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The rapid advances in processor, memory, and radio technology have enabled the
development of distributed networks of small, inexpensive nodes that are capable
of sensing, computation, and wireless communication. Sensor networks of the
future are envisioned to revolutionize the paradigm of collecting and processing
information in diverse environments. However, the severe energy constraints and
limited computing resources of the sensors, present major challenges for such a
vision to become a reality. We consider a network of energy–constrained sensors
that are deployed over a region. Each sensor periodically produces information as
it monitors its vicinity. The basic operation in such a network is the systematic
gathering and transmission of sensed data to a base station for further processing.
During data gathering, sensors have the ability to perform in–network aggregation
(fusion) of data packets enroute to the base station. The lifetime of such a sensor
system is the time during which we can gather information from all the sensors
to the base station. Given the location of sensors and the base station and the
available energy at each sensor, we are interested in finding an efficient manner in
which the data should be collected from all the sensors and transmitted to the base
station, such that the system lifetime is maximized. This is the maximum lifetime
data gathering problem. We present polynomial–time algorithms to solve the data
gathering problem, with and without data aggregation. Further, our experimental
results demonstrate that the proposed algorithms significantly outperform previous
methods, in terms of system lifetime.

1 Introduction

The recent advances in micro–sensor technology and low–power analog/digital
electronics, have led to the development of distributed, wireless networks of
sensor devices 7,12,13. Sensor networks of the future are envisioned to consist
of hundreds of inexpensive nodes, that can be readily deployed in physical
environments to collect useful information (e.g. seismic, acoustic, medical
and surveillance data) in a robust and autonomous manner. However, there
are several obstacles that need to be overcome before this vision becomes a
reality 6. Such obstacles arise from the limited energy, computing capabilities
and communication resources available to the sensors.

cSupported in part by NASA under Cooperative Agreement NCC5–315 and Contract NAS5-
32337, and by NSF under grant IRI–9729495.
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We consider a system of sensor nodes that are homogeneous and highly
energy–constrained. Further, replenishing energy via replacing batteries on
hundreds of nodes (in possibly harsh terrains) is infeasible. The basic operation
in such a system is the systematic gathering of sensed data to be eventually
transmitted to a base station for processing. The key challenge in such data
gathering is conserving the sensor energies, so as to maximize their lifetime.
To this end, a lot of research has been directed towards energy–aware routing
in the context of sensor networks 3,5.

Data fusion or aggregation has emerged as a useful paradigm in sensor
networks. The key idea is to combine data from different sensors to elim-
inate redundant transmissions, and provide a rich, multi–dimensional view
of the environment being monitored. Krishnamachari et al 8 argue that this
paradigm shifts the focus from address–centric approaches (finding routes be-
tween pairs of end nodes) to a more data–centric approach (finding routes
from multiple sources to a destination that allows in–network consolidation of
data). Most of the previous work 2,6,9,10 in the related area aims at reduc-
ing the energy expended by the sensors during the process of data gathering.
Directed diffusion 2 is based on a network of nodes that can co–ordinate to
perform distributed sensing of an environmental phenomenon. Such an ap-
proach achieves significant energy savings when intermediate nodes aggregate
responses to queries. The spin protocol 6 uses meta–data negotiations between
sensors to eliminate the transmission of redundant data through the network.
In pegasis

9, sensors form chains so that each node transmits and receives from
a nearby neighbor. Gathered data moves from node to node, gets aggregated
and is eventually transmitted to the base station. In 10, the authors propose
a hierarchical scheme based on pegasis that reduces the average energy and
delay incurred in gathering the sensed data. In related work, Bhardwaj et al 1

derive upper bounds on the lifetime of a sensor network that collects data from
a specified region using some energy–constrained nodes. Instead of trying to
minimize the energy consumed by each sensor, in this paper we directly ad-
dress the performance objective of interest, that is to maximize the lifetime of
the system. To this end, we propose novel algorithms to solve the maximum
lifetime data gathering problem in distributed sensor networks when (a) sen-
sors are allowed to perform in–network aggregation of data packets, and (b)
no sensor is allowed to aggregate its data packets with those of another sensor.
Our solutions are near–optimal and can be computed in polynomial time.

