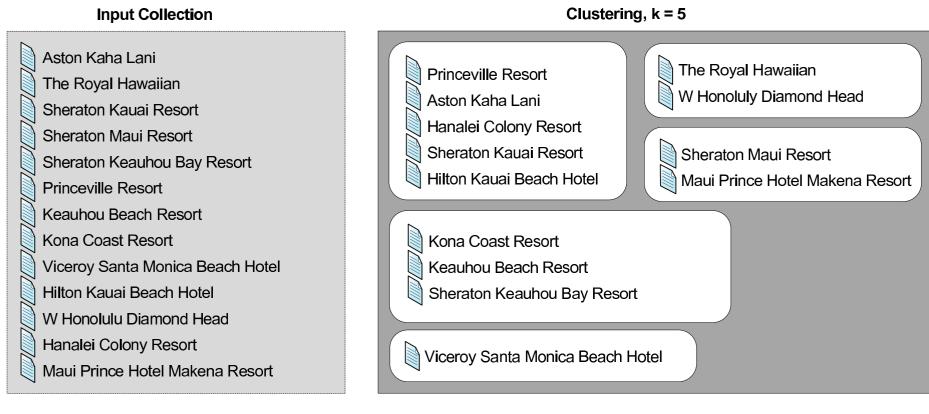
Supervised classification algorithms we discuss



Input data

- set of documents to classify
- not even class labels are provided
- Task of the classifier
 - separate documents into subsets (clusters) automatically
 - separating procedure is called clustering

Clustering of hotel Web pages in Hawaii



(a)

Input Collection

To obtain classes, assign labels to clusters

Aston Kaha Lani Oahu Kauai The Royal Hawaiian Princeville Resort The Royal Hawaiian W Honoluly Diamond Head Aston Kaha Lani Sheraton Kauai Resort Hanalei Colony Resort Sheraton Maui Resort Maui Sheraton Kauai Resort Sheraton Maui Resort Sheraton Keauhou Bay Resort Hilton Kauai Beach Hotel Maui Prince Hotel Makena Resort **Princeville Resort** Keauhou Beach Resort Hawaii Kona Coast Resort Kona Coast Resort Island Viceroy Santa Monica Beach Hotel Keauhou Beach Resort Hilton Kauai Beach Hotel Sheraton Keauhou Bay Resort W Honolulu Diamond Head Other Hanalei Colony Resort Viceroy Santa Monica Beach Hotel Maui Prince Hotel Makena Resort

Text Classification, 5 Classes

- Class labels can be generated automatically
 - but are different from labels specified by humans
 - usually, of much lower quality
 - thus, solving the whole classification problem with no human intervention is hard
- If class labels are provided, clustering is more effective

K-means Clustering

- **Input:** number *K* of clusters to be generated
- Each cluster represented by its documents **centroid**
- K-Means algorithm:
 - partition docs among the K clusters
 - each document assigned to cluster with closest centroid
 - recompute centroids
 - repeat process until centroids do not change

K-means in Batch Mode

- Batch mode: all documents classified before recomputing centroids
- Let document d_j be represented as vector $\vec{d_j}$

$$\vec{d_j} = (w_{1,j}, w_{2,j}, \dots, w_{t,j})$$

where

- \blacksquare $w_{i,j}$: weight of term k_i in document d_j
- *t*: size of the vocabulary

K-means in Batch Mode

1. Initial step.

select K docs randomly as centroids (of the K clusters)

$$\vec{\bigtriangleup}_p = \vec{d_j}$$

2. Assignment Step.

assign each document to cluster with closest centroid
distance function computed as inverse of the similarity
similarity between d_j and c_p, use cosine formula

$$sim(d_j, c_p) = \frac{\vec{\bigtriangleup}_p \bullet \vec{d_j}}{|\vec{\bigtriangleup}_p| \times |\vec{d_j}|}$$

K-means in Batch Mode

3. Update Step.

recompute centroids of each cluster c_p

$$\vec{\triangle}_p = \frac{1}{size(c_p)} \sum_{\vec{d}_j \in c_p} \vec{d}_j$$

4. Final Step.

repeat assignment and update steps until no centroid changes

K-means Online

Recompute centroids after classification of each individual doc

1. Initial Step.

select K documents randomly

use them as initial centroids

2. Assignment Step.

For each document d_j repeat

- assign document d_j to the cluster with closest centroid
- recompute the centroid of that cluster to include d_j
- 3. **Final Step.** Repeat assignment step until no centroid changes.
- It is argued that online K-means works better than batch K-means

Bisecting K-means

Algorithm

- build a hierarchy of clusters
- at each step, branch into two clusters
- Apply K-means repeatedly, with K=2
- 1. Initial Step. assign all documents to a single cluster

2. Split Step.

- select largest cluster
- apply K-means to it, with K = 2

3. Selection Step.

- if stop criteria satisfied (e.g., no cluster larger than pre-defined size), stop execution
- go back to Split Step

- <u>Goal:</u> to create a hierarchy of clusters by either
 - decomposing a large cluster into smaller ones, or
 - agglomerating previously defined clusters into larger ones

General hierarchical clustering algorithm

1. Input

a set of N documents to be clustered

an $N \times N$ similarity (distance) matrix

- 2. Assign each document to its own cluster
 - N clusters are produced, containing one document each
- 3. Find the two closest clusters
 - merge them into a single cluster
 - number of clusters reduced to N-1
- 4. Recompute distances between new cluster and each old cluster
- 5. Repeat steps 3 and 4 until one single cluster of size N is produced

- Step 4 introduces notion of similarity or distance between two clusters
- Method used for computing cluster distances defines three variants of the algorithm
 - single-link
 - complete-link
 - average-link

dist(c_p, c_r): distance between two clusters c_p and c_r
 dist(d_i, d_l): distance between docs d_i and d_l

Single-Link Algorithm

$$dist(c_p, c_r) = \min_{\forall \ d_j \in c_p, d_l \in c_r} dist(d_j, d_l)$$

Complete-Link Algorithm

$$dist(c_p, c_r) = \max_{\forall \ d_j \in c_p, d_l \in c_r} dist(d_j, d_l)$$

Average-Link Algorithm

$$dist(c_p, c_r) = \frac{1}{n_p + n_r} \sum_{d_j \in c_p} \sum_{d_l \in c_r} dist(d_j, d_l)$$

Naive Text Classification

Classes and their labels are given as input

no training examples

Naive Classification

- Input:
 - collection \mathcal{D} of documents
 - set $C = \{c_1, c_2, \dots, c_L\}$ of L classes and their labels
 - Algorithm: associate one or more classes of $\mathcal C$ with each doc in $\mathcal D$
 - match document terms to class labels
 - permit partial matches
 - improve coverage by defining alternative class labels i.e., synonyms

Naive Text Classification

Text Classification by Direct Match

1. Input:

 \blacksquare \mathcal{D} : collection of documents to classify

 $\mathcal{C} = \{c_1, c_2, \dots, c_L\}$: set of *L* classes with their labels

2. Represent

each document d_j by a weighted vector $\vec{d_j}$

each class c_p by a weighted vector \vec{c}_p (use the labels)

3. For each document $d_j \in \mathcal{D}$ do

For the classes $c_p \in \mathcal{C}$ whose labels contain terms of d_j

for each pair $[d_j, c_p]$ retrieved, compute vector ranking as

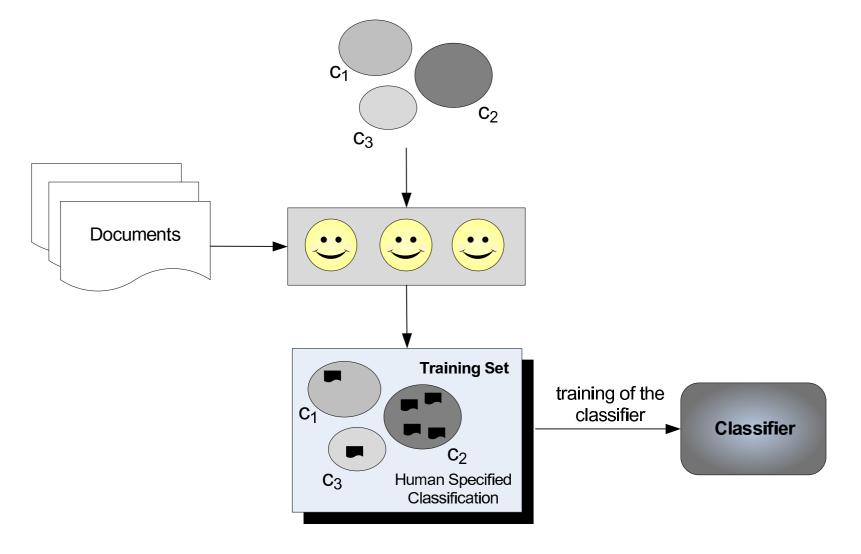
$$sim(d_j, c_p) = \frac{\vec{d_j} \bullet \vec{c_p}}{|\vec{d_j}| \times |\vec{c_p}|}$$

associate d_j classes c_p with highest values of $sim(d_j, c_p)$

Depend on a training set

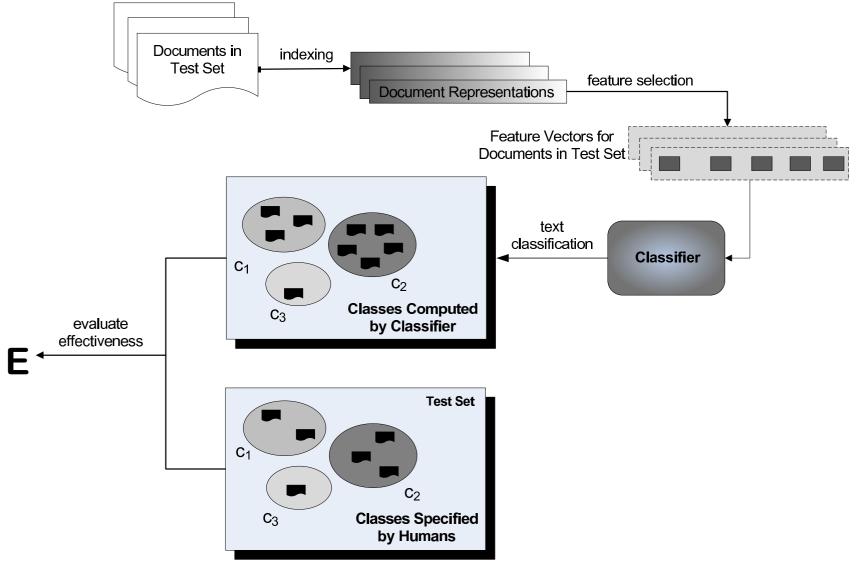
 $\square \mathcal{D}_t \subset \mathcal{D}: \text{ subset of training documents}$

