Modern Information Retrieval

Appendix A

Open Source Search Engines with Christian Middleton

Introduction Search Engines Comparison Methodology Experimental Results

Introduction

There are many reasons to use an **open search engine** in a Web site or other IR applications inside a company

- cost considerations
- commercial engine has focus on larger sites
- specific needs that imply code customization
- For small to medium traffic Web sites is an interesting alternative
 - no licensing fees
 - source code available, so customization is possible
 - but maintenance and performance might be an issue

Introduction

- Open source search engines might be classified by
 - programming language of implementation
 - index data structure
 - search capabilities: Boolean, fuzzy, stemming
 - ranking function
 - files they can index: HTML, PDF, Word, plain text
 - online and incremental indexing
 - maintenance activity and people needed
- For adopting a search engine, one need to understand performance
 - behavior under distinct load conditions
 - degradation as load increases

Open Source Search Engines

Search Engine	Update	Version	Observation
ASPSeek	2002	N/A	Project is paralyzed.
BBDBot	2002	N/A	Last update was on 2002.
Datapark	13/03/2006	4.38	
ebhath	N/A	N/A	No existing website.
Eureka	N/A	N/A	Website is not working.
HtDig (ht://Dig)	16/06/2004	3.2.0b6	
Indri	22/06/2009	2.10	
ISearch	02/11/2000	1.75	Software not actively maintained.
Lucene	05/11/2009	2.9.1	
Managing Gigabytes (MG)	01/08/1999	1.2.1	
MG4J	06/06/2009	3.0	
mnoGoSearch	29/10/2009	3.3.9	
MPS Inform. Server	01/09/2000	6.0	
Namazu	23/09/2009	2.0.20	

Open Source Search Engines

Search Engine	Update	Version	Observation
Nutch	23/03/2009	1.0	Subproject of the Lucene project.
Omega	08/04/2006	0.9.5	Based on Xapian library.
OmniFind IBM Yahoo!	2009	8.4.2	
OpenFTS	05/04/2005	0.39	
PLWeb	16/03/1999	3.0.4	Code no longer available.
SWISH-E	04/04/2009	2.4.7	
SWISH++	25/01/2008	6.1.5	
Terrier	29/01/2009	2.2.1	
WAIS & freeWAIS	N/A	N/A	Software is outdated.
WebGlimpse	19/12/2008	4.18.6	Uses Glimpse as the indexer.
XML Query Engine	02/04/2005	0.69	XML search engine.
Zebra	05/11/2009	2.0.42	XML search engine.
Zettair	09/2006	0.9.3	

27 open source engines considered in 2009

Preliminary Selection of Engines

Project outdated, not maintained, paralyzed

- 1. ASPSeek
- 2. BBDBot
- 3. ebhath
- 4. Eureka
- 5. ISearch

19 engines left for consideration

- Eliminate engines that depend on other or have a special purpose
 - 9. Managing Gigabytes (MG)11. XML Query Engine10. Nutch12. Zebra

7. PLWeb

8. WAIS/freeWAIS

15 engines remain for consideration

6. MPS Information Server

Preliminary Selection of Engines

Preliminary indexing tests showed 5 very slow engines

- 13. Datapark
- 14. mnoGoSearch
- 15. Namazu

16. OpenFTS
17. Glimpse

- 10 engines left for consideration
- 10 engines selected for experimental comparison
 - 1. HtDig
 - 2. Indri
 - 3. Lucene
 - 4. MG4J
 - 5. Omega

- 6. OmniFind
- 7. SWISH-E
- 8. SWISH++
- 9. Terrier
- 10. Zettair

The Ten Engines Selected

Search Engine	$Storage^{(f)}$	Increm. Index	Results Excerpt	Results Template	Stop words	File types ^(e)	Stemming	Fuzzy Search	$Sort^{(d)}$	Ranking	Search Type ^(c)	Indexer Lang. ^(b)	$License^{(a)}$
HtDig	1					1,2			1		2	1,2	4
Indri	1					1,2,3,4			1,2		1,2,3	2	3
Lucene	1					1,2,4			1		1,2,3	3	1
MG4J	1					1,2			1		1,2,3	3	6
Omega	1					1,2,4,5			1		1,2,3	2	4
OmniFind	1					1,2,3,4,5			1		1,2,3	3	5
SWISH-E	1					1,2,3			1,2		1,2,3	1	4
SWISH++	1					1,2			1		1,2,3	2	4
Terrier	1					1,2,3,4,5			1		1,2,3	3	7
Zettair	1					1,2			1		1,2,3	1	2