The rest of the paper is organized as follows. In section 2, we formulate
the data gathering problem and describe our algorithms to solve the problem,
both with and without data aggregation. In section 3, we present experimental
results based on our algorithms. Finally, in section 4 we conclude the paper.
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2 The Data Gathering Problem

Consider a network of n sensor nodes 1, 2, . . . , n and a base station node t
labeled n+1 distributed over a region. The locations of the sensors and the base
station are fixed and known apriori. Each sensor produces some information
as it monitors its vicinity. We assume that each sensor generates one data
packet per time unit to be transmitted to the base station. For simplicity,
we refer to each time unit as a round. We assume that all data packets have
size k bits. The information from all the sensors needs to be gathered at each
round and sent to the base station for processing. We assume that each sensor
has the ability to transmit its packet to any other sensor in the network or
directly to the base station. Further, each sensor i has a battery with finite,
non-replenishable energy Ei. Whenever a sensor transmits or receives a data
packet it consumes some energy from its battery. The base station has an
unlimited amount of energy available to it.

Our energy model for the sensors is based on the first order radio model
described in 5. A sensor consumes εelec = 50nJ/bit to run the transmitter
or receiver circuitry and εamp = 100pJ/bit/m2 for the transmitter amplifier.
Thus, the energy consumed by a sensor i in receiving a k-bit data packet is
given by,

Rxi = εelec × k (1)

while the energy consumed in transmitting a data packet to sensor j is given
by,

Txi,j = εelec × k + εamp × d2
i,j × k (2)

where di,j is the distance between nodes i and j.
We define the lifetime T of the system to be the number of rounds until the

first sensor is drained of its energy. A data gathering schedule specifies, for each
round, how the data packets from all the sensors are collected and transmitted
to the base station. For brevity, we refer to a data gathering schedule simply
as a schedule. Observe that a schedule can be thought of as a collection of
T directed trees, each rooted at the base station and spanning all the sensors
i.e. a schedule has one tree for each round. The lifetime of a schedule equals
the lifetime of the system under that schedule. Clearly, the system lifetime is
intrinsically connected to the data gathering schedule. Our objective is to find
a schedule that maximizes the system lifetime T .

2.1 Data Gathering with Aggregation

Data aggregation performs in-network fusion of data packets, coming from
different sensors enroute to the base station, in an attempt to minimize the
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number and size of data transmissions and thus save sensor energies2,5,8,9. Such
aggregation can be performed when the data from different sensors are highly
correlated. As in previous work 2,5,8,9, we make the simplistic assumption that
an intermediate sensor can aggregate multiple incoming packets into a single
outgoing packet.
The Maximum Lifetime Data Aggregation (MLDA) problem: Given
a collection of sensors and a base station, together with their locations and
the energy of each sensor, find a data gathering schedule, where sensors are
permitted to aggregate incoming data packets, with maximum lifetime.

Consider a schedule S with lifetime T rounds. Let fi,j be the total number
of packets that node i (a sensor) transmits to node j (a sensor or base station)
in S. Since any valid schedule must respect the energy constraints at each
sensor, it follows that for each sensor i = 1, 2, . . . , n,

n+1∑

j=1

fi,j .Txi,j +

n∑

j=1

fj,i.Rxi ≤ Ei. (3)

Recall that each sensor, for each one of the T rounds, generates one data packet
that needs to be collected, possibly aggregated, and eventually transmitted to
the base station.
The schedule S induces a flow network G = (V, E). The flow network G is a
directed graph having as nodes all the sensors and the base station, and having
edges (i, j) with capacity fi,j whenever fi,j > 0.
Theorem 1 Let S be a schedule with lifetime T , and let G be the flow network
induced by S. Then, for each sensor s, the maximum flow from s to the base
station t in G is ≥ T .
Proof. Each data packet transmitted from a sensor must reach the base
station. Observe that, the packets from s could possibly be aggregated with
one or more packets from other sensors in the network. Intuitively, we need to
guarantee that each of the T values from s influences the final value(s) received
at the base station. In terms of network flows, this implies that sensor s must
have a maximum s− t flow of size ≥ T to the base station in the flow network
G.

