Problem Set #4 Solutions

1. Epp #7.1.2–7.1.3:

7.1.2. a. domain of \(g = \{1, 3, 5\} \), co-domain of \(g = \{s, t, u, v\} \);

b. \(g(1) = g(3) = g(5) = t \);

c. range of \(g = t \);

d. inverse image of \(t = \{1, 3, 5\} \), inverse image of \(u = \emptyset \);

e. \(\{(1, t), (3, t), (5, t)\} \)

7.1.3. The arrow diagram in \(d \) determines a function; those in \(a, b, c, \) and \(e \) do not.

2. Epp #4.1.34–4.1.38:

4.1.34. \(\prod_{j=1}^{4} (1 - r^j) \)

4.1.35. \(\sum_{k=1}^{n} k^3 \)

4.1.36. \(\sum_{k=1}^{n} \frac{k}{(k+1)!} \)

4.1.37. \(\sum_{i=0}^{n-1} (n-i) \)

4.1.38. \(\sum_{k=0}^{n-1} \frac{n-k}{(k+1)!} \)

3. Epp #4.1.57:

a. Proof: Let \(n \) be an integer such that \(n \geq 2 \). By the definition of the factorial,

\[
 n! = \begin{cases}
 2 \cdot 1 & \text{if } n = 2 \\
 3 \cdot 2 \cdot 1 & \text{if } n = 3 \\
 n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1 & \text{if } n > 3
\end{cases}
\]

In each case, \(n! \) has a factor of 2, and so

\(n! = 2 \cdot k \) for some integer \(k \).

Then,

\[
 n! + 2 = 2 \cdot k + 2 \quad \text{(by substitution)}
\]

\[
 = 2 \cdot (k + 1) \quad \text{(by factoring out the 2)}
\]

Since \(k + 1 \) is an integer, \(n! + 2 \) is divisible by 2. Q.E.D.
Problem 3 continued:

b. Proof: Let \(n \) and \(k \) be integers with \(n \geq 2 \) and \(2 \leq k \leq n \). Now, \(n! \) is the product of all the integers from 1 to \(n \), and so since \(n \geq 2 \) and \(2 \leq k \leq n \), \(k \) is a factor of \(n! \). This result implies that \(n! = k \cdot r \) for some integer \(r \). By substitution, \(n! + k = k \cdot r + k = k(r + 1) \). But \(r + 1 \) is an integer since \(r \) is an integer. By the definition of divisibility, it follows that \(n! + k \) is divisible by \(k \). Q.E.D.

c. Yes. If \(m \) is any integer that is greater than or equal to 2, then none of the terms of the following sequence of integers is prime: \(m! + 2 \), \(m! + 3 \), \(m! + 4 \), \ldots, \(m! + m \). The reason is that each has the form \(m! + k \) for an integer \(k \) with \(2 \leq k \leq m \), and for each such \(k \), by part (b), \(m! + k \) is divisible by \(k \).

4. Epp #4.2.10:

The formula is true for \(n = 0 \): The formula holds for \(n = 1 \) because

\[1^3 = \left(\frac{1(1+1)}{2} \right)^2 \]

If the formula is true for \(n = k \), then it is true for \(n = k + 1 \): Suppose

\[1^3 + 2^3 + \ldots + k^3 = \left(\frac{k(k+1)}{2} \right)^2 \]

for an integer \(k \geq 1 \). We must show that

\[1^3 + 2^3 + \ldots + (k+1)^3 = \left(\frac{(k+1)(k+2)}{2} \right)^2 \]

By the laws of algebra and substitution from the inductive hypothesis

\[1^3 + 2^3 + \ldots + k^3 + (k+1)^3 = \left(\frac{k(k+1)}{2} \right)^2 + (k+1)^3 \]

\[= \frac{k^2(k+1)^2}{4} + \frac{4(k+1)^3}{4} \]

\[= \frac{(k+1)^2(k^2 + 4k + 4)}{4} = \left(\frac{(k+1)(k+2)}{2} \right)^2 \]

Q.E.D.
5. Epp #4.3.5:

Writing

\[S_n = \sum_{k=1}^{n} \frac{k}{(k+1)!}, \]

we find

\[S_1 = \frac{1}{2} = \frac{1}{2}, \quad S_2 = \frac{1}{2} + \frac{2}{3!} = \frac{5}{6}, \quad S_3 = \frac{5}{6} + \frac{3}{4!} = \frac{23}{24}, \]
\[S_4 = \frac{23}{24} + \frac{4}{5!} = \frac{119}{120}, \quad S_5 = \frac{119}{120} + \frac{5}{6!} = \frac{719}{720}, \]

We see that for \(S_1 \sim S_5 \), we have the relationship,

\[S_n = \frac{(n+1)! - 1}{(n+1)!}. \]

We thus conjecture that this relationship holds for any \(n \).

Proof by mathematical induction:

The formula holds for \(n = 1 \): We already showed that it holds for \(S_1 \).

If the formula holds for \(n = r, \ r \geq 1 \), **then it holds for** \(n = r + 1 \): From the definition of \(S_n \), it follows that

\[S_{r+1} = S_r + \frac{r+1}{(r+2)!}, \]

and, from the inductive hypothesis, we may rewrite this equation as

\[S_{r+1} = \frac{(r+1)! - 1}{(r+1)!} + \frac{(r+1)}{(r+2)!} \]

Using basic algebra, we now find

\[S_{r+1} = \frac{(r+1)! - 1 (r+2)}{(r+1)!} + \frac{(r+1)}{(r+2)!} \]
\[= \frac{(r+2)! - (r+2)}{(r+2)!} + \frac{(r+1)}{(r+2)!} \]
\[= \frac{(r+2)! - 1}{(r+2)!} \]

The last line,

\[S_{r+1} = \frac{(r+2)! - 1}{(r+2)!}, \]

is what we needed to show. Q.E.D.
6. **Epp #4.3.25:**

Proof by mathematical induction:

The formula holds for \(n = 1 \): In this case, the formula just asserts

\[
\frac{1}{3} = \frac{1}{3},
\]

which is evidently true.

If the formula holds for \(n = k \), **then it holds for** \(n = k + 1 \): Our inductive hypothesis is

\[
\frac{1}{3} = \frac{1 + 3 + \ldots + (2k - 1)}{(2k + 1) + (2k + 3) + \ldots + (4k - 1)},
\]

or, equivalently,

\[
\sum_{i=1}^{k} (2k + 2i - 1) = 3 \sum_{i=1}^{k} (2i - 1) \quad (1)
\]

We must prove

\[
\frac{1}{3} = \frac{1 + 3 + \ldots + (2k + 1)}{(2k + 1) + (2k + 3) + \ldots + (4k + 1)},
\]

or, equivalently,

\[
\sum_{i=1}^{k+1} (2(k + 1) + 2i - 1) = 3 \sum_{i=1}^{k+1} (2i - 1) \quad (2)
\]

Noting that we may write \(2k = 2 \cdot (\text{the sum of } k \text{ ones}) \), we may write

\[
6k + 3 = 2 \cdot \sum_{i=1}^{k} (1) + 4k + 3
\]

Adding \(6k + 3 \) to both sides of (1) and using this relationship, we obtain

\[
\sum_{i=1}^{k} (2k + 2i - 1) + 2 \sum_{i=1}^{k} (1) + 4k + 3 = 3 \sum_{i=1}^{k} (2i - 1) + 3(2k + 1)
\]

Combining the sums on the left-hand side of this equation and re-writing the additional terms, we find

\[
\sum_{i=1}^{k} (2(k + 1) + 2i - 1) + 4(k + 1) - 1 = 3 \sum_{i=1}^{k} (2i - 1) + 3(2(k + 1) - 1)
\]

The additional terms in this last equation just equal the \(k + 1 \)-th terms in the sum in (2). Hence, this last equation implies (2), which is what we had to prove. Q.E.D.
7. Epp #4.4.8:

a. Let $P(n)$ be the inequality $h_n \leq 3^n$. We prove by strong mathematical induction that the inequality is true for all integers $n \geq 0$

The inequality is true for $n = 0, 1, \text{ and } 2$: Note that $h_0 = 1 \leq 3^0$, $h_1 = 2 \leq 3^1$, and $h_2 = 3 \leq 3^2$.