T : *D_t* × *C* → {0,1}: training set function
Assigns to each pair [*d_j*, *c_p*], *d_j* ∈ *D_t* and *c_p* ∈ *C* a value of
1, if *d_j* ∈ *c_p*, according to judgement of human specialists
0, if *d_j* ∉ *c_p*, according to judgement of human specialists
Training set function *T* is used to fine tune the classifier



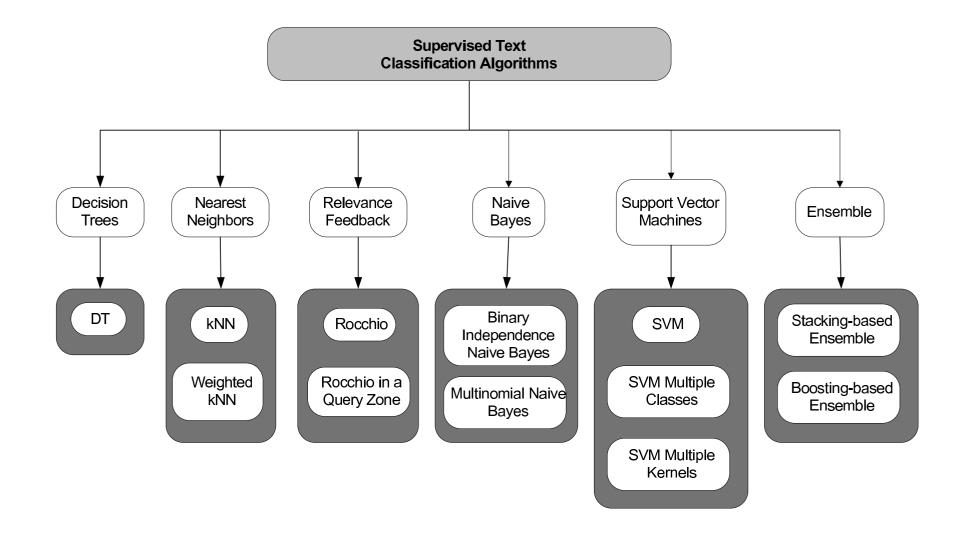
- To evaluate the classifier, use a test set
 - subset of docs with no intersection with training set
 - classes to documents determined by human specialists
- Evaluation is done in a two steps process
 - use classifier to assign classes to documents in test set
 - compare classes assigned by classifier with those specified by human specialists

Classification and evaluation processes



Text Classification, Modern Information Retrieval, Addison Wesley, 2009 - p. 34

- Once classifier has been trained and validated
 - can be used to classify new and unseen documents
 - if classifier is well tuned, classification is highly effective



Decision Trees

Training set used to build classification rules

- organized as paths in a tree
- tree paths used to classify documents outside training set
- rules, amenable to human interpretation, facilitate interpretation of results

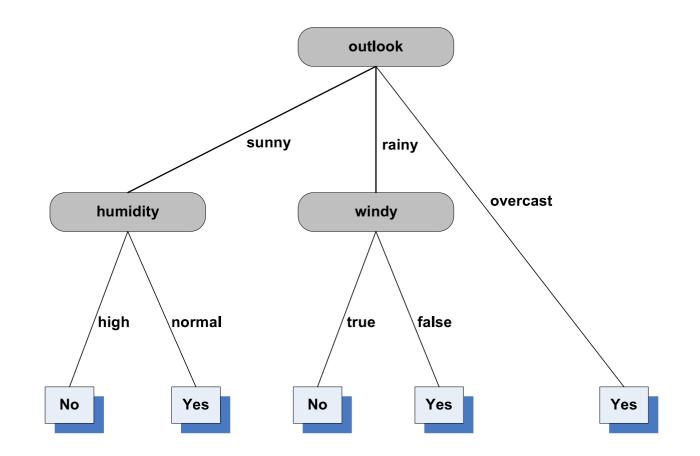
Consider the small relational database below

	ld	Play	Outlook	Temperature	Humidity	Windy
Training set	1	yes	rainy	cool	normal	false
	2	no	rainy	cool	normal	true
	3	yes	overcast	hot	high	false
	4	no	sunny	mild	high	false
	5	yes	rainy	cool	normal	false
	6	yes	sunny	cool	normal	false
	7	yes	rainy	cool	normal	false
	8	yes	sunny	hot	normal	false
	9	yes	overcast	mild	high	true
	10	no	sunny	mild	high	true
Test Instance	11	?	sunny	cool	high	false

Decision Tree (DT) allows predicting values of a given attribute

DT to predict values of attribute Play

Given: Outlook, Humidity, Windy



- Internal nodes \rightarrow attribute names
- Edges \rightarrow attribute values
- Traversal of $DT \rightarrow value$ for attribute "Play".

 $(Outlook = sunny) \land (Humidity = high) \rightarrow (Play = no)$

	ld	Play	Outlook	Temperature	Humidity	Windy
Test Instance	11	?	sunny	cool	high	false

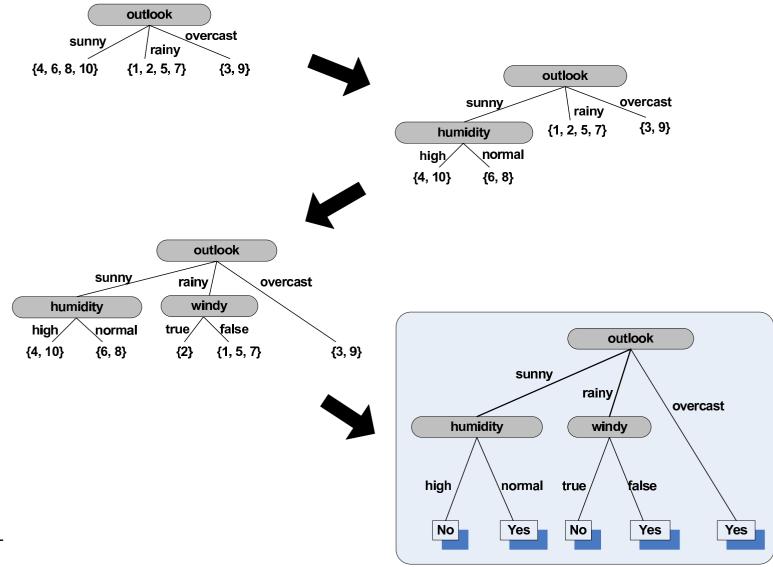
- Predictions based on seen instances
- New instance that violates seen patterns will lead to erroneous prediction
- Example database works as training set for building the decision tree

The Splitting Process

- DT for a database can be built using recursive splitting strategy
- Goal: build DT for attribute Play
 - select one of the attributes, other than Play, as root
 - use attribute values to split tuples into subsets
 - for each subset of tuples, select a second splitting attribute
 - repeat

The Splitting Process

Step by step splitting process



Text Classification, Modern Information Retrieval, Addison Wesley, 2009 - p. 43

The Splitting Process

- Strongly affected by order of split attributes
 - depending on order, tree might become unbalanced
- Balanced or near-balanced trees are more efficient for predicting attribute values
- Rule of thumb: select attributes that reduce average path length

For document classification

- with each internal node associate an index term
- with each leave associate a document class
- with the edges associate binary predicates that indicate presence/absence of index term

- V: a set of nodes
 - Tree T = (V, E, r): an acyclic graph on V where
 - $E \subseteq V \times V$ is the set of edges
 - Let $edge(v_i, v_j) \in E$
 - \bullet v_i is the father node
 - v_j is the child node
 - $I \in V$ is called the root of T
 - I: set of all internal nodes
 - \blacksquare \overline{I} : set of all leaf nodes

Define

 $\blacksquare K = \{k_1, k_2, \dots, k_t\}: \text{ set of index terms of a doc collection}$