Thus, a necessary condition for a schedule to have lifetime T is that each
node in the induced flow network can push flow T to the base station.

Next, we consider the problem of finding a flow network G with maximum
T , that allows each sensor to push flow T to the base station, while respecting
the energy constraints in (3) at all the sensors. Clearly what needs to be
found are the capacities of the edges of G. We call such a flow network G
an admissible flow network with lifetime T . An admissible flow network with
maximum lifetime is called an optimal admissible flow network.
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Finding a near–optimal admissible flow network. An optimal admissible
flow network can be found using the following integer program with linear
constraints. The integer program, in addition to the variables for the lifetime
T and the edge capacities fi,j , uses the following variables: for each sensor

k = 1, 2, . . . , n, let π
(k)
i,j be a flow variable indicating the flow that k sends to

the base station t over the edge (i, j). The integer program is given by,

Maximize T (4)

subject to the energy constraint (3) and the constraints (5)–(8) below, for each
k = 1, 2, . . . , n,

n∑

j=1

π
(k)
j,i =

n+1∑

j=1

π
(k)
i,j , for all i = 1, 2, . . . , n and i 6= k, (5)

T +

n∑

j=1

π
(k)
j,k =

n+1∑

j=1

π
(k)
k,j , (6)

0 ≤ π
(k)
i,j ≤ fi,j , for all i = 1, 2, . . . , n and j = 1, 2, . . . , n + 1 (7)

n∑

i=1

π
(k)
i,n+1 = T, (8)

where all the variables are required to take integer values. For each k =
1, 2, . . . , n, constraints (5) and (6) enforce the flow conservation principle at
a sensor; constraint (8) ensures that T flow from sensor k reaches the base
station; and constraint (7) ensures that the capacity constraints on the edges
of the flow network are respected. Moreover, constraint (3) is used to guaran-
tee that the edge capacities of the flow network respect the sensor’s available
energy.

The linear relaxation of the above integer program, i.e. when all the vari-
ables are allowed to take fractional values, can be computed in polynomial–
time. Then, we can obtain a very good approximation for the optimal admis-
sible flow network by first fixing the edge capacities to the floor of their values
obtained from the linear relaxation (so that the energy constrains are all sat-
isfied), and then solving the linear program (4) subject to constraints (5)–(8)
(without requiring anymore that the flows are integers, since a solution with
integer flows can always be found). d

dThe reduction in the system lifetime achieved, w.r.t the fractional optimal lifetime, is at
most the maximum cardinality of any min s–t cut.
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Constructing a schedule from an admissible flow network G. Next,
we discuss how to get a schedule from an admissible flow network. Recall that
a schedule is a collection of directed trees rooted at the base station that span
all the sensors, with one such tree for each round. Each such tree specifies
how data packets are gathered and transmitted to the base station. We call
these trees aggregation trees. An aggregation tree may be used for one or more
rounds; we indicate the number of rounds f an aggregation tree is used by
associating the value f with each one of its edges; we call f as the lifetime
of the aggregation tree. Further, we define the depth of a sensor v to be the
average of its depths in each of the aggregation trees, and the depth of the
schedule to be max{depth(v) : v ∈ V }.
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Figure 1: An admissible flow network G with lifetime 100 rounds, and two aggregation trees
A1 and A2 with lifetimes 60 and 40 rounds respectively. The depth of the schedule with
aggregation trees A1 and A2 is 2.

