CMSC 441: Homework #6 Solutions

Monday, March 10, 2008

Parag Namjoshi
Exercise 7.1–1
Show result of partition for array \(A = [13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21] \).

Solution:
Pivot element is 21. Thus \(A \) remains the same after the PARTITION operation. \(A = [13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21] \).

Exercise 7.1–4

Change the line 4 of PARTITION from \(A[j] \leq x \) to \(A[j] \geq x \).

Exercise 7.2–1

Use substitution method to prove that the recurrence \(T(n) = T(n-1) + \Theta(n) \) has the solution \(T(n) = \Theta(n^2) \).

Solution:
We guess that \(T(n) \leq O(n^2) \).

\[
T(n) \leq c_1(n-1)^2 + \Theta(n)
\leq c_1(n-1)^2 + c_0 n
\leq c_1(n^2 - 2n + 1) + c_0 n
\leq c_1 n^2 - (2c_1 - c_0) n + c_1
\leq c_1 n^2 \text{ for } n_0 \geq 1 \text{ and } c_0 > c_1
\]

Thus \(T(n) \in O(n^2) \). Similarly, we can prove that \(T(n) \in \Omega(n^2) \). Consequently, \(T(n) \in \Theta(n^2) \).

Exercise 7.4–1

Show that in the recurrence

\[
T(n) = \max_{0 \leq q \leq n-1} (T(q) + T(n-q-1)) + \Theta(n)
\]

\[
T(n) = \Omega(n^2)
\]

Solution:
We guess that \(T(n) \geq cn^2 \) for some constant \(c \). Substituting, we get

\[
T(n) \geq \max_{0 \leq q \leq n-1} (cq^2 + c(n-q-1)^2) + \Theta(n)
\]

\[
= c \cdot \max_{0 \leq q \leq n-1} (q^2 + (n-q-1)^2) + \Theta(n)
\]
The pure quadratic \(q^2 + (n - q - 1)^2 \) achieves its maximum at two end-points, 0, \(n - 1 \). We choose \(q = 0 \). Thus \(\max_{0 \leq q \leq n-1} (q^2 + (n - q - 1)^2) = (n - 1)^2 = n^2 - 2n + 1 \).

\[
T(n) \geq cn^2 - c(2n - 1) + \Theta(n) \\
\geq cn^2, \text{where } c \text{ is chosen to dominate } \Theta(n).
\]

Exercise 8.2–1

Step (a)
A: 6,0,2,0,1,3,4,6,1,3,2
C: 2,2,2,1,0,2

Step (b)
C: 2,4,6,8,9,9,11

Step (c)
B: -, -, -, -, 2, -, -, -, -
C: 2,4,5,8,9,9,11

Step (d)
B: -, -, -, -, 2, -, 3, -, -, -
C: 2,3,5,7,9,9,11

Step (e)
B: -, -, -, 1, -, 2, -, 3, -, -
C: 2,3,5,7,9,9,11

Step (f)
B: -, -, -, 1, -, 2, -, 3, -, 6
C: 2,3,5,7,9,10

Step (g)
B: -, -, 1, -, 2, -, 3, -, 6
C: 2,3,5,7,9,10

Step (h)
B: -, 1, 1, -, 2, 3, 3, 4, -, 6
C: 2,2,5,6,8,9,10

Step (i)
B: -, 1, 1, -, 2, 3, 3, 4, -, 6
C: 2,2,5,6,8,9,10

Step (j)
B: -, 0, 1, 1, -, 2, 3, 3, 4, -, 6
C: 1,2,5,6,8,9,10

Step (k)
B: -, 0, 1, 1, 2, 3, 3, 4, -, 6
C: 0,2,4,6,8,9,10

Step (l)
B: 0, 0, 1, 1, 2, 3, 3, 4, 6, 6
C: 0,2,4,6,8,9,9

Step (m)
B: 0, 0, 1, 1, 2, 3, 3, 4, 6, 6
C: 0,2,4,6,8,9,9
Exercise 8.3–1

Radix–sort on the list COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB, BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX.

COW SEA TAB BAR
DOG TEA BAR BIG
SEA MOB EAR BOX
RUG TAB TAR COW
ROW DOG SEA DIG
MOB RUG TEA DOG
BOX DIG DIG EAR
TAB BIG BIG FOX
BAR BAR MOB MOB
EAR EAR DOG NOW
TAR TAR COW ROW
DIG COW ROW RUG
BIG ROW NOW SEA
TEA NOW BOX TAB
NOW BOX FOX TAR
FOX FOX RUG TEA

Exercise 8.4–1

Illustrate the operation of Bucket-Sort on the array $A = [.79, .13, .16, .64, .39, .20, .89, .53, .71, .42]$.

Solution:

.13	.16
.20	
.39	.20
.42	.64
.53	.71
.64	.79
.71	.89