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Data Replication on Networks with Bounded Treewidth

Konstantinos Kalpakis!? and Koustuv Dasgupta!

Abstract

We consider the problem of placing copies of an object in a distributed system,
in order to minimize the cost of servicing read and write requests to object, together
with the cost of storing those copies, when the number of copies allowed is given. The
network is modeled by an undirected weighted graph. The set of nodes that have a
copy of the object, called replica nodes, constitute the replica set of the object. Read
requests of a node are serviced from the closest replica node. Write requests of a node
are forwarded to the closest replica node. Replica nodes propagate write requests to
all the other replica nodes using a minimum spanning tree of the distance graph that
spans the replica set. The cost associated with a replica set equals the cost of servicing
all the read and write requests, plus the storage cost at all the replica nodes. We are
interested in finding a replica set with minimum cost, i.e. an optimal replica set.

Given a graph G with n nodes and treewidth bounded by a constant ¢, and an
integer k, we provide a O(n?*5)-time algorithm for finding an optimal replica set
with < k replicas, taking into consideration the read, write, and storage costs. Our
algorithm can also find optimal replica sets with > k replicas, a requirement that may
be imposed due to reliability considerations.

Keywords: data replication, distributed systems, multicasting, facility location, p-medians,
file allocation, bounded treewidth.

1 Introduction

Data replication can improve the performance and availability of a distributed information
system. The recent growth in the World-Wide-Web (WWW) is rapidly moving us towards
highly distributed and wholly interconnected information systems. In such systems, a data
object is accessed, i.e. read and written from multiple locations that are geographically
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distributed world-wide. For example, in electronic publishing a document(e.g. a newspaper,
an article or a book) may be co-authored and read by users in a distributed fashion. Time-
sensitive documents like weather forecasts and stock market prices are read and updated
from all over the world. Raw data (like those on scientific experiments or satellite data) are
used and updated by numerous laboratories. Even images (e.g. X-rays, road maps) are read
and annotated by users spread world-wide. In the mobile computing environments of the
future, an identification will be associated with each user rather than a physical location.
The location of the user needs to be updated as a result of the user’s mobility, and it will
be read on behalf of the callers. The replication of objects has a critical implications for the
overall performance and availability of such systems.

The growing popularity of the World-Wide-Web over the last decade has added a whole
new dimension to our understanding of a distributed information system. The Web can
be easily viewed as the largest distributed computing resource with millions of bytes of
repository data. Reports show that the percentage of network traffic generated due to
HTTP requests has gone up from 19% in 1994 to a significant 40% in 1996 (see [6]). There is
common agreement that with the Web, we are currently experiencing an exponential growth
in demand. The proliferation of new information services and the enormous potential for
commercial use of the Internet has led to a number of problems - overloaded servers, traffic
congestion and increasing client latencies. As pointed about by Seltzer and Manley [16], the
answer to the question “Why do users wait on the Web?” still eludes the research community.
In an environment like this (where performance and cost factors are of crucial importance) it
is only fitting that a great deal of research has been conducted to devise efficient schemes that
guarantee faster and better services on the Internet. Specifically, replication (or mirroring)
of web servers has been commonly used to address these problems of scale (Rabinovich and
Aggarwal [15]). Distributing client requests among replicas is an interesting issue, since it
deals with the two (often conflicting goals) of increasing client-server proximity and load
distribution. Note that caching is often used to address this problem of replication (Cao
and Irani [6], Heddaya and Mirdad [10]), being sometimes advantageous and at other times
detrimental. Caching creates or deletes replicas at a client, as need dictates. We consider
caching to be a particular case of data replication in the sense that it is usually analyzed
in a client/server architecture and with respect to a given consistency model, in order to
improve performance at a client. Data replication is a more general concept, that can be
applied to richer architectures, for multiple consistency models, and for optimizing different
cost functions.