C: set of all classes

P: set of logical predicates on the index terms

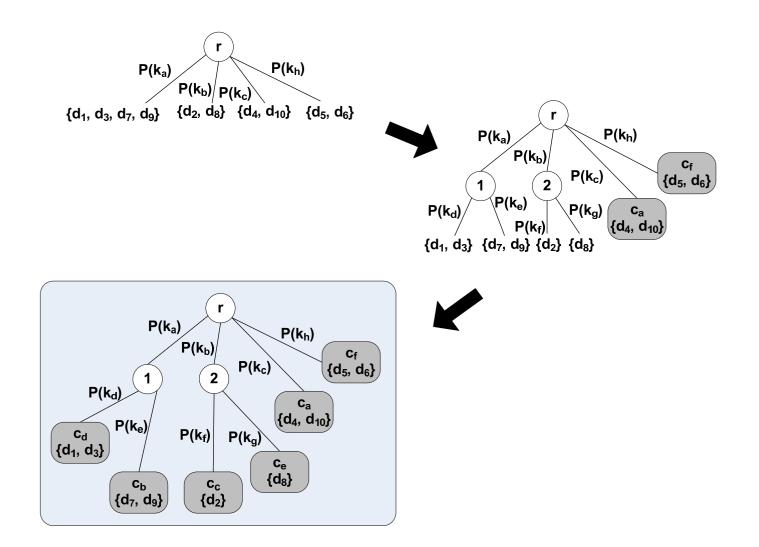
 $DT = (V, E; r; l_I, l_L, l_E)$: a six-tuple where

(V; E; r): a tree whose root is r

- If $l_I : I \to K$: a function that associates with each internal node of the tree one or more index terms
- l_L : $\overline{I} \to C$: a function that associates with each non-internal (leaf) node a class $c_p \in C$
- If $l_E: E \to P$: a function that associates with each edge of the tree a logical predicate from P

- Decision tree model for class c_p can be built using a recursive splitting strategy
 - **first step:** associate all documents with the root
 - second step: select index terms that provide a good separation of the documents
 - **third step:** repeat until tree complete

Terms k_a , k_b , k_c , and k_h have been selected for first split



- To select splitting terms use
 - information gain or entropy
- Selection of terms with high information gain tends to
 - increase number of branches at a given level, and
 - reduce number of documents in each resultant subset
 - yield smaller and less complex decision trees

Problem: missing or unknown values

- appear when document to be classified does not contain some terms used to build the DT
- not clear which branch of the tree should be traversed

Solution:

- delay construction of tree until new document is presented for classification
- build tree based on features presented in this document, avoiding the problem

The kNN Classifier

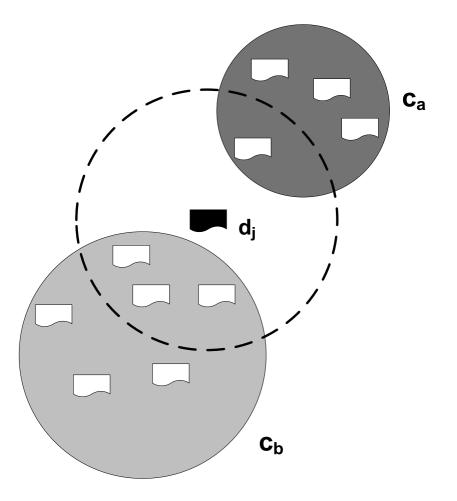
The *k*NN Classifier

*k*NN (*k*-nearest neighbor): **on-demand** or **lazy classifier**

- lazy classifiers do not build a classification model a priori
- classification done when new document d_j is presented
- based on the classes of the k nearest neighbors of d_j
 - determine the k nearest neighbors of d_j in a training set
 - use the classes of these neighbors to determine a class for d_j

The *k*NN Classifier

An example of a 4-NN classification process



kNN: to each document-class pair $[d_j, c_p]$ assign a score

$$S_{d_j,c_p} = \sum_{d_t \in N_k(d_j)} similarity(d_j, d_t) \times \mathcal{T}(d_t, c_p)$$

where

- $N_k(d_j)$: set of the k nearest neighbors of d_j in training set
- similarity (d_j, d_t) : cosine formula of Vector model (for instance)
- $\mathcal{T}(d_t, c_p)$: training set function returns
 - I, if d_t belongs to class c_p
 - 0, otherwise

Classifier assigns to d_j class(es) c_p with highest score(s)

Problem with *k*NN: performance

- classifier has to compute distances between document to be classified and all training documents
- another issue is how to choose the "best" value for k

The Rocchio Classifier

The Rocchio Classifier

Rocchio relevance feedback

- modifies user query based on user feedback
- produces new query that better approximates the interest of the user
- can be adapted to text classification
- Interpret training set as feedback information
 - terms that belong to training docs of a given class c_p are said to provide positive feedback
 - terms that belong to training docs outside class c_p are said to provide negative feedback
- Feedback information summarized by a centroid vector
- New document classified by distance to centroid

Each document d_j represented as a weighted term vector $\vec{d_j}$

$$\vec{d_j} = (w_{1,j}, w_{2,j}, \dots, w_{t,j})$$

- $w_{i,j}$: weight of term k_i in document d_j
- *t*: size of the vocabulary

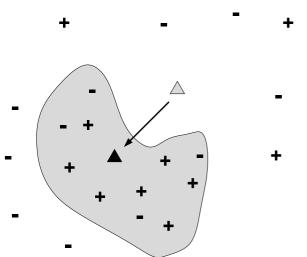
Rochio classifier for a class c_p is computed as a centroid given by

$$\vec{c}_p = \frac{\beta}{n_p} \sum_{d_j \in c_p} \vec{d}_j - \frac{\gamma}{N_t - n_p} \sum_{d_l \notin c_p} \vec{d}_l$$

where

- \blacksquare n_p : number of documents in class c_p
- I N_t : total number of documents in the training set
- terms of training docs in class c_p : positive weights
- **terms of docs outside class** c_p : negative weights

- plus signs: terms of training docs in class c_p
- minus signs: terms of training docs outside class c_p



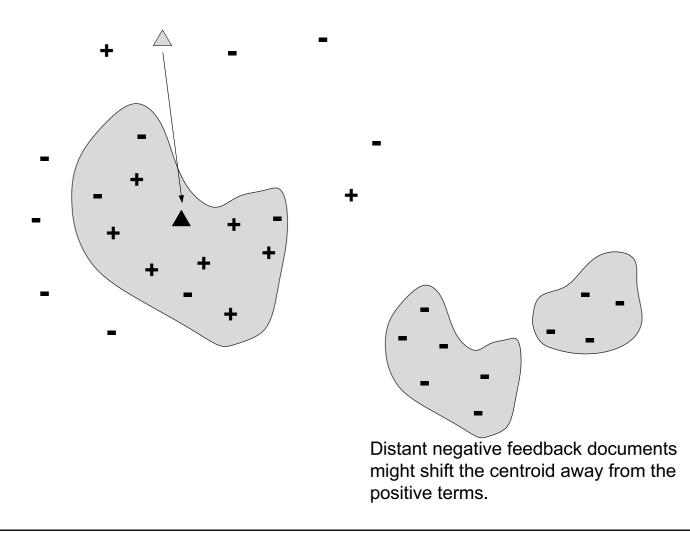
Classifier assigns to each document-class $[d_j, c_p]$ a score

$$S(d_j, c_p) = |\vec{c}_p - \vec{d}_j|$$

Classes with highest scores are assigned to d_j

Rocchio in a Query Zone

For specific domains, negative feedback might move the centroid away from the topic of interest



Rocchio in a Query Zone

- To reduce this effect, decrease number of negative feedback docs
 - use only most positive docs among all docs that provide negative feedback
 - these are usually referred to as near-positive documents
- Near-positive documents are selected as follows
 - \vec{c}_{p+} : centroid of the training documents that belong to class c_p
 - **I** training docs outside c_p : measure their distances to \vec{c}_{p+1}
 - smaller distances to centroid: near-positive documents

The Probabilistic Naive Bayes Classifier

Naive Bayes

Probabilistic classifiers

assign to each document-class pair $[d_j, c_p]$ a probability $P(c_p | \vec{d_j})$

$$P(c_p | \vec{d_j}) = \frac{P(c_p) \times P(\vec{d_j} | c_p)}{P(\vec{d_j})}$$

- $P(\vec{d_j})$: probability that randomly selected doc is $\vec{d_j}$
- $P(c_p)$: probability that randomly selected doc is in class c_p
- assign to new and unseen docs classes with highest probability estimates

- For efficiency, simplify computation of $P(\vec{d_j}|c_p)$
 - most common simplification: independence of index terms
 - classifiers are called Naive Bayes classifiers

Many variants of Naive Bayes classifiers

- best known is based on the classic probabilistic model
- doc d_j represented by vector of binary weights

$$\vec{d_j} = (w_{1,j}, w_{2,j}, \dots, w_{t,j})$$

$$w_{i,j} = \begin{cases} 1 & \text{if term } k_i \text{ occurs in document } d_j \\ 0 & \text{otherwise} \end{cases}$$

To each pair $[d_j, c_p]$, the classifier assigns a score

$$S(d_j, c_p) = \frac{P(c_p | \vec{d_j})}{P(\overline{c_p} | \vec{d_j})}$$

P(c_p|d_j): probability that document d_j belongs to class c_p
P(c̄_p|d_j): probability that document d_j does not belong to c_p
P(c_p|d_j) + P(c̄_p|d_j) = 1

Applying Bayes, we obtain

$$S(d_j, c_p) \sim \frac{P(\vec{d_j}|c_p)}{P(\vec{d_j}|\overline{c_p})}$$

Independence assumption

$$P(\vec{d_j}|c_p) = \prod_{k_i \in \vec{d_j}} P(k_i|c_p) \times \prod_{k_i \notin \vec{d_j}} P(\overline{k_i}|c_p)$$
$$P(\vec{d_j}|\overline{c_p}) = \prod_{k_i \in \vec{d_j}} P(k_i|\overline{c_p}) \times \prod_{k_i \notin \vec{d_j}} P(\overline{k_i}|\overline{c_p})$$