10 Engines Selected

Conventions for table in previous slide

- (a) 1:Apache,2:BSD,3:CMU,4:GPL,5:IBM,6:LGPL,7:MPL,8:Comm,9:Free
- ^(b) 1:C, 2:C++, 3:Java, 4:Perl, 5:PHP, 6:Tcl
- (c) 1:phrase, 2:Boolean, 3:wild card.
- $^{(d)}$ 1:ranking, 2:date, 3:none.
- ^(e) 1:HTML, 2:plain text, 3:XML, 4:PDF, 5:PS.
- (f) 1:file, 2:database.
- (g) Commercial version only.


```
□ Not Available
```

Methodology

Comparison tasks for 10 engines selected

- 1. Obtain a document collection in HTML
- 2. Determine a tool to use for monitoring the performance of the search engines
- 3. Install and configure each of the search engines
- 4. Index each document collection
- 5. Process and analyze index results
- 6. Perform a set of preselected searching tasks
- 7. Process and analyze the search results

Document Collections

Collections ranging from 1 GBytes to 10 GBytes

3 TREC-4 subcollections

- a first subcollection with 1,549 documents (750 MB)
- a second subcollection with 3,193 documents (1.6 GB)
- a third subcollection with 5,572 documents (2.7 GB)

4 WT10g subcollections

- a first subcollection occupying 2.4 GB
- a second subcollection occupying 4.8 GB
- a third subcollection occupying 7.2 GB
- a fourth subcollection occupying 10.2 GB

Evaluation Tests

4 different evaluation tests

- Test A Indexing: index document collection with each search engine and record elapsed time and resource consumption
- Test B Incremental Indexing: time required to build incremental indexes.
- Test C Search Performance: query processing time of the engines, performance
- Test D Search Quality: quality of results produced by each engine, using precision-recall metrics

Computer used for running tests

Pentium 4HT 3.2 GHz processor, 2.0 GB RAM, SATA hard disk driver, Debian Linux (Kernel 2.6.15)

Test A — Indexing

Indexing of the 3 TREC-4 Subcollections

Omega and Omnifind performed poorly

Test A — Memory and CPU

Size		750MB		1.6GB			2.7GB		
Search	Max.	Max.	RAM	Max.	Max.	RAM	Max.	Max.	RAM
Engine	CPU	RAM	Use	CPU	RAM	Use	CPU	RAM	Use
HtDig	100.0%	6 .4%	С	100.0%	6 .4%	С	88.9%	6 .4%	С
Indri	100.0%	7.3%	L-S	97.5%	8.0%	L-S	88.6%	9.7%	L-S
Lucene	99.4%	20.0%	L	100.0%	38.3%	L	99.2%	59.4%	L
MG4J	100.0%	23.4%	С	100.0%	48.0%	С	100.0%	70.4%	С
Omega	100.0%	26.8%	L	99.2%	52.1%	L	94.0%	83.5%	L-C
OmniFind	78.4%	17.6%	S	83.3%	18.3%	S	83.8%	19.5%	S
Swish-E	100.0%	16.2%	L	98.9%	31.9%	L	98.8%	56.7%	L
Swish++	99.6%	24.8%	S	98.5%	34.3%	S	98.6%	54.3%	S
Terrier	99.5%	58.1%	S-C	99.4%	78.1%	S-C	98.7%	86.5%	S-C
Zettair	77 .2%	20.2%	L	98.1%	22.3%	L	82.7 %	23.1%	L
RAM behavior: C – constant, L – linear, S – step.									