Figure 1 shows an admissible flow network G with lifetime T = 100 and
two aggregation trees A1 and A2, with lifetimes 60 and 40 respectively. By
looking at one of these trees, say A1, we see that for each one of 60 rounds,
sensor 2 transmits one packet to sensor 1, which in turn aggregates it with it’s
own data packet and then sends one data packet to the base station. Given
an admissible flow network G with lifetime T and a directed tree A rooted at
the base station t with lifetime f , we define the (A, f)–reduction G′ of G to
be the flow network that results from G after reducing the capacities of all
of its edges, that are also in A, by f . We call G′ the (A, f)–reduced G. An
(A, f)–reduction G′ of G is feasible if the maximum flow from v to the base
station t in G′ is ≥ T − f for each vertex v in G′. Note that A does not have
to span all the vertices of G, and thus it is not necessarily an aggregation tree.
Moreover, if A is an aggregation tree, with lifetime f , for an admissible flow
network G with lifetime T , and the (A, f)–reduction of G is feasible, then the
(A, f)–reduced flow network G′ of G is an admissible flow network with lifetime
T − f . Therefore, we can devise a simple iterative algorithm, to construct a
schedule for an admissible flow network G with lifetime T , provided we can
find such an aggregation tree A.
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GETTREE (Flow Network G, Lifetime T , Base Station t)
1 initialize f ← 1
2 let A = (Vo, Eo) where Vo = {t} and Eo = ∅
3 while A does not span all the nodes of G do
4 for each edge e = (i, j) ∈ G such that i 6∈ Vo and j ∈ Vo do
5 let A′ be A together with the edge e

6 // check if the (A′, 1)–reduction of G is feasible
7 let Gr be the (A′, 1)–reduction of G

8 if maxflow(v, t, Gr) ≥ T − 1 for all nodes v of G

9 // replace A with A′

10 Vo ← Vo ∪ {i}, Eo ← Eo ∪ {e}
11 break
12 let cmin be the minimum capacity of the edges in A

13 let Gr be the (A, cmin)–reduction of G

14 if maxflow(v, t, Gr) ≥ T − cmin for all nodes v of G

15 f ← cmin

16 replace G with the (A, f)–reduction of G

17 return f , G, A

Figure 2: Constructing an aggregation tree A with lifetime f from an admissible flow network
G with lifetime T , such that the (A, f)–reduction of G is feasible.

We use the GetTree algorithm in Figure 2 to get an aggregation tree
A with lifetime f from an admissible flow network G with lifetime T ≥ f .
Throughout this routine, we maintain the invariant that A is a tree rooted at t
and the (A, f)–reduction of G is feasible. Tree A is formed as follows. Initially
A contains just the base station. While A does not span all the sensors, we
find and add to A an edge e = (i, j), where i 6∈ A and j ∈ A, provided that the
(A′, f)–reduction of G is feasible–here A′ is the tree A together with the edge e
and f is the minimum of the capacities of the edges in A′. The running time of
this algorithm is polynomial in the number of sensors. Given a flow network G
and base station t such that each sensor s has a minimum s− t cut of size ≥ T
(i.e. the maximum flow from s to t in G is ≥ T ), we can prove that it is always
possible to find a sequence of aggregation trees, via the GetTree algorithm,
that can be used to aggregate T data packets from each of the sensors. The
proof of correctness is based on a powerful theorem in graph theory 4,11 and
is omitted due to lack of space. We refer to the approach described in this
section, for finding a maximum lifetime schedule with data aggregation, as the
mlda approach.
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2.2 Data Gathering without Aggregation

Data aggregation, while being a useful paradigm, is not applicable in all sensing
environments. Imagine a scenario where the data being transmitted by the
nodes are completely different (no redundancy) e.g. video images from distant
regions of a battlefield. In such situations, it might not be feasible to fuse data
packets from different sensors into a single data packet, in any meaningful way.
This implies that the number and size of transmissions will increase, thereby
draining the sensor energies much faster. The problem is finding an efficient
schedule to collect and transmit the data to the base station, such that the
system lifetime T is maximized. We call this variation of the data gathering
problem as the Maximum Lifetime Data Routing (MLDR) problem.