In this paper, we consider the problem of placing copies of an object at multiple locations
in a distributed system, in order to minimize the total cost of servicing the read/write
requests. The interconnection network of the system is modeled by an undirected graph
G. Consider an object 0. Each node of the system issues a number of read requests and
a number of write requests to the object. Let S be a subset of the nodes of the graph at
which there exist copies (replicas) of the object. The subset of nodes S is called a replica set.
Assume that each node of the graph sends its read/write requests to the closest node that



has a copy of the object, and that each write to a copy of the object must be propagated
to all other copies of the object. We assume that only nodes that have a replica of the
object can propagate write requests to other replicas. The write propagation protocol we
use is the following: each writer node sends its request to its closent replica node; writes are
broadcasted to all other replica nodes using a minimum spanning tree of a certain graph,
the subgraph of the complete distance graph of G' that spans the replica set. The model we
use in this paper is based on the model of Wolfson and Milo [19]. The cost of servicing a
read request equals the distance of the requesting node from its closest replica. The cost of
servicing a write request equals the distance of the requesting node from its closest replica
together with the cost of the minimum spanning tree used by the write propagation protocol.
Further, we assume that having a copy of the object at a node has an associated storage
cost that depends on the object and that node. The cost of a replica set is equal to the total
read, write, and storage costs. We are interested in finding a replica set of minimum cost
with at most £ replicas, for a given integer k. This is the optimal replica set problem with
storage costs.

The optimal replica set (file allocation) problem has been studied extensively in the
literature. Dowdy and Foster [7] survey a number of mixed linear programming models for
the file allocation problem. Wolfson and Milo [19] consider the optimal replica set problem
without storage costs for various interconnection networks (completely—connected, tree, and
ring networks). They show that the optimal replica set problem without storage costs is NP—
hard for general topologies, and they provide efficient algorithms for finding optimal replica
sets: a O(n)-time algorithm for tree networks, a O(n®)-time algorithm for ring networks,
and a O(1)-time algorithm for a completely connected network, where n is the number of
nodes in the network. Our model is different from that of Wolfson and Milo [19] since we also
consider storage costs. Fisher and Hochbaum [8] consider the problem of database location in
computer networks (a problem similar to the one of this paper), and describe computational
experiments based on mixed integer programming models. Our model is different from that
of [8], since they assume what Wolfson and Milo [19] call a “naive-write policy” (i.e. the
write cost is equal to the sum of the distances between the writer and each one of the nodes
with a copy of the object).

When there are no write—costs, our problem reduces to the (uncapacitated) facility loca-
tion problem which also has been studied extensively due to its applications (see [11, 9, 17]).
When there are only read—costs, our problem reduces to the k—median problem [20, 11, 13].
Hochbaum [11] describes approximation algorithms for finding k—medians on the plane (dis-
crete and continuous) as well as on networks. Arora et al [20] describe randomized polynomial
approximation schemes for finding k—medians in Euclidean spaces. Kariv and Hakimi [13]
show that the k-median problem is NP-hard for general networks, and they provide an
O(n?k*)—time algorithm for finding a k-median for a tree with n nodes. Megiddo and
Supowit [14] show that the k-median problem is NP-hard, when considering the geometric
version of the problem, i.e. nodes are points on the plane, with either the Euclidean or the
Rectilinear metrics.



Kalpakis et al [12], describe a O(n3k?)—time dynamic programming algorithm for finding
an optimal replica set of size k for an object on a tree with n nodes when there are read,
write, and storage costs associated with storing replicas at nodes of the tree. The model
used in this paper is the model in [12].

The notion of treewidth plays an important role in recent advances in algorithmic graph
theory, because many problems that are otherwise NP-hard become polynomial time solvable
when restricted to graphs of bounded treewidth (see Bodlaender [4] and references therein).
We use treewidth-based techniques to tackle the optimal replica set problem with storage
costs on graphs of bounded treewidth.

In this paper, we provide the first polynomial time algorithm for finding an optimal
replica set for graph of bounded treewidth. In particular, we describe a O(n**5)—time
algorithm for finding an optimal replica set of size < k, assuming that the graph G has
treewidth bounded by a constant . Our algorithm can also find optimal replica sets with
> k replicas, a requirement that may be imposed due to reliability considerations. Our
algorithm is the first polynomial time algorithm for the optimal replica set problem with
storage costs for non—tree graphs. Our algorithm is based on a technique, introduced by
Arnborg and Proskurowski [1] and Bern [2], described by Bodlaender [4]. Table 1 shows
some classes of graphs of bounded treewidth, i.e. classes for which we can solve the optimal
replica set problem efficiently.