Equation for the score $S(d_j, c_p)$

$$S(d_j, c_p) \sim \sum_{k_i} w_{i,j} \left(\log \frac{p_{iP}}{1 - p_{iP}} + \log \frac{1 - q_{iP}}{q_{iP}} \right)$$
$$p_{iP} = P(k_i | c_p)$$
$$q_{iP} = P(k_i | \overline{c_p})$$

p_{iP}: probability that *k_i* belongs to doc randomly selected from *c_p q_{iP}*: probability that *k_i* belongs to doc randomly selected from outside *c_p*

Estimate p_{iP} and q_{iP} from set \mathcal{D}_t of training docs

$$p_{iP} = \frac{1 + \sum_{d_j \mid d_j \in \mathcal{D}_t \land k_i \in d_j} P(c_p \mid d_j)}{2 + \sum_{d_j \in \mathcal{D}_t} P(c_p \mid d_j)} = \frac{1 + n_{i,p}}{2 + n_p}$$
$$q_{iP} = \frac{1 + \sum_{d_j \mid d_j \in \mathcal{D}_t \land k_i \in d_j} P(\overline{c}_p \mid d_j)}{2 + \sum_{d_j \in \mathcal{D}_t} P(\overline{c}_p \mid d_j)} = \frac{1 + (n_i - n_{i,p})}{2 + (N_t - n_p)}$$

 $n_{i,p}$, n_i , n_p , N_t : see probabilistic model

 \square $P(c_p|d_j) \in \{0,1\}$ and $P(\overline{c}_p|d_j) \in \{0,1\}$: given by training set

Binary Independence Naive Bayes classifier

assigns to each doc d_j classes with higher $S(d_j, c_p)$ scores

Multinomial Naive Bayes Classifier

Naive Bayes classifier: term weights are binary
 Variant: consider term frequency inside docs
 To classify doc d_i in class c_p

$$P(c_p | \vec{d_j}) = \frac{P(c_p) \times P(\vec{d_j} | c_p)}{P(\vec{d_j})}$$

P $(\vec{d_j})$: prior document probability

 \blacksquare $P(c_p)$: prior class probability

$$P(c_p) = \frac{\sum_{d_j \in \mathcal{D}_t} P(c_p | d_j)}{N_t} = \frac{n_p}{N_t}$$

 $\blacksquare P(c_p|d_j) \in \{0,1\}: \text{ given by training set of size } N_t$

Multinomial Naive Bayes Classifier

Prior document probability given by

$$P(\vec{d_j}) = \sum_{p=1}^{L} P_{prior}(\vec{d_j}|c_p) \times P(c_p)$$

where

$$P_{prior}(\vec{d_j}|c_p) = \prod_{k_i \in \vec{d_j}} P(k_i|c_p) \times \prod_{k_i \notin \vec{d_j}} [1 - P(k_i|c_p)]$$
$$P(k_i|c_p) = \frac{1 + \sum_{d_j \mid d_j \in \mathcal{D}_t \land k_i \in d_j} P(c_p|d_j)}{2 + \sum_{d_j \in \mathcal{D}_t} P(c_p|d_j)} = \frac{1 + n_{i,p}}{2 + n_p}$$

Multinomial Naive Bayes Classifier

- These equations do not consider term frequencies
- To include term frequencies, modify $P(\vec{d_j}|c_p)$
 - consider that terms of doc $d_j \in c_p$ are drawn from known distribution
 - each single term draw
 - Bernoulli trial with probability of success given by $P(k_i|c_p)$
 - each term k_i is drawn as many times as its doc frequency $f_{i,j}$

Multinomial Naive Bayes Classifier

Multinomial probabilistic term distribution

$$P(\vec{d_j}|c_p) = F_j! \times \prod_{k_i \in d_j} \frac{[P(k_i|c_p)]^{f_{i,j}}}{f_{i,j}!}$$
$$F_j = \sum_{k_i \in d_j} f_{i,j}$$

 \blacksquare F_j : a measure of document length

Term probabilities estimated from training set \mathcal{D}_t

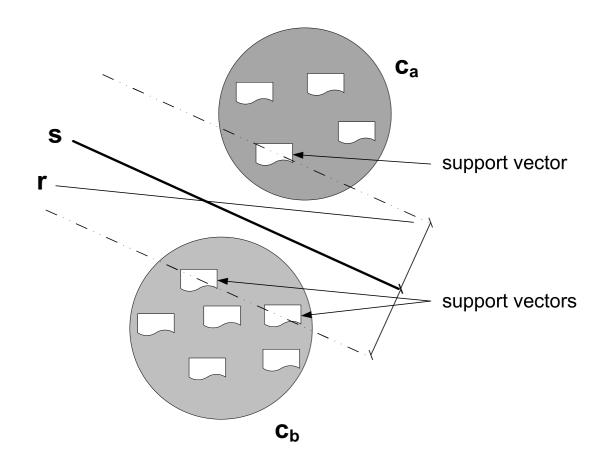
$$P(k_i|c_p) = \frac{\sum_{d_j \in \mathcal{D}_t} f_{i,j} P(c_p|d_j)}{\sum_{\forall k_i} \sum_{d_j \in \mathcal{D}_t} f_{i,j} P(c_p|d_j)}$$

The SVM Classifier

Support Vector Machines (SVMs)

- a vector space method for binary classification problems
- documents represented in *t*-dimensional space
- find a decision surface (hyperplane) that best separate documents of two classes
- new document classified by its position relative to hyperplane

Simple 2D example: training documents linearly separable

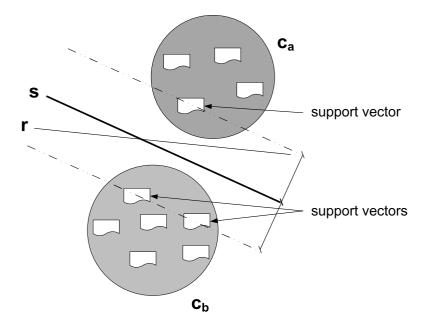


Line *s*—The Decision Hyperplane

- maximizes distances to closest docs of each class
- it is the best separating hyperplane

Delimiting Hyperplanes

parallel dashed lines that delimit region where to look for a solution

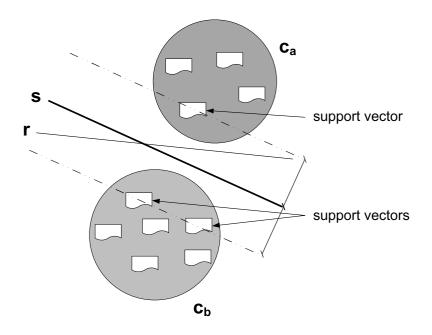


Lines that cross the delimiting hyperplanes

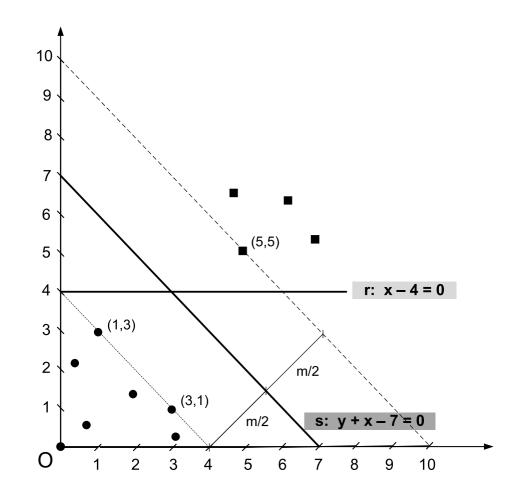
- candidates to be selected as the decision hyperplane
- lines that are parallel to delimiting hyperplanes: <u>best candidates</u>

Support vectors:

documents that belong to, and define, the delimiting hyperplanes



Our example in a 2-dimensional system of coordinates

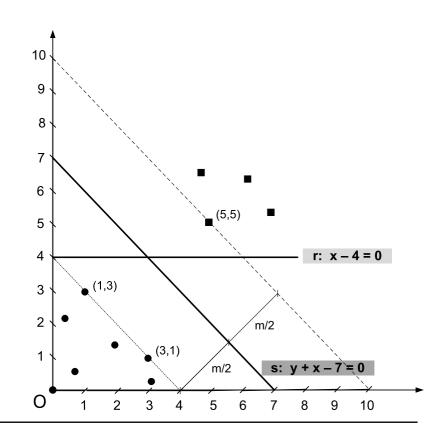


Let,

- H_w : a hyperplane that separates docs in classes c_a and c_b
- \blacksquare m_a : distance of \mathcal{H}_w to the closest document in class c_a
- In m_b : distance of \mathcal{H}_w to the closest document in class c_b
- **I** $m_a + m_b$: margin m of the SVM

The **decision hyperplane** maximizes the margin m

- Hyperplane r: x 4 = 0 separates docs in two sets
 - its distances to closest docs in either class is 1
 - **thus, its margin** m is 2
- Hyperplane s: y + x 7 = 0has margin equal to $3\sqrt{2}$
 - maximum for this case
 - \bullet s is the decision hyperplane



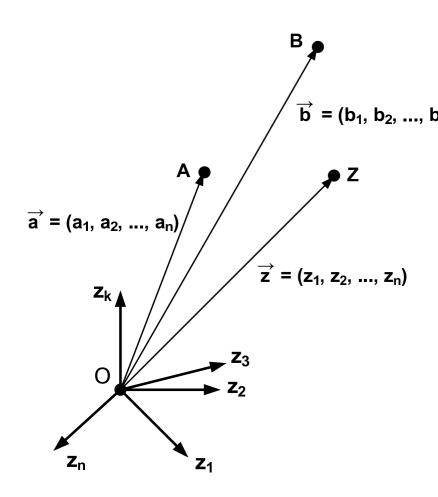
Let \mathcal{R}^n refer to an *n*-dimensional space with origin in \mathcal{O}

generic point Z is represented as

$$\vec{z} = (z_1, z_2, \dots, z_n)$$

 z_i , $1 \le i \le n$, are real variables

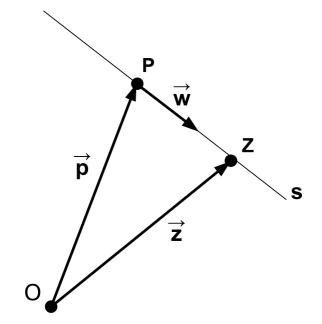
Similar notation to refer to specific fixed points such as A, B, H, P, and Q



