CLASS HANDOUT FOR THE EXTENDED EUCLIDEAN ALGORITHM

SAMUEL J. LOMONACO, JR.

The extended Euclidean algorithm is as follows:

Procedure Euclid-Extended (α, β)

local a, b, B, r, q $\mathbf{global} \ A$ # Input is integers α and β , not both zero. # Final value of $a = \gcd(\alpha, \beta)$ and final value of $A = (x, y) \in \mathbb{Z} \times \mathbb{Z}$ # is such that $gcd(\alpha, \beta) = \alpha x + \beta y$. Moreover, the final value A is # a side effect of the algorithm $a \leftarrow |\alpha|;$ A = (1, 0) $b \leftarrow |\beta|; \qquad B = (0,1)$ while $b \neq 0$ do $q \leftarrow \left| \frac{a}{b} \right|$ $r \longleftarrow a - q \cdot b; \qquad R \longleftarrow A - q \cdot B$ $a \longleftarrow b;$ $A \longleftarrow B$ $B \longleftarrow R$ end while; return(a)end

Example 1. Let $\alpha = 18$ and $\beta = 30$. Then the sequence of values computed for q, a, A, b, B in the above algorithm is as follows:

Iteration No.	q	a	A	b	В
-	—	18	(1,0)	30	(0, 1)
1	0	30	(0,1)	18	(1, 0)
2	1	18	(1,0)	12	(-1,1)
3	1	12	(-1,1)	6	(2, -1)
4	2	6	(2, -1)	0	-

Thus, $gcd(18, 30) = 6 = 2 \cdot (18) + (-1) \cdot (30)$.

University of Maryland Baltimore County, Baltimore, MD $\ 21250$ $E\text{-}mail\ address: lomonaco@umbc.edu$

Date: November 23, 2010.