The rest of the paper is organized as follows. In section 2, we provide various pre-
liminaries definitions and notations. Then, we introduce the notion of canonical replica
assignments in section 3, and the notion of canonical minimum spanning trees in section
4. We introduce the notion of terminal-restrictions of a tree to a terminal graph, and the
notion of canonical minimum spanning forests in section 5. Then, in section 6, we analyze
the structure of canonical minimum spannign forests. In section 7, we characterize replica
assignments using canonical minimum spanning forests. Finally, we describe and analyze
our algorithm for finding optimal replica sets for graphs of bounded treewidth in section 8.

2 Preliminaries

Consider an edge-weighted undirected graph G = (V, F) with n vertices.

The vertices of G issue read and write requests for an object. Copies of that object
can be stored at multiple vertices of G. Let r,w : V — N be two vertex-weight functions
representing the number of read requests and the number of write requests issued by vertices
of G, respectively. Let a: V — N be a function representing the number of requests (read
and write) issued by the vertices of G, i.e. a(v) =r(v)+w(v) forallv € V. Let s: V — R,
be a vertex-weight function representing the storage cost of placing a replica of the object
at vertices of G.



Table 1: Some classes of graphs of bounded treewidth [18].

Class of graphs Bound on treewidth
trees/forests 1
almost trees (t) t+1
partial t—trees t
bandwidth—¢ t
cutwidth—¢ t
planar with radius ¢ 3t
series parallel 2
outerplanar 2
Halin 3
t—outerplanar 3t—1
chordal with maximal clique size ¢ t—1

undirected path with maximal clique size t ¢ —1
directed path with maximal cliqeue size t ¢t —1

interval with maximal clique size ¢ t—1
proper interval with maximal clique size ¢ ¢t —1
circular arc with maximal clique size ¢ 2t —1

proper circular with maximal clique size t ¢t — 2

The distance §(u,v) between any two vertices u and v of G is defined as the length
of a shortest path from u to v in G. The distance of a vertex v € G from any subset
S CVisd(v,S) =min{d(v,u) : u € S}. The distance between two subsets X,Y C V is
0(X,Y) =min{o(u,v) : ue X,v €Y }.

The distance graph A[V'] = (V/, V' x V') for V! C V is an edge-weighted complete
undirected graph, such that the weight of each edge (u,v) of A[V’] is equal to the distance
d(u,v) of u from v in G. Let MST(V’) be the cost of a minimum spanning tree of A[V].

A partition of a set S C V is a collection II of non-empty disjoint subsets of S, called
blocks, such that each element of S is contained in one block of the partition.

A partition IT' is a refinement of a partition IT if (a) IT' and II are partitions of the same
set, and (b) each block of II' is a subset of some block of II. A partition IT' is the restriction
of a partition IT to a set S" if Vo’ € II', dr € I, n' = 7N S’. Given two partitions IT; and ITy
of a set S, we define the closure IT; ® Il; to be the partition of S that results by (repeatedly)
combining (merging) blocks from II; U II, that have common elements. Note that both IT;
and II, are refinements of II; ® II,.

Every undirected graph G’ induces a partition IT for any subset S of its vertices in a
natural way: two vertices in S belong to the same connected component of the graph if and



only if they belong to the same block of the partition. We call II the partition of S induced
by G'.

With each partition IT of a set S C V we associate an edge—weighted graph G[II] as
follows. GIII] is a complete graph that has one vertex for each block of II. The weight of
the edge (m;, m;) between two vertices is equal to the distance 6(7;, 7;) between the two sets
of vertices m; and 7; in G. We denote the cost of a minimum spanning tree of G[II] with
MST(II).

2.1 Replica Assignments

A replica assignment for G is a function o : V' — V, that assigns to each vertex in V' a
vertex in V such that Vv € V, é(v,0(v)) = 6(v,0(V)). For brevity, we denote the range
of o with (V). The replica set of o is defined to be o(V). A replica assignment o is a
k-replica assignment if |o(V')| = k. We say that u covers (is assigned to) v if o(v) = u. We
say that v is covered by (is assigned) u if o(v) = u. A replica assignment o is compatible
with aset S CV if o(V) = S and Vv € V, §(v,0(v)) = d(v,S). Given S it is easy to find
a replica assignment o for G' that is compatible with S. We assume, w.l.o.g, that o(v) = v
for all v € o(V'). The restriction of a replica assignment o : V' — V to V' C V is a replica
assignment, ¢’ : V' — V such that o'(v) = o(v) for all v € V'. A replica assignment o is an
extension of ¢’ if the restriction of ¢ to the domain of ¢’ is o’

Let 0 : V' — V be a replica assignment for a subgraph G' = (V', E') of G. The access
cost of o is defined as

Calo) = >~ a(v) - d(v,0(v)) = > (r(v) +w(v)) - 6(v,0(v)). (1)

veV! veV!