- Line s in the direction of a vector \vec{w} that contains a given point P
- Parametric equation for this line

$$s: \vec{z} = t\vec{w} + \vec{p}$$

where $-\infty < t < +\infty$



perpendicular to a given vector \vec{w}

Lines and Hyperplanes in the \mathcal{R}^n

Hyperplane \mathcal{H}_w that contains a point H and is

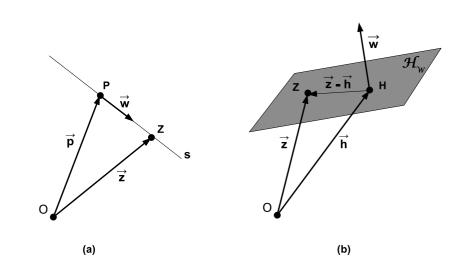
Its normal equation is

$$\mathcal{H}_w: (\vec{z} - \vec{h})\vec{w} = 0$$

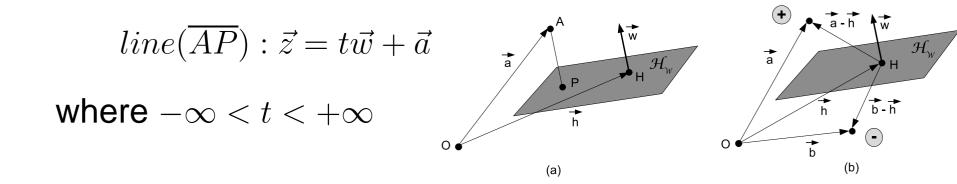
Can be rewritten as

$$\mathcal{H}_w: \vec{z}\vec{w} + k = 0$$

where \vec{w} and $k = -\vec{h}\vec{w}$ need to be determined



- P: projection of point A on hyperplane \mathcal{H}_w
- \overline{AP} : distance of point A to hyperplane \mathcal{H}_w
- Parametric equation of line determined by A and P



For point *P* specifically

$$\vec{p} = t_p \vec{w} + \vec{a}$$

where t_p is value of t for point P

Since $P \in \mathcal{H}_w$

$$(t_p\vec{w} + \vec{a})\vec{w} + k = 0$$

Solving for t_p ,

$$t_p = -\frac{\vec{a}\vec{w} + k}{|\vec{w}|^2}$$

where $|\vec{w}|$ is the vector norm

Substitute t_p into Equation of point P

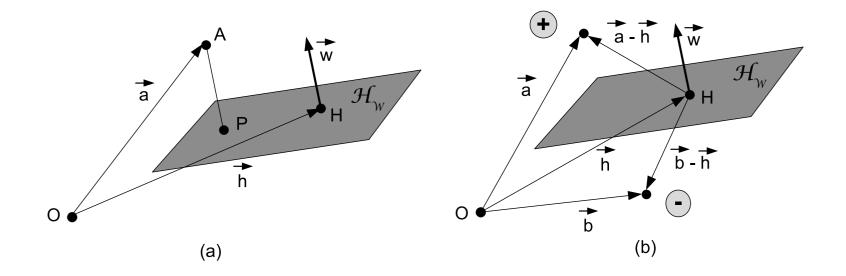
$$\vec{a} - \vec{p} = \frac{\vec{a}\vec{w} + k}{|\vec{w}|} \times \frac{\vec{w}}{|\vec{w}|}$$

Since $\vec{w}/|\vec{w}|$ is a unit vector

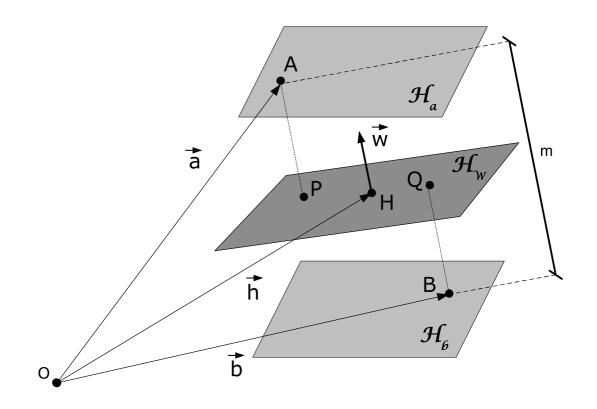
$$\overline{AP} = |\vec{a} - \vec{p}| = \frac{\vec{a}\vec{w} + k}{|\vec{w}|}$$

How signs vary with regard to a hyperplane \mathcal{H}_w

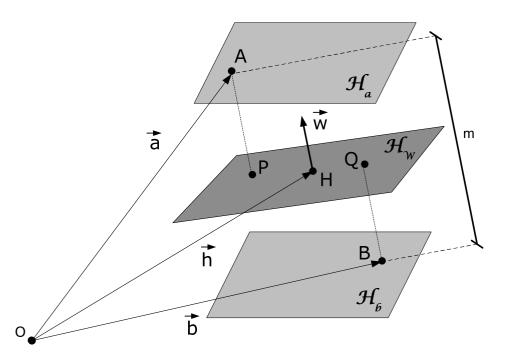
- region above \mathcal{H}_w : points \vec{z} that make $\vec{z}\vec{w} + k$ positive
- region below \mathcal{H}_w : points \vec{z} that make $\vec{z}\vec{w} + k$ negative



The SVM optimization problem: given support vectors such as \vec{a} and \vec{b} , find hyperplane \mathcal{H}_w that maximizes margin m



- O: origin of the coordinate system
 - point A: a doc from class c_a (belongs to delimiting hyperplane \mathcal{H}_a)
 - Point B: a doc from class c_l
- \mathcal{H}_w is determined by a point H (represented by \vec{h}) and by a perpendicular vector \vec{w}
 - neither \vec{h} nor \vec{w} are known a priori



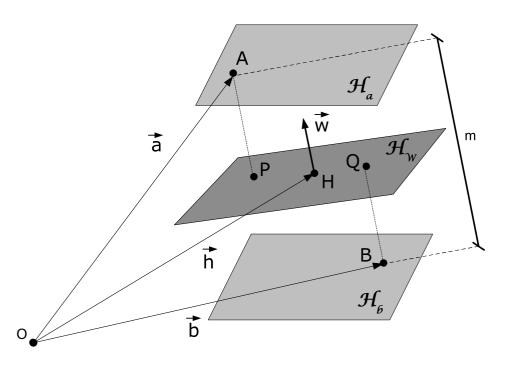
P: projection of point A on hyperplane \mathcal{H}_w

 \blacksquare \overline{AP} : distance of point A to hyperplane \mathcal{H}_w

$$\overline{AP} = \frac{\vec{a}\vec{w} + k}{|\vec{w}|}$$

BQ: distance of point B hyperplane \mathcal{H}_w

$$\overline{BQ} = -\frac{\vec{b}\vec{w} + k}{|\vec{w}|}$$



Margin m of the SVM

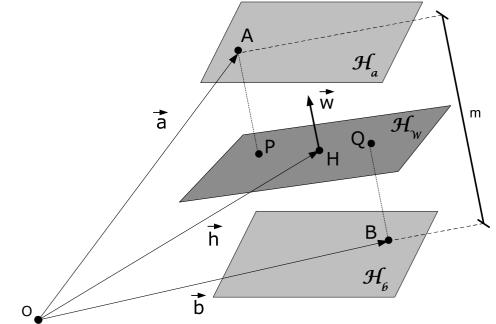
$$m = \overline{AP} + \overline{BQ}$$

is independent of size of \vec{w}

Vectors w of varying sizes maximize m

Impose restrictions on $|\vec{w}|$

$$\vec{a}\vec{w} + k = 1$$
$$\vec{b}\vec{w} + k = -1$$



- Restrict solution to hyperplanes that split margin m in the middle
- Under these conditions,

$$m = \frac{1}{|\vec{w}|} + \frac{1}{|\vec{w}|}$$
$$m = \frac{2}{|\vec{w}|}$$

Let,

 $\mathcal{T} = \{\dots, [c_j, \vec{z_j}], [c_{j+1}, \vec{z_{j+1}}], \dots\}$: the training set

 c_j : class associated with point \vec{z}_j representing doc d_j

Then,

SVM Optimization Problem:

maximize $m = 2/|\vec{w}|$ subject to

 $\vec{w}\vec{z}_j + b \ge +1 \text{ if } c_j = c_a$ $\vec{w}\vec{z}_j + b \le -1 \text{ if } c_j = c_b$

Support vectors: vectors that make equation equal to either +1 or -1

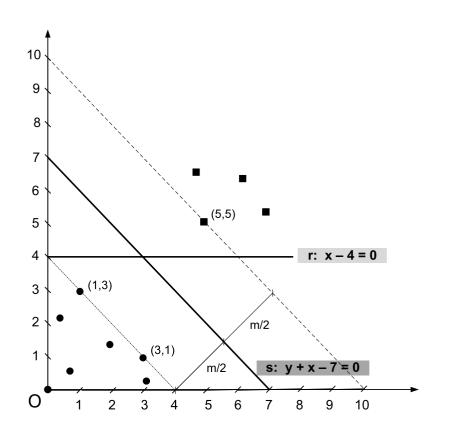
Let us consider again our simple example case

