Interactive Navigation of Multiple Agents in Crowded Environments

Jur van den Berg, Sachin Patil, Jason Sewall, Dinesh Manocha, Ming Lin
2008 Symposium on Interactive 3D Graphics
“Autonomous navigation and planning of multiple agents in crowded scenes with stationary and moving obstacles”

- Autonomous navigation
 - No master process that directs everything
- Multiple agents
 - Largest stadiums seat 250,000
- Crowded scenes
 - Complex requirements on navigation
- Dynamic obstacles
 - Anticipate future position of obstacles
“Fast two-level planning method for real-time navigation of many agents in a crowded virtual environment”

- **Preprocessing**
 - Roadmap (graph) of environment with only large static obstacles
 - Compute shortest path in roadmap from agent location to goal

- **Global path planning**
 - Pick a visible node in roadmap from current position of agent
 - Minimize the distance from agent position to goal position
 - Recompute if selected node disappears
Local collision avoidance with Reciprocal Velocity Obstacles

- Neighbor agents are treated as “dynamic obstacles whose future motions are predicted as linear extrapolations of their current velocities”

- Velocity Obstacles assume passive dynamic obstacles
 - Can exhibit oscillating movement when obstacles are active

- Reciprocal Velocity Obstacles assume active dynamic obstacles
 - “Agent A_i does only half the work to avoid a collision with agent A_j”

- An agent selects a velocity outside the union of the Reciprocal Velocity Obstacles of the neighbor agents
“Nearly linear function of the number of agents”

- Neighbor selection
 - Only evaluate the Reciprocal Velocity Obstacle of nearby agents
 - Naive quadratic time algorithm that includes neighbors behind agent
- Parallelizable
 - “as long as each agent is able to observe the same environment and the positions and velocities of other agents in the environment”
- Performance
 - 20,000 agents over 16 cores runs in 2 frames per second
 - 5,000 agents over 16 cores runs in 14 frames per second
- Limitation: Can produce unrealistic motion
Oooh! Pictures!
Oooh! More pictures!