The access cost of o is the total cost of sending the requests from each vertex in the domain
of o to its assigned vertex. The update cost of o is defined as

Cu(0) = Wigta - MST(a(V")), (2)

where Wigtar = Y pey W(v). The update cost of o equals the cost of broadcasting all the
writes issued by the vertices of G to the vertices in the replica set (range) of o. The storage
cost of o is defined as

Cs(o) = D s(v). (3)

vea (V')

The storage cost of o equals the storage costs of all the vertices in the replica set of 0. The
total cost of o is defined as

C(0) = Ca(0) + Cu(0) + C4(0). (4)



The total cost of o equals the sum of its access, update, and storage cost. Observe, that if
o is a replica assignment for G, i.e. it is defined for all the vertices of G, then its total cost
is equal to the cost of servicing all the requests issued by the vertices of G plus the cost of
storing the object at the vertices in the replica set of o.

A k-replica assignment for G' of minimum cost, among all k-replica assignments for
G, is called an optimal k—replica assignment and its replica set an optimal k—replica set.
Similarly, a replica assignment for G' of minimum cost, among all replica assignments for G,
is called an optimal replica assignment for G, and its replica set an optimal replica set for G.

We are interested in finding optimal replica assignments for GG, as well as in finding
optimal k-replica assignments for G, for a given integer 1 < k < n.

2.2 Treewidth and Tree—Decompositions

For completeness, we include here essential definitions and results, which we refer to later
on, about the treewidth of graphs. For more details, the interested reader is referred to
Bodlaender [4] and references therein.

A tree—decomposition of a (undirected) graph G = (V, E) is a pair (X,T) with T =
(I, F) a tree, and X = {X; : i € I} a family of subsets of V, one for each node of T, such
that

1. UiEIXi = V,
2. for all the edges (u,v) € E there exists an i € I such that u,v € X,

3. and for all 7, 7,k € I, if j is on a path from ¢ to k£ in T then X; N X, C X,.

The width of a tree-decomposition is max;cr|X;| — 1. The treewidth of G is the mini-
mum width over all tree-decompositions of G. A rooted tree—decomposition of G is a tree—
decomposition of G in which T is a rooted tree.

Given a graph G and a constant k, Bodlaender [3] provides a linear time algorithm that
determines whether G' has a tree-decomposition with width at most k&, and if so, finds such
a tree-decomposition.

A rooted tree-decomposition ({X; : i € I},T = (I, F)) is called a nice tree-decomposition,
if the following are satisfied:

1. every node of T has at most two children.
2. if a node 7 has two children j and k then X; = X; = X}. Node ¢ is called a join node.
3. if a node ¢ has one child j then one the following is true
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o X; = X, U{v} for some vertex v € V. Node ¢ is called an introduce node, and
vertex v is called an introduced vertex.

o X, =X, — {v} for some vertex v € V. Node i is called a forget node, and vertex
v is called a forgotten vertex.

4. if a node 7 has no children, then |X;| = 1. Node i is called a leaf node.

Bodlaender and Kloks [5] show that for every graph G with treewidth %, one can find a nice
tree-decomposition of width k£ and O(n) nodes in time O(n). Hereafter, we assume only nice
tree—decompositions, unless stated otherwise.

A terminal graph is a triple H = (V, E, X) where (V, E) is a graph with vertex set V/
and edge set E, and X is an ordered subset of the vertices in V', called the terminals of H. A
terminal graph with k£ terminals is called a k—terminal graph. The (composition) operation
@ is defined on pairs of k—terminal graphs H and H' as follows: H @ H' is obtained by
taking the disjoint union of H and H' and then identifying the ith terminal of H with the
ith terminal of H' for all i =1,2,..., k. A terminal graph H is a terminal subgraph of G iff
there exists a terminal graph H' such that G = H & H'.

