Latent Semantic Indexing

Thanks to Ian Soboroff
Issues: Vector Space Model

• Assumes terms are independent
 • Some terms are likely to appear together
 • synonyms, related words
 • spelling mistakes?
 • Terms can have different meanings depending on context

• Term-document matrix has very high dimensionality
 • are there really that many important features for each document and term?
Latent Semantic Indexing

- Compute \textit{singular value decomposition} of a term-document matrix
 - D, a representation of M in \(r \) dimensions
 - T, a matrix for transforming new documents
 - diagonal matrix \(\Sigma \) gives relative importance of dimensions
LSI Term matrix T

- T matrix
 - gives a vector for each term combo in LSI space
 - for a new document c, $c' \times T$ gives a new row in D
 - That is, “fold in” the new document into the LSI space
- LSI is a rotation of the term-space
 - original matrix: terms are d-dimensional
 - new space has lower dimensionality
 - dimensions are groups of terms that tend to co-occur in the same documents
 - synonyms, contextually-related words, variant endings
Singular Values

- Σ gives an ordering to the dimensions
 - values tend to drop off very quickly
 - singular values at the tail represent "noise"
 - cutting off low-value dimensions reduces noise and can improve performance
Truncating Dimensions in LSI
Document matrix D

- **D matrix**
 - coordinates of documents in LSI space
 - same dimensionality as T vectors
 - can compute the similarity between a term and a document

http://lsi.research.telcordia.com/
Improved Retrieval with LSI

- New documents and queries are "folded in"
 - multiply vector by $T\Sigma^{-1}$
- Compute similarity for ranking as in VSM
 - compare queries and documents by dot-product
- Improvements come from
 - reduction of noise
 - no need to stem terms (variants will co-occur)
 - no need for stop list
 - stop words are used uniformly throughout collection, so they tend to appear in the first dimension
- No speed or space gains, though…
LSI in TREC-3

- LSI space computed from a sample of the document collection
- Documents and queries folded into LSI space for comparison
- Improvement in AP with LSI: 5%
 - Improvements up to 20% seen in smaller collections
Other LSI Applications

- **Text classification**
 - by topic
 - dimension reduction -> good for clustering
 - by language
 - languages have their own stop words
 - by writing style

- **Information Filtering**

- **Cross-language retrieval**
N-gram indexing recap

- Index all \(n \) character sequences
 - language-independent
 - resistant to noisy text
 - no stemming
 - easy to do
- Document \(\Rightarrow \) array of n-gram frequencies

\[n = 5 \]

Hello World
Hello World
Hello World
Hello World
Why N-grams?

- N-grams capture pairs of words
 - Brings out phraseology and word choice
- LSI using n-grams might cluster documents by writing style and/or author
 - a lot of what makes style is word choices and stop word usage
- Small experiment
 - Three biblical Hebrew texts: Ecclesiastes, Song of Songs, Book of Daniel
 - used 3-grams in original Hebrew
(Dimension 1 \cdot \sigma_1) for each document

- o = Ecclesiastes
- * = Song of Songs
- + = Daniel
(Dimension $2 \cdot \sigma_2$) for each document

- o = Ecclesiastes
- * = Song of Songs
- + = Daniel
Conclusion

- LSI can be a useful technique for reducing the dimensionality of an IR problem
 - reduction can improve effectiveness
 - reduction can find surprising relationships!
- SVD can be expensive to compute on large matrices
- Available tools for working with LSI
 - MATLAB or Octave (small data sets only)
 - SMART (an IR system) with SVDPACK