CLASS HANDOUT FOR THE EXTENDED EUCLIDEAN ALGORITHM

SAMUEL J. LOMONACO, JR.

The extended Euclidean algorithm is as follows:
Procedure Euclid-Extended (α, β)
local a, b, B, r, q
global A
\# Input is integers α and β, not both zero.
\# Final value of $a=\operatorname{gcd}(\alpha, \beta)$ and final value of $A=(x, y) \in \mathbb{Z} \times \mathbb{Z}$
\# is such that $\operatorname{gcd}(\alpha, \beta)=\alpha x+\beta y$. Moreover, the final value A is
\# a side effect of the algorithm
$a \longleftarrow|\alpha| ; \quad A=(1,0)$
$b \longleftarrow|\beta| ; \quad B=(0,1)$
while $b \neq 0$ do
$q \longleftarrow\left\lfloor\frac{a}{b}\right\rfloor$
$r \longleftarrow a-q \cdot b ; \quad R \longleftarrow A-q \cdot B$
$a \longleftarrow b ; \quad A \longleftarrow B$
$b \longleftarrow r ; \quad B \longleftarrow R$
end while;
return (a)
end

Example 1. Let $\alpha=18$ and $\beta=30$. Then the sequence of values computed for q, a, A, b, B in the above algorithm is as follows:

Iteration No.	q	a	A	b	B
-	-	18	$(1,0)$	30	$(0,1)$
1	0	30	$(0,1)$	18	$(1,0)$
2	1	18	$(1,0)$	12	$(-1,1)$
3	1	12	$(-1,1)$	6	$(2,-1)$
4	2	6	$(2,-1)$	0	-

Thus, $\operatorname{gcd}(18,30)=6=2 \cdot(18)+(-1) \cdot(30)$.
University of Maryland Baltimore County, Baltimore, MD 21250
E-mail address: lomonaco@umbc.edu

[^0]
[^0]: Date: November 23, 2010.