We associate with every node i in a nice tree-decomposition ({X; :7 € I},T = (I, F))

the terminal graph G; = (V;, E;, X;), where

Vi={v:ve X;and j=ior jis a descendant of 7 in T},
E; ={(u,v) € E :u,v € Vi},

i.e. G; is the subgraph induced by vertices in the sets of the node ¢ and all the nodes below
1 in T, with X; as the set of terminals. The ordering of X; is not important. We call the
non-terminal vertices of V; an internal vertices and the vertices in V — V; external vertices.

Some additional observations are in order (see Bodlaender and Kloks [5], and Bodlaen-
der [3]).

Proposition 1 ([3, 5]) Consider a nice tree-decomposition ({X; : i € I},T = (I, F)) of
G. For every node 1 € I, the following hold:
o G=G;® H for some terminal graph H.

o cvery path in G from a vertex v € V; — X; to a vertex u € V —V; goes through a vertex

o the subtree of T rooted at i is a nice tree—decomposition for its associated graph G
(ignoring its terminals).



e if 1 45 a join node with children j and k then V;N'Vy = X; and G; = G; ® Gy,.
e if 1 45 a forget node with child node j then G; = Gj.

e if i is an introduce node with child j and introduced vertex v, then V; = V; U {v},
v & V;, and all the neighbors of v in G; belong to X;.

3 Canonical Replica Assignments

Consider a graph G with constant treewidth ¢. Fix a nice tree-decomposition 7 = ({X,, :
p € I},Tg) of G of width t. We refer to the nodes of T as nodes of the tree—-decomposition
T. 3 Let p be a node of T, and G, = (V}, E,, X,) be the terminal graph associated with p.
Let o be a replica assignment for G.

We call a replica assignment o for G' canonical if for every node p of the tree-decomposition
T of G, Vv € Vj, it is true that o(v) € 0(X,) Uc(V,) NVj,. Intuitively, in a canonical replica
assignment, for every p, every vertex in the terminal graph G, is assigned either a vertex
also assigned to a terminal vertex of G, or an internal vertex of G,,.

Lemma 1 Let o be a replica assignment for G. There exists a canonical replica assignment
o' for G such that 6(v,o(v)) = 6(v,0'(v)) for every vertex v € V, o(V) = o'(V), and
C(o') = C(0).

Proof.

Assume that o is not canonical. Let p be a node in the tree-decomposition for G and v a
vertex in V), such that o(v) &€ o(X,) Ua(V,) NV,. Let A = o(X,) Uo(V,) NV,. Such v
exists, since o is not canonical. Vertex v ¢ X, since 0(X,) C A. Hence, v is an internal
vertex of G,. Since o(v) ¢ A, o(v) is an external vertex of G,. From Proposition 1, there
exists a vertex z € X, that is on a shortest path from v to o(v) in G. Further, by definition
of 0, §(2,0(2)) < 6(z,0(v)). Then, §(v,0(v)) = (v, 2) +6(z,0(v)) > (v, 2) + I(2,0(2)) >
d(v,0(z)). Since 6(v,o(v)) = §(v,0(V)), it follows that §(v,0(z)) = 6(v,o(v)). By assigning
vertex o(z) to v instead of o(v), we obtain a replica assignment with one less vertex for
which the canonical property of the assignment may be violated. By repeating this process
top—down using the tree—decomposition of GG, we obtain a canonical replica assignment o’
for V. Clearly, d(v,0'(v)) = d(v,0(v)) for all v € V. Since o'(v) = v for all v € o(V), we
also have that o/(V) = o(V'). By definition of the total cost of a replica assignment follows
that the total cost of ¢’ equals that of o. |

Hereafter, we assume only canonical replica assignments for G.

3We use “vertex” for the vertices of G and “node” for the vertices of Tg.
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Let 0, denote the restriction of a (canonical) replica assignment o to G,. The replica
assignment o, : V, — o(V}) is such that o,(v) = o(v) for all v € V,, i.e. o, is a replica
assignment for GG, that agrees with o on all vertices in G,. Moreover, o, is a canonical replica
assignment for G, since o is a canonical replica assignment for G.

Lemma 2 Let o be a canonical replica assignment for G. Let p, q be two nodes in the
tree-decomposition T of G, such that q is a descendant of p. Let o, (o,) be the restrictions
of o to G, (G;). Then, o, (04) is a canonical replica assignment for G, (G,), and o, is the
restriction of op to G,,.