Since no in–network aggregation is performed, the mldr problem can be
viewed as a maximum flow problem with energy constraints at the sensors,
subject to integral flows. The mldr program can be solved by the following
integer program with linear constraints:

maximize T, (9)

subject to energy constraint (3) for each sensor and the flow conservation
constraints

T +

n∑

j=1

fi,j =

n+1∑

j=1

fj,i, for all i = 1, 2, . . . , n and j = 1, 2, . . . , n + 1, (10)

where all variables T and fi,j are required to be non-negative integers. A near–
optimal solution to the mldr problem can be obtained as follows. First, solve
the linear relaxation of the above integer program, by replacing the requirement
that all the T and fi,j variables are non-negative integers, with the requirement
that they are non-negative real numbers. Second, compute a solution to the
linear program that consists of equations (9) and (10), by fixing the values of
the fi,j variables to the floor of their values obtained in the previous step. The
solution obtained in this second step is guaranteed to have integer values for
all the variables, since it is a max–flow problem with integer capacities.

Observe that this solution provides us readily with a schedule for collecting
the data packets without aggregation from all the sensors, during the lifetime of
the system. A simple way to construct such a schedule would be to take the flow
network obtained from the solution, and push T data packets from each sensor
on one or more paths (with available capacities) to the base station. We define
the depth of this schedule to be the maximum length of a path used by any
sensor to transmit its data to the base station. Our solution is an approximate
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solution to the mldr problem, and provides a near–optimal system lifetime
that is efficiently computable. We refer to the approach described in this
section, for finding a maximum lifetime schedule without data aggregation, as
the mldr approach.

3 Experiments

For the experimental results presented in this section, we consider a network
of sensors randomly distributed in a 50m × 50m field. The number of sensors
in the network, i.e. the network size, is varied to be 10, 20, 30, 40, 50 and
60, respectively. Each sensor has an initial energy of 1J and the base station
is located at (25, 150). Each sensor generates packets of size 1000 bits. The
energy model for the sensors is based on the first order radio model described
in section 2. We compare the data gathering schedule given by the mlda

(mldr) algorithm with that obtained from a chain-based hierarchical protocol
proposed by Lindsey, Raghavendra and Sivalingam 10. For brevity, we refer to
this protocol as the lrs protocol. We choose this protocol since it significantly
outperforms other competitive protocols (e.g. leach 5) in terms of system
lifetime.

LRS protocol for constructing a data gathering schedule : In this pro-
tocol, sensor nodes are initially grouped into clusters based on their distances
from the base station. A chain is formed among the sensor nodes in a cluster
at the lowest level of the hierarchy. Gathered data, moves from node to node,
gets aggregated, and reaches a designated leader in the chain i.e. the cluster
head. At the next level of the hierarchy, the leaders from the previous level
are clustered into one or more chains, and the data is collected and aggregated
in each chain in a similar manner. Thus, for gathering data in each round,
each sensor transmits to a close neighbor in a given level of the hierarchy. This
occurs at every level, but the only difference is that nodes that are receiving
at each level are the only nodes that rise to the next level in the hierarchy.
Finally, at the top level, there is a single leader node transmitting to the base
station. To increase the lifetime of the system, the leader in each chain is cho-
sen in a round-robin manner in each round. Observe that, the manner in which
chain leaders are selected in each level of the hierarchy, naturally defines an
aggregation tree, for each round of data gathering. For the sake of comparison,
we implemented the lrs protocol to perform data gathering, with and without
aggregation. In the case of no aggregation, sensors use the same chain-based
hierarchy to transmit their packets to the base station. However, the packets
are not aggregated when the data moves from node to node. In both cases, we
fix the size of each chain at the lowest level of the hierarchy to 10 and adjust
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the number of levels based on the network size (with a maximum of 3 levels 10).
Each experiment corresponds to a random placement of the sensors, for

a particular network size. In each experiment, we measure the lifetime T ,
i.e. the number of rounds before the first sensor is drained of its energy, for
the data gathering schedule given by the lrs protocol. We also compute the
depth of each sensor by looking at its position in the hierarchy in each round,
and the depth D of the schedule. For the same placement of sensors, we
measure the lifetime and depth of the data gathering schedules obtained from
the mlda and mldr algorithms. We define the performance ratio R as the
ratio of the lifetime given by mlda (mldr) to the lifetime given by lrs with
(without) aggregation, respectively. Recall that, the (integral) solution given
by the mlda (mldr) algorithm is an approximation of the optimal (fractional)
solution. In order to estimate the quality of approximation, we also measure
the system lifetime given by the optimal fractional solutions (denoted as OPT )
for the mlda and (mldr) algorithms.