Optimization problem:

maximize $m = 2/|\vec{w}|$ subject to

$$\vec{w} \cdot (5,5) + b = +1$$

 $\vec{w} \cdot (1,3) + b = -1$



If we represent vector \vec{w} as (x, y) then $|\vec{w}| = \sqrt{x^2 + y^2}$ $m = 3\sqrt{2}$: distance between delimiting hyperplanes Thus,

$$3\sqrt{2} = 2/\sqrt{x^2 + y^2}$$

$$5x + 5y + b = +1$$

$$x + 3y + b = -1$$

Maximum of $2/|\vec{w}|$

b = -21/9

$$x = 1/3, y = 1/3$$

equation of decision hyperplane

$$(1/3, 1/3) \cdot (x, y) + (-21/9) = 0$$

or

$$y + x - 7 = 0$$

Classification of Documents

Classification of doc d_j (i.e., $\vec{z_j}$) decided by

 $f(\vec{z}_j) = sign(\vec{w}\vec{z}_j + b)$

f $(\vec{z_j}) = " + " : d_j$ belongs to class c_a

f $(\vec{z_j}) = " - " : d_j$ belongs to class c_b

SVM classifier might enforce margin to reduce errors

a new document d_j is classified

in class
$$c_a$$
: only if $\vec{w}\vec{z}_j + b > 1$

in class c_b : only if $\vec{w}\vec{z}_j + b < -1$

SVM with Multiple Classes

- SVMs can only take binary decisions
 - a document belongs or not to a given class
- With multiple classes
 - reduce the multi-class problem to binary classification
 - natural way: one binary classification problem per class
 - To classify a new document d_j
 - run classification for each class
 - each class c_p paired against all others
 - classes of d_j : those with largest margins

SVM with Multiple Classes

Another solution

- consider binary classifier for each pair of classes c_p and c_q
- all training documents of one class: positive examples
- all documents from the other class: negative examples

Non-Linearly Separable Cases

- SVM has no solutions when there is no hyperplane that separates the data points into two disjoint sets
 - This condition is known as non-linearly separable case
- In this case, two viable solutions are
 - **soft margin approach:** allow classifier to make few mistakes
 - kernel approach: map original data into higher dimensional space (where mapped data is linearly separable)

Soft Margin Approach

Allow classifier to make a few mistakes

maximize
$$m = \frac{2}{|\vec{w}|} + \gamma \sum_{j} e_{j}$$

subject to
 $\vec{w}\vec{z}_{j} + k \ge +1 - e_{j}, \quad \text{if } c_{j} = c_{a}$
 $\vec{w}\vec{z}_{j} + k \le -1 + e_{j}, \quad \text{if } c_{j} = c_{b}$
 $\forall j, \quad e_{j} \ge 0$

Optimization is now trade-off between

- margin width
- amount of error
- **parameter** γ balances importance of these two factors

Kernel Approach

Compute max margin in transformed feature space

minimize $m = \frac{1}{2} * |\vec{w}|^2$ subject to $f(\vec{w}, \vec{z_j}) + k \ge +1$, if $c_j = c_a$ $f(\vec{w}, \vec{z_j}) + k \le -1$, if $c_j = c_b$

Conventional SVM case

I $f(\vec{w}, \vec{z}_j) = \vec{w}\vec{z}_j$, the kernel, is dot product of input vectors

Transformed SVM case

the kernel is a modified map function

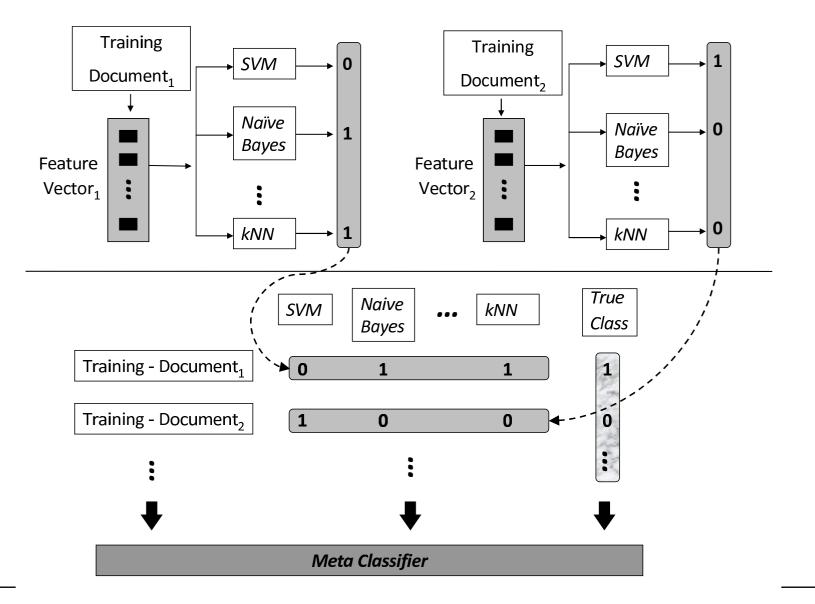
- **polynomial kernel:** $f(\vec{w}, \vec{x}_j) = (\vec{w}\vec{x}_j + 1)^d$
- radial basis function: $f(\vec{w}, \vec{x}_j) = exp(\lambda * |\vec{w}\vec{x}_j|^2)$, $\lambda > 0$
- sigmoid: $f(\vec{w}, \vec{x}_j) = \tanh(\rho(\vec{w}\vec{x}_j) + c)$, for $\rho > 0$ and c < 0

Ensemble Classifiers

Ensemble Classifiers

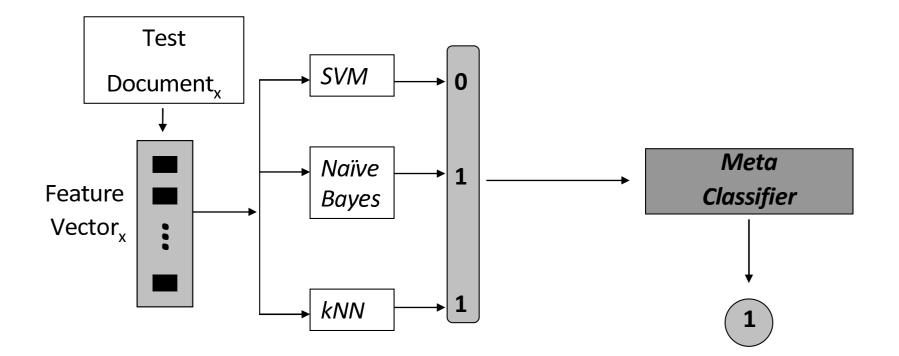
- Combine predictions of distinct classifiers to generate a new predictive score
- Ideally, results of higher precision than those yielded by constituent classifiers
 - Two ensemble classification methods:
 - stacking
 - boosting

Stacking-based Ensemble



Stacking-based Classifiers

Stacking method: learn function that combines predictions of individual classifiers



Stacking-based Classifiers

- With each document-class pair $[d_j, c_p]$ in training set
 - associate predictions made by distinct classifiers
- Instead of predicting class of document d_j
 - **predict the classifier that best predicts the class of** d_j , or
 - combine predictions of base classifiers to produce better results
 - Advantage: errors of a base classifier can be counter-balanced by hits of others

Boosting-based Classifiers

- Boosting: classifiers to be combined are generated by several iterations of a **same learning technique**
- Focus: missclassified training documents
- At each interaction
 - each document in training set is given a weight
 - weights of incorrectly classified documents are increased at each round
 - After *n* rounds
 - outputs of trained classifiers are combined in a weighted sum
 - weights are the error estimates of each classifier

Boosting-based Classifiers

Variation of AdaBoost algorithm (Yoav Freund et al)

AdaBoost

let $T : D_t \times C$ be the training set function;

let N_t be the training set size and M be the number of iterations; initialize the weight w_j of each document d_j as $w_j = \frac{1}{N_t}$; for k = 1 to M {

learn the classifier function \mathcal{F}_k from the training set; estimate weighted error: $err_k = \sum_{d_j \mid d_j misclassified} w_j / \sum_{i=1}^{N_t} w_j$; compute a classifier weight: $\alpha_k = \frac{1}{2} \times \log\left(\frac{1 - err_k}{err_k}\right)$; for all correctly classified examples e_j : $w_j \leftarrow w_j \times e^{-\alpha_k}$; for all incorrectly classified examples e_j : $w_j \leftarrow w_j \times e^{\alpha_k}$; normalize the weights w_j so that they sum up to 1;

Feature Selection or Dimensionality Reduction

Feature Selection

- Large feature space
 - might render document classifiers impractical

Classic solution

- select a subset of all features to represent the documents
- called feature selection
 - reduces dimensionality of the documents representation
 - reduces overfitting

Term-Class Incidence Table

Feature selection

dependent on statistics on term occurrences inside docs and classes

Let

- \mathcal{D}_t : subset composed of all training documents
- $\blacksquare N_t: \text{ number of documents in } \mathcal{D}_t$
- t_i : number of documents from \mathcal{D}_t that contain term k_i
- $\mathcal{C} = \{c_1, c_2, \dots, c_L\}$: set of all *L* classes
- $\mathcal{T}: \mathcal{D}_t \times \mathcal{C} \rightarrow [0, 1]$: a training set function