If the inequality is true for all integers i with $i \leq k$, then it is true for k:

Let k be an integer with $k > 2$, and suppose the inequality holds for all integers i with $0 \leq i \leq k$. We must show that the inequality is true for k. By definition, we have

$$h_k = h_{k-1} + h_{k-2} + h_{k-3},$$

from which we infer that

$$h_k \leq 3^{k-1} + 3^{k-2} + 3^{k-3} = 3^{k-3}(3^2 + 3 + 1) = 3^{k-3} \cdot 13$$

by the inductive hypothesis. It follows that

$$h_k \leq 3^{k-3} \cdot 13 \leq 3^{k-3} \cdot 27 = 3^k,$$

which is what we needed to show. Q.E.D.

b. Let s be any real number such that $s^3 \geq s^2 + s + 1$, and let $P(n)$ be the inequality $h_n \leq s^n$. We prove by strong mathematical induction that this inequality is true for all integers $n \geq 2$.

The inequality is true for $n = 2, 3, \text{ and } 4$: Because $s \geq 1.83$, $h_2 = 3 \leq 3.3489 = 1.83^2 < s^2$, $h_3 = h_0 + h_1 + h_2 = 1 + 2 + 3 = 6 \leq 6.1285 = 1.83^3$, and $h_4 = h_1 + h_2 + h_3 = 2 + 3 + 11 \leq 11.2151 = 1.83^4$.

If the inequality is true for all integers i with $i \leq k$, then it is true for k:

Let k be an integer with $k > 4$, and suppose that the inequality is true for all integers with $0 \leq i \leq k$. We must show that the inequality is true for k. By definition, we have

$$h_k = h_{k-1} + h_{k-2} + h_{k-3},$$

from which we infer that

$$h_k \leq s^{k-1} + s^{k-2} + s^{k-3} = s^{k-3}(s^2 + s + 1)$$

by the inductive hypothesis. Since by this same hypothesis, $s^2 + s + 1 \leq s^3$, it follows that

$$h_k \leq s^k,$$

which is what we needed to show. Q.E.D.
8. Epp #4.5.7:

I. Basis Property: $I(0)$ is the statement:

\[
largest = \text{the value of } A[1]\]

and it follows from the pre-condition that this statement is true.

II. Inductive Property: Suppose k is a non-negative integer such that $G \land I(k)$ is true before an iteration of the loop. Then as execution reaches the top of the loop, $i \neq m$, the guard is passed and statement 1 is executed. Now, before the execution of statement 1, $i_{\text{old}} = k + 1$. So, after execution of statement 1, $i_{\text{new}} = i_{\text{old}} + 1 = k + 2$. Also, before statement 2 is executed, $largest_{\text{old}} = \text{the maximum value of } A[1], A[2], \ldots, A[k+1]$. Statement 2 checks whether $A[i_{\text{new}}] = A[k+2] > largest_{\text{old}}$. If the condition is true, then $largest_{\text{new}}$ is set equal to $A[k+2]$, which is the maximum value of $A[1], A[2], \ldots, A[k+1], A[k+2]$. If the condition is false, then $A[k+2] \leq largest_{\text{old}}$ and so $largest_{\text{old}}$ is the maximum value of $A[1], A[2], \ldots, A[k+1], A[k+2]$. In this case, we set $largest_{\text{new}}$ equal to $largest_{\text{old}}$. In either case, $largest_{\text{new}}$ equals the maximum value of $A[1], A[2], \ldots, A[k+1], A[k+2]$. Hence, $I(k+1)$ is true.

III. Eventual Falsity of the Guard: The guard G is the condition $i \neq m$. By I and II, it is known that for all iterations of the loop $I(n)$ is true. Hence, after $m-1$ iterations of the loop, $I(m)$ is true and G is false.

IV. Correctness of the Post-Condition: Suppose that N is the least number of iterations after G is false and $I(n)$ is true. In this case, we have from III that $N = m - 1$ and from I and II that $i = m$ and $largest = \text{the maximum value of } A[1], A[2], \ldots, A[m]$. Hence, the post-condition is satisfied.