Without Data Aggregation
n OPT MLDR LRS R

T T D T D Min Max
10 301.6 301 2.1 201 4.1 1.4 1.6
20 306.6 306 3.0 105 6.2 1.8 7.8
30 308.2 308 2.7 146 5.9 1.7 7.7
40 322.3 322 3.8 172 6.2 1.8 3.0
50 320.1 320 4.2 161 6.2 1.7 3.9
60 315.6 315 4.5 158 6.7 2.0 3.6

Table 1: mldr results for a 50 × 50m sensor network.

With Data Aggregation
n OPT MLDA LRS R

T T D T D Min Max
10 5712.8 5712 4.5 5288 4.6 1.06 1.12
20 5809.2 5867 5.1 5185 4.3 1.11 1.16
30 6246.5 6265 5.0 5355 4.2 1.10 1.26
40 6611.8 6610 4.9 5592 4.4 1.15 1.45
50 6809.0 6808 5.8 5466 5.1 1.20 1.72
60 7176.2 7174 6.2 5872 5.2 1.16 1.64

Table 2: mlda results for a 50 × 50m sensor network.
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Tables 1 and 2 summarize our main results. Note that the results for each
network size are averaged across 20 different experiments. Further, the min and
max columns for R indicate the minimum and maximum performance ratios
observed from those experiments. We make the following key observations:

• In case of no data aggregation, the lifetime of the schedule given by the
mldr algorithm is always significantly better than the lifetime given by
the lrs protocol. In fact, the mldr algorithm performs 1.4 to 7.8 times
better than the lrs protocol in terms of system lifetime. In case of data
aggregation, the lifetime of the schedule given by the mlda algorithm
significantly outperforms the lifetime given by the lrs protocol. In this
case, the mlda algorithm performs 1.06 to 1.72 times better than the
lrs protocol in terms of system lifetime.

• The average depth of a data gathering schedule obtained from the mldr

algorithm is lower than that of the lrs protocol, while the depth of a
schedule given by the mlda algorithm is on an average slightly higher
than that of the lrs protocol.

The depth D of a data gathering schedule is an interesting metric since it
gives an estimate of the (maximum) average delay e that is incurred in sending
data packets from any sensor to the base station. Note that the 3 level protocol
in lrs is specifically devised to reduce the average depth of each sensor 10. To
this end, the mlda (mldr) algorithm does quite well in attaining comparable
sensor depths, while delivering large improvements in system lifetime.

As mentioned before, the (integral) solution given by the mlda (mldr)
algorithm is an approximation of the optimal (fractional) solution. We ob-
served that, for the given set of experiments such an approximation leads to
a reduction in the system lifetime by no more than 3 rounds. Based on the
results in tables 1 and 2, we believe that a data gathering schedule given by
the mlda (mldr) algorithm is near–optimal.

4 Concluding Remarks

In this paper, we described approaches to solve the maximum lifetime data
gathering problem in sensor networks, with and without data aggregation.
Further, we presented experimental results demonstrating that our solutions
are near–optimal and attain significant improvements in system lifetime, when
compared to previous protocols. In future work, we plan to investigate faster

eOn a 1Mbps link, a 1000 bit message can incur a delay of 1 ms on each hop to the base
station.
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heuristics for solving the data gathering problem in large sensor networks.
Further, we plan to study the data gathering problem with depth constraints
for individual sensors, in order to attain desired tradeoffs between the delay
experienced by the sensors and the lifetime achieved by the system.
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