Term-Class Incidence Table

Term-class incidence table

Case	Docs in c_p	Docs not in c_p	Total
Docs that contain k_i	$n_{i,p}$	$n_i-n_{i,p}$	n_i
Docs that do not contain k_i	$n_p - n_{i,p}$	$N_t - n_i - (n_p - n_{i,p})$	$N_t - n_i$
All docs	n_p	$N_t - n_p$	N_t

n_{i,p}: # docs that contain *k_i* and are classified in *c_p n_i* - *n_{i,p}*: # docs that contain *k_i* but are not in class *c_p n_p*: total number of training docs in class *c_p n_p* - *n_{i,p}*: number of docs from *c_p* that do not contain *k_i*

Term-Class Incidence Table

Given term-class incidence table above, define

- Probability that $k_i \in d_j$: $P(k_i) = \frac{n_i}{N_t}$
- Probability that $k_i \notin d_j$: $P(\overline{k}_i) = \frac{N_t n_i}{N_t}$
- Probability that $d_j \in c_p$: $P(c_p) = \frac{n_p}{N_t}$
- Probability that $d_j \notin c_p$: $P(\overline{c}_p) = \frac{N_t n_p}{N_t}$
- Probability that $k_i \in d_j$ and $d_j \in c_p$: $P(k_i, c_p) \frac{n_{i,p}}{N_t}$
- Probability that $k_i \notin d_j$ and $d_j \in c_p$: $P(\overline{k}_i, c_p) = \frac{n_p n_{i,p}}{N_t}$
- Probability that $k_i \in d_j$ and $d_j \notin c_p$: $P(k_i, \overline{c}_p) = \frac{n_i n_{i,p}}{N_t}$
- Probability that $k_i \notin d_j$ and $d_j \notin c_p$: $P(\overline{k}_i, \overline{c}_p) = \frac{N_t n_i (n_p n_{i,p})}{N_t}$

Feature Selection by Doc Frequency

- Let K_{th} be a threshold on term document frequencies
- Feature Selection by Term Document Frequency
 - **retain all terms** k_i for which $n_i \ge K_{th}$
 - discard all others
 - recompute doc representations to consider only terms retained
- Even if simple, method allows reducing dimensionality of space with basically no loss in effectiveness

Feature Selection by Tf-ldf Weights

- $w_{i,j}$: tf-idf weight associated with pair $[k_i, d_j]$
- K_{th} : threshold on tf-idf weights
- Feature Selection by TF-IDF Weights
 - **retain all terms** k_i for which $w_{i,j} \ge K_{th}$
 - discard all others
 - recompute doc representations to consider only terms retained
- Experiments suggest that this feature selection allows reducing dimensionality of space by a factor of 10 with no loss in effectiveness

Feature Selection by Mutual Informa

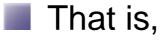
Mutual information

- relative entropy between distributions of two random variables
- If variables are independent, mutual information is zero
 - knowledge of one of the variables does not allow inferring anything about the other variable

Mutual Information

Mutual information across all classes

$$I(k_i, c_p) = \log \frac{P(k_i, c_p)}{P(k_i)P(c_p)} = \log \frac{\frac{n_{i,p}}{N_t}}{\frac{n_i}{N_t} \times \frac{n_p}{N_t}}$$



$$MI(k_i, C) = \sum_{p=1}^{L} P(c_p) I(k_i, c_p)$$
$$= \sum_{p=1}^{L} \frac{n_p}{N_t} \log \frac{\frac{n_{i,p}}{N_t}}{\frac{n_i}{N_t} \times \frac{n_p}{N_t}}$$

Mutual Information

<u>Alternative:</u> maximum term information over all classes

$$I_{max}(k_i, C) = max_{p=1}^L I(k_i, c_p)$$
$$= max_{p=1}^L \log \frac{\frac{n_{i,p}}{N_t}}{\frac{n_i}{N_t} \times \frac{n_p}{N_t}}$$

Feature Selection by Entropy

- retain all terms k_i for which $MI(k_i, C) \ge K_{th}$
- discard all others
- recompute doc representations to consider only terms retained

Feature Selection: Information Gair

Mutual information uses probabilities associated with the occurrence of terms in documents

Information Gain

- complementary metric
- considers probabilities associated with absence of terms in docs
- balances the effects of term/document occurrences with the effects of term/document absences

Information gain of term k_i over set C of all classes

$$IG(k_i, \mathcal{C}) = H(\mathcal{C}) - H(\mathcal{C}|k_i) - H(\mathcal{C}|\neg k_i)$$

- $\blacksquare H(\mathcal{C}): \text{ entropy of set of classes } \mathcal{C}$
- $H(\mathcal{C}|k_i)$: conditional entropies of \mathcal{C} in the presence of term k_i
- \blacksquare $H(\mathcal{C}|\neg k_i)$: conditional entropies of \mathcal{C} in the absence of term k_i
- IG (k_i, C) : amount of knowledge gained about C due to the fact that k_i is known

Ι

Recalling the expression for entropy, we can write

$$G(k_i, \mathcal{C}) = -\sum_{p=1}^{L} P(c_p) \log P(c_p)$$
$$-\left(-\sum_{p=1}^{L} P(k_i, c_p) \log P(c_p | k_i)\right)$$
$$-\left(-\sum_{p=1}^{L} P(\overline{k}_i, c_p) \log P(c_p | \overline{k}_i)\right)$$

Applying Bayes rule

$$IG(k_i, \mathcal{C}) = -\sum_{p=1}^{L} \left(P(c_p) \log P(c_p) - P(k_i, c_p) \log \frac{P(k_i, c_p)}{P(k_i)} - P(\overline{k_i}, c_p) \log \frac{P(\overline{k_i}, c_p)}{P(\overline{k_i})} \right)$$

Substituting previous probability definitions

$$IG(k_i, \mathcal{C}) = -\sum_{p=1}^{L} \left[\frac{n_p}{N_t} \log\left(\frac{n_p}{N_t}\right) - \frac{n_{i,p}}{N_t} \log\frac{n_{i,p}}{n_i} - \frac{n_p - n_{i,p}}{N_t} \log\frac{n_p - n_{i,p}}{N_t} \right]$$

- K_{th} : threshold on information gain
- Feature Selection by Information Gain
 - retain all terms k_i for which $IG(k_i, C) \ge K_{th}$
 - discard all others
 - recompute doc representations to consider only terms retained

Feature Selection using Chi Square

Statistical metric defined as

$$\chi^{2}(k_{i}, c_{p}) = \frac{N_{t} \left(P(k_{i}, c_{p}) P(\neg k_{i}, \neg c_{p}) - P(k_{i}, \neg c_{p}) P(\neg k_{i}, c_{p}) \right)^{2}}{P(k_{i}) P(\neg k_{i}) P(\neg c_{p}) P(\neg c_{p})}$$

quantifies lack of independence between k_i and c_p Using probabilities previously defined

$$\chi^{2}(k_{i}, c_{p}) = \frac{N_{t} (n_{i,p} (N_{t} - n_{i} - n_{p} + n_{i,p}) - (n_{i} - n_{i,p}) (n_{p} - n_{i,p}))^{2}}{n_{p} (N_{t} - n_{p}) n_{i} (N_{t} - n_{i})}$$
$$= \frac{N_{t} (N_{t} n_{i,p} - n_{p} n_{i})^{2}}{n_{p} n_{i} (N_{t} - n_{p}) (N_{t} - n_{i})}$$

Chi Square

Compute either average or max chi square

$$\chi^2_{avg}(k_i) = \sum_{p=1}^{L} P(c_p) \chi^2(k_i, c_p)$$

$$\chi^2_{max}(k_i) = max_{p=1}^{L} \chi^2(k_i, c_p)$$

 K_{th} : threshold on chi square

Feature Selection by Chi Square

• retain all terms k_i for which $\chi^2_{avg}(k_i) \ge K_{th}$

discard all others

recompute doc representations to consider only terms retained

Evaluation Metrics

Evaluation Metrics

Evaluation

- important for any text classification method
- key step to validate a newly proposed classification method

Contingency Table

Let

- \mathcal{D} : collection of documents
- $\square \mathcal{D}_t$: subset composed of training documents
- N_t: number of documents in \mathcal{D}_t
- $\mathcal{C} = \{c_1, c_2, \dots, c_L\}$: set of all *L* classes

Further let

- $\mathcal{T}: \mathcal{D}_t \times \mathcal{C} \rightarrow [0, 1]$: training set function
- \blacksquare n_t : number of docs from training set \mathcal{D}_t in class c_p
- $\mathcal{F}: \mathcal{D} \times \mathcal{C} \rightarrow [0, 1]$: text classifier function
- n_f : number of docs from training set assigned to class c_p by the classifier

Contingency Table

Apply classifier to all documents in training set

Contingency table is given by

Case	$\mathcal{T}(d_j, c_p) = 1$	$\mathcal{T}(d_j, c_p) = 0$	Total
$\mathcal{F}(d_j, c_p) = 1$	$n_{f,t}$	$n_f - n_{f,t}$	n_f
$\mathcal{F}(d_j, c_p) = 0$	$n_t - n_{f,t}$	$N_t - n_f - n_t + n_{f,t}$	$N_t - n_f$
All docs	n_t	$N_t - n_t$	N_t

- $n_{f,t}$: number of docs that both the training and classifier functions assigned to class c_p
- In $n_t n_{f,t}$: number of training docs in class c_p that were miss-classified
- The remaining quantities are calculated analogously

Accuracy and error metrics, relative to a given class c_p

$$Acc(c_p) = \frac{n_{f,t} + (N_t - n_f - n_t + n_{f,t})}{N_t}$$
$$Err(c_p) = \frac{(n_f - n_{f,t}) + (n_t - n_{f,t})}{N_t}$$
$$Acc(c_p) + Err(c_p) = 1$$

These metrics are commonly used for evaluating classifiers

Accuracy and error have disadvantages

- consider classification with only two categories c_p and c_r
- ssume that out of 1,000 docs, 20 are in class c_p
- a classifier that assumes all docs not in class c_p
 - accuracy = 98%
 - error = 2%

which erroneously suggests a very good classifier

Consider now a second classifier that correctly predicts 50% of the documents in c_p

	$\mathcal{T}(d_j, c_p) = 1$	$\mathcal{T}(d_j, c_p) = 0$	
$\mathcal{F}(d_j, c_p) = 1$	10	0	10
$\mathcal{F}(d_j, c_p) = 0$	10	980	990
all docs	20	980	1,000

In this case, accuracy and error are given by

$$Acc(c_p) = \frac{10 + 980}{1,000} = 99\%$$

 $Err(c_p) = \frac{10 + 0}{1,000} = 1\%$

- This classifier is much better than one that guesses that all documents are not in class cp
- However, its accuracy is just 1% better, it increased from 98% to 99%
- This suggests that the two classifiers are almost equivalent, which is not the case.