All engines consumed close to 100% of CPU

Test A — Memory and CPU

- 6 different patterns of memory consumption in previous slide
 - *constant* (C) memory consumed remained constant;
 - *linear* (L) memory consumed grew linearly with the index size;
 - step (S) memory consumed grew initially, remained constant for a while, and resumed a pattern of growth afterwards;
 - *linear-step* (L-S) a combination of linear growth with a step behavior;
 - Inear-constant (L-C) a combination of linear growth with a constant behavior; and
 - step-constant (S-C) a combination of step behavior followed by constant memory consumption.

Test A — Memory and CPU

Memory consumption pattern of the 10 engines

- HtDig and MG4J: constant (C)
- Lucene, Omega, Swish-E, and Zettair: linear growth (L)
- Swish++ and OmniFind: step-like behavior (S)
- Indri: linear growth, then decrease, afterwards linear (L-S)
- Terrier: step-like growth, then constant (S-C)
- Omega: linear growth, then constant (L-C)

Test A — Index Size

Search	Index Size							
Engine	750MB	1.6GB	2.7GB					
HtDig	108%	92%	104%					
Indri	61%	58%	63%					
Lucene	25 %	23 %	26 %					
MG4J	30%	27%	30%					
Omega	104%	95%	103%					
OmniFind	175%	159%	171%					
Swish-E	31%	28%	31%					
Swish++	30%	26%	29%					
Terrier	51%	47%	52%					
Zettair	34%	31%	33%					

Best: Lucene, MG4J, Swish-E, Swish++, and Zettair: between 25%–35% of collection size

Test A — Indexing WT10g

Indri, MG4J, Terrier, and Zettair: only engines to finish in linear time

Open Source Search Engines, Modern Information Retrieval, Addison Wesley, 2010 - p. 18

Test B — Incremental Indexing

Incremental Indexing Time

Incremental indexing (1%, 5%, 10%) of 1.6GB collection

Indri, MG4J, Terrier, Zettair: finished efficiently

Test C — Search Performance

- We tested the 8 search engines that indexed efficiently
 - HtDig, Indri, Lucene, MG4J
 - Swish-E, Swish++, Terrier, Zettair
- To create the queries, we randomly selected 1 or 2 words using
 - original distribution of the words (power law)
 - uniform distribution over the 5% most frequent words (popular queries)
 - uniform distribution over the 30% least frequent words (rare queries)

Test C — Search Performance

Indri and Lucene: fastest engines

Test D — Search Quality

WT10g collection used

- 50 topic queries of the TREC-2001 Web track
- interpolated precision at 11-pt recall levels

Test D — Search Quality

Search Engine	P@5	P@10	P@15	P@20	P@30
Indri	0.2851	0.2532	0.2170	0.2011	0.1801
MG4J	0.2480	0.2100	0.1800	0.1600	0.1340
Terrier	0.2800	0.2400	0.2130	0.2100	0.1930
Zettair	0.3240	0.2680	0.2507	0.2310	0.1993

Zettair: best average precision at top 5, 10, 20 results

Global Evaluation

Ranking of engines: indexing time, index size, query processing time (for 2.7GB collection), and P@5 (for WT10g collection)

Search Engine	Indexing Time		Index Size		Searching Time		Answer Quality	
	(h:m:s)		(%)		(ms)		P@5	
HtDig	(6)	0:28:30	(8)	104	(4)	32		-
Indri	(3)	0:15:45	(7)	63	(1)	19	(2)	0.2851
Lucene	(8)	1:01:25	(1)	26	(2)	21		-
MG4J	(2)	0:12:00	(6)	60	(3)	22	(4)	0.2480
Swish-E	(4)	0:19:45	(3)	31	(6)	45		-
Swish++	(5)	0:22:15	(2)	29	(8)	51		-
Terrier	(7)	0:40:12	(5)	52	(7)	50	(3)	0.2800
Zettair	(1)	0:04:44	(4)	33	(4)	32	(1)	0.3240

Indri, MG4J, Terrier, and Zettair: indexed whole WT10g

Zettair: fastest indexer, good search time, good precision-recall

Conclusions

Zettair is one of the most complete engines

- 1. fast processing of large amounts of information in considerably less time than other engines
- 2. average precision-recall figures that were highest comparatively to the other engines (for the WT10g collection)
- Lucene is the most competitive regarding the use of memory and search time performance