1. (20) If A is an $n \times n$ matrix, and $\{b_1, \ldots, b_k\} \subset \mathbb{R}^n$ so that the vector set $\{Ab_1, \ldots, Ab_k\}$ is linearly independent. True or False? The vector set $\{b_1, \ldots, b_k\}$ is linearly independent.

Solution. Let $\alpha_1, \ldots, \alpha_k$ be a set of scalars so that $0 = \alpha_1 b_1 + \ldots + \alpha_k b_k$. Then

$$0 = A(\alpha_1 b_1 + \ldots + \alpha_k b_k) = \alpha_1 Ab_1 + \ldots + \alpha_k Ab_k.$$

Due to linear independence of the vector set $\{Ab_1, \ldots, Ab_k\}$ one has $0 = \alpha_1 = \ldots = \alpha_k$. This yields linear independence of the set $\{b_1, \ldots, b_k\}$.

2. (20) Let A be an $n \times n$ matrix. True or False? If $\text{Null } A^k = \text{Null } A^{k+1}$, then $\text{Null } A^{k+1} = \text{Null } A^{k+2}$.

Solution. Let $x \in \text{Null } A^{k+2}$, i.e., $0 = A^{k+2}x = A^{k+1}(Ax)$. This shows that $Ax \in \text{Null } A^{k+1} = \text{Null } A^k$, and $0 = A^k(Ax) = A^{k+1}x$. Hence $\text{Null } A^{k+2} \subseteq \text{Null } A^{k+1}$.

3. (20) Let A be an $n \times m$ matrix. True or False? $\dim \text{Null } A + \dim \text{Col } A = m$.

Solution. $\dim \text{Col } A$ is the number of pivot positions in an echelon form of A. $\dim \text{Null } A$ is a number of columns of A that are not pivot columns. The sum of the two numbers is the total number of columns in A which is m.

4. (20) Let

$$A = \begin{bmatrix} 1 & 0 & 7 & 2 & 5 \\ 2 & 1 & 15 & 0 & 20 \end{bmatrix}.$$

Find $\dim \text{Null } A$.

Solution. Since $\dim \text{Col } A = 2$, one has $\dim \text{Null } A = 5 - 2 = 3$.

5. (20) Let L be a line in \mathbb{R}^n defined by

$$L = \{x + ty, \ -\infty < t < \infty\} \text{ with } ||y|| = 1.$$

For a vector $a \in \mathbb{R}^n$ find p the orthogonal projection of a on L.

Solution. Since $p \in L$ one has $p = x + \alpha y$. Note that the vector $a - p$ is orthogonal to the direction vector y, hence

$$0 = (a - x - \alpha y)^T y = (a - x)^T y - \alpha y^T y, \text{ and } \alpha = (a - x)^T y.$$

Finally $p = x + y(a - x)^T y$.

6. (20) True or False? If $A = [a_1, \ldots, a_m]$, then $AA^T = a_1 a_1^T + \ldots + a_m a_m^T$.

Solution. Since $A = [a_1, 0, \ldots, 0] + \ldots + [0, \ldots, 0, a_n]$ a direct computation shows that $AA^T = a_1 a_1^T + \ldots + a_m a_m^T$.