Precision and Recall

Variants of precision and recall metrics in IR Precision P and recall R relative to a class c_p

$$P(c_p) = \frac{n_{f,t}}{n_f} \qquad R(c_p) = \frac{n_{f,t}}{n_t}$$

- Precision is the fraction of all docs assigned to class c_p by the classifier that really belong to class c_p
- Recall is the fraction of all docs that belong to class c_p that were correctly assigned to class c_p

Precision and Recall

Consider again the classifier illustrated below

	$\mathcal{T}(d_j, c_p) = 1$	$\mathcal{T}(d_j, c_p) = 0$	
$\mathcal{F}(d_j, c_p) = 1$	10	0	10
$\mathcal{F}(d_j, c_p) = 0$	10	980	990
all docs	20	980	1,000

Precision and recall figures are given by

$$P(c_p) = \frac{10}{10} = 100\%$$
$$R(c_p) = \frac{10}{20} = 50\%$$

Precision and Recall

Precision and recall

- computed for every category in set C
- great number of values
 - makes tasks of comparing and evaluating algorithms more difficult
- Often convenient to combine precision and recall into a single quality measure
 - one of the most commonly used such metric: *F-measure*

F-measure

F-measure is defined as

$$F_{\alpha}(c_p) = \frac{(\alpha^2 + 1)P(c_p)R(c_p)}{\alpha^2 P(c_p) + R(c_p)}$$

- α : relative importance of precision and recall
- when $\alpha = 0$, only precision is considered
- when $\alpha = \infty$, only recall is considered
- when $\alpha = 0.5$, recall is half as important as precision
- when $\alpha = 1$, common metric called F_1 -measure

$$F_1(c_p) = \frac{2P(c_p)R(c_p)}{P(c_p) + R(c_p)}$$

F-measure

Consider again the the classifier illustrated below

	$\mathcal{T}(d_j, c_p) = 1$	$\mathcal{T}(d_j, c_p) = 0$	
$\mathcal{F}(d_j, c_p) = 1$	10	0	10
$\mathcal{F}(d_j, c_p) = 0$	10	980	990
all docs	20	980	1,000

For this example, we write

$$F_1(c_p) = \frac{2*1*0.5}{1+0.5} \sim 67\%$$

F_1 Macro and Micro Averages

- Also common to derive a unique F_1 value
 - average of F_1 across all individual categories
- Two main average functions
 - Micro-average F1, or $micF_1$
 - Macro-average F_1 , or $macF_1$

F_1 Macro and Micro Averages

Macro-average F_1 across all categories

$$macF_1 = \frac{\sum_{p=1}^{|\mathcal{C}|} F_1(c_p)}{|\mathcal{C}|}$$

Micro-average F_1 across all categories

$$micF_{1} = \frac{2PR}{P+R}$$

$$P = \frac{\sum_{c_{p} \in \mathcal{C}} n_{f,t}}{\sum_{c_{p} \in \mathcal{C}} n_{f}}$$

$$R = \frac{\sum_{c_{p} \in \mathcal{C}} n_{f,t}}{\sum_{c_{p} \in \mathcal{C}} n_{f,t}}$$

F_1 Macro and Micro Averages

- In micro-average F_1
 - every single document given the same importance
- In macro-average F_1
 - every single category is given the same importance
 - captures the ability of the classifier to perform well for many classes
- Whenever distribution of classes is skewed
 - both average metrics should be considered

Cross-Validation

Cross-validation

standard method to guarantee statistical validation of results

build k different classifiers: $\Psi_1, \Psi_2, \ldots, \Psi_k$

for this, divide training set \mathcal{D}_t into k disjoint sets (folds) of sizes

$$N_{t1}, N_{t2}, \ldots, N_{tk}$$

classifier Ψ_i

- training, or tuning, done on \mathcal{D}_t minus the *i*th fold
- testing done on the *i*th fold

Cross-Validation

- Each classifier evaluated independently using precision-recall or F_1 figures
- Cross-validation done by computing average of the k measures
 - Most commonly adopted value of k is 10
 - method is called ten-fold cross-validation

Reuters-21578

- most widely used reference collection
- constituted of news articles from Reuters for the year 1987
- collection classified under several categories related to economics (e.g., acquisitions, earnings, etc)
- contains 9,603 documents for training and 3,299 for testing, with
 90 categories co-occuring in both training and test
- class proportions range from 1,88% to 29,96% in the training set and from 1,7% to 32,95% in the testing set

Reuters: Volume 1 (RCV1) and Volume 2 (RCV2)

- RCV1
 - another collection of news stories released by Reuters
 - contains approximately 800,00 documents
 - documents organized in 103 topical categories
 - expected to substitute previous Reuters-21578 collection
- RCV2
 - modified version of original collection, with some corrections

OHSUMED

- another popular collection for text classification
- subset of Medline, containing medical documents (title or title + abstract)
- 23 classes corresponding to MesH diseases are used to index the documents

20 NewsGroups

- third most used collection
- approximately 20,000 messages posted to Usenet newsgroups
- partitioned (nearly) evenly across 20 different newsgroups
- categories are the newsgroups themselves

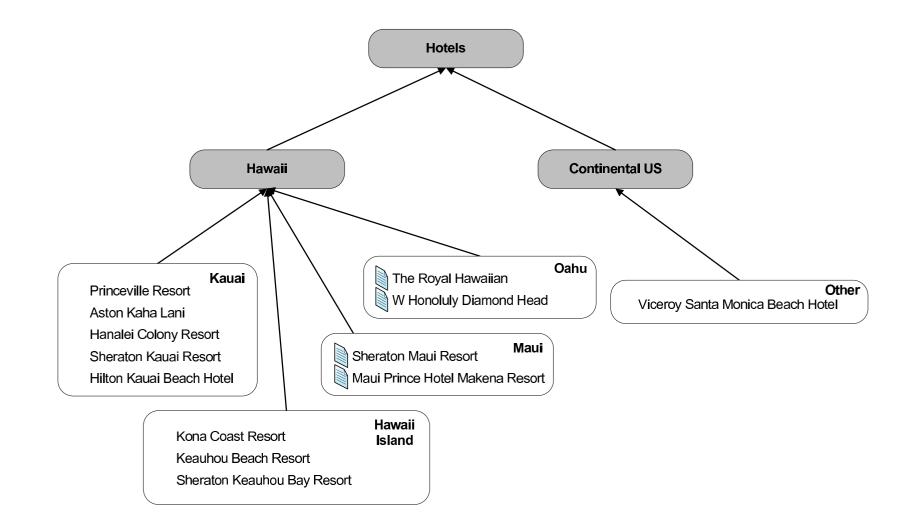
Other collections

- WebKB hypertext collection
- ACM-DL
 - a subset of the ACM Digital Library
- samples of Web Directories such as Yahoo and ODP

Organizing the Classes Taxonomies

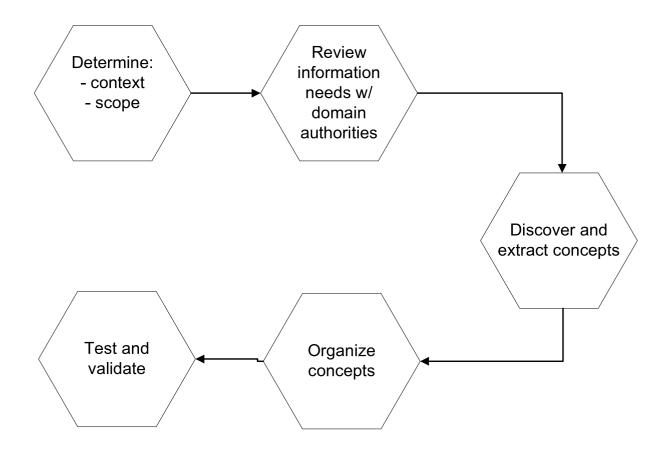
- Labels provide information on semantics of each class
- Lack of organization of classes restricts comprehension and reasoning
 - Hierarchical organization of classes
 - most appealing to humans
 - hierarchies allow reasoning with more generic concepts
 - also provide for specialization, which allows breaking up a larger set of entities into subsets

- To organize classes hierarchically use
 - specialization
 - generalization
 - sibling relations
- Classes organized hierarchically compose a taxonomy
 - relations among classes can be used to fine tune the classifier
 - taxonomies make more sense when built for a specific domain of knowledge



Taxonomies are built manually or semi-automatically

Process of building a taxonomy:



Manual taxonomies tend to be of superior quality

- better reflect the information needs of the users
- Automatic construction of taxonomies
 - needs more research and development
- Once a taxonomy has been built
 - documents can be classified according to its concepts
 - can be done manually or automatically
 - automatic classification is advanced enough to work well in practice