Semantic Searching

John Winder
CMSC 676
Spring 2015
Semantic Searching

searching and retrieving documents by their semantic, conceptual, and contextual meanings

Motivations:

● to do disambiguation
● to improve retrieval accuracy
 ○ precision and recall
● to unite the Semantic Web
Semantic Web

● Standardizations
 ○ data formats and schemas
 ■ XML, RDF
 ○ query languages
 ■ RDQL, SPARQL

● Key Ideas
 ○ metadata
 ○ ontologies
Ontology

- An ontology is a knowledge base
 - models hierarchies, relationships (is-a, has-a)
 - uses formal languages (inspired by databases)
- Examples:
 - WordNet (dog is-a canine is-a carnivore, etc.)
 - ConceptNet

```
PREFIX kb: <http://protege.stanford.edu/kb#>
SELECT ?painting ?painter
WHERE {
  ?painting kb:has_author ?painter
}
```

A query to retrieve a list of paintings and their painters.
Main Advancements

- **Vector Space model**
 - Boolean model
 - no partial matching
 - no clear ranking method
 - requires parallel metadata
 - rank by TF-IDF

- **Semi-structured**
 - fully structured ontological mapping has worse recall
 - keyword searching is flexible but has worse precision

Vector Space Semantic Search System by Vallet et al. [2005]
Main Advancements (cont.)

● Query Expansion
 ○ searching by meaning, beyond literal keywords
 ○ given a query, map into ontology, find new relations
 ○ returns documents even without search keywords being present in the documents
 ○ examples:
 ■ “presidents of the French government”
 ■ “reports on flooding for cities in Asia with populations under 50,000”
Main Advancements (cont.)

- Generating queries
 - search by keyword
 - parses out entity/relations

- Semantic Ranking
 - by entity
 - ReConRank in SWSE
 - by relationship
 - by document
 - annotations (Swoogle)

Ontology-Based Semantic Search System by Fernandez et al. [2011]
Mimir: Semantic Search at Scale (2015)

- Mimir, annotation-based semantic search
 - uses GATE to do NLP, extract entities/relationships
 - open source, distributed (federated) system
 - complex query parsing, indexing at three levels:
 - tokens, annotations, sub-annotations
 - applied to real world corpora (over 150 million docs)
 - immunology dataset
 - patent dataset, searching for prior art
Future Applications

- **Recommender Systems**
 - build user profiles, use history to inform results

- **Sentiment Analysis**
 - disambiguation to spot outliers in word usage

- **Reasoning (Artificial Intelligence)**
 - inference: discovering new facts
 - using ontologies to build ... more ontologies
References

Cunningham, Hamish, Maynard, Diana, Bontcheva, Kalina, and Tablan, Valentin. Gate: an architecture for development of robust hl