Proof.
Since o is a canonical replica assignment for G, and o, agrees with o on all vertices in V,
op is a canonical replica assignment for G,,. Similarly, o, is a canonical replica assignment
for G,.

Observe that by definition of the terminal graph associated with a node of the tree—
decomposition of G, and since g is a descendant of p, V, C V,. Since o, and o, agree with o
on all the vertices in V,, and V, respectively, it follows that o, agrees with o, on all vertices
in V5. Hence, o, is the restriction of o, to G,. u

4 Canonical Minimum Spanning Trees

Consider a (canonical) replica assignment o for G, and let S = o(V) be its replica set. We
call a minimum spanning tree T' of A[S] a canonical minimum spanning tree of A[S] if: for
every node p in the tree decomposition 7 of G, T does not have an edge between a vertex in
V, —o(X,) and a vertex in V' —V, — o(X,). Intuitively, a canonical MST of A[S] does not
have edges between replica vertices, which are internal for G,, and replica vertices, which
are external for G, and are not assigned to any terminal vertex of G,. A canonical MST
for A[S] only has edges between replica vertices that are either internal vertices of G, or are
assigned to terminals of G, for every node p of the tree-decomposition 7 of G.

Lemma 3 Let o be a (canonical) replica assignment for G, and let S be its replica set o(V).
Then, there erists a minimum spanning tree of A[S] which is canonical.

Proof.
Let T be an MST of the distance graph A[S] for S. Suppose that T is not a canonical MST
of A[S]. Traverse T in preorder, and examine each node p to see whether 7' contains an

edge (u,v) withu €V, —o(X,) and v € V -V, —o(X,).

Let p be the first node of 7 for which (u,v) € T, where u € V, — 0(X,) and v €
V =V, —0(X,). From Proposition 1 we know that G = G, ® H, where H is some terminal
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subgraph of G with terminals X,. Note that vertex u is an internal vertex of G, and vertex
v is an internal vertex of H.

Consider a shortest path from u to v in G. From Proposition 1, there exists a vertex
z € X, on that shortest path from u to v.

Since §(z,0(2)) < d(z,v) and 0(u,v) = 6(u, 2) + 0(2,v), it follows that d(u,o(z)) <
d(u,v).

Since 0(z,0(z)) < 0(z,u) and 0(v,u) = §(v, z) + 0(z,u), it follows that d(v,o(z)) <
d(v,u) = §(u,v).

By removing the edge (u,v) from 7" we obtain a forest F' with two trees T, and 7,, such
that u is contained in 7, and v in T,,. There are two cases to consider. If o(z) is in 7}, then
by adding the edge (v,0(z)) to F, we get a spanning tree T} of A[S]. Since the cost of T} is
no more than that of 7', 7 is also a minimum spanning tree of A[S]. If o(z) is in T}, then
by adding the edge (u,o(z)) to F, we get a spanning tree T, of A[S]. Since the cost of T,
is no more than that of T, T, is also a minimum spanning tree of A[S]. In both cases, the
edge added to F has one end—vertex that is in 0(X,). In either case we obtain a minimum
spanning tree of A[S] with one fewer undesired edge. Clearly, by repeating this procedure
for each undesired edge, we can obtain a canonical minimum spanning tree of A[S]. u

5 Terminal-Restrictions of Canonical MSTs: Canoni-
cal [I-MSF's

Consider a (canonical) replica assignment o for G, and let S = o(V') be its replica set. Let
p be a node of the tree—decomposition 7 of G.

We define the terminal-restriction of a subgraph G’ of A[V] to G, to be the graph that
results by removing from G’ all vertices in o(V) — o(V,), as well as their incident edges, and
all edges between vertices in o(X),).

Lemma 4 Let o be a canonical replica assignment for G. Let p, q be two nodes in the
tree—decomposition of G, such that q is a descendant of p. Let T be a canonical MST for
Alo(V)]. Let F, (F,) be the terminal-restriction of T to G, (G,). Then, F, is a subgraph
of Fy.

Proof.
Consider the process with which terminal-restrictions are computed.

F, is obtained from T by removing from it all vertices (and their incident edges) in
o(V) —oa(V,), as well as all edges between vertices in o(X,). Let @), be the set of vertices
removed from 7', and let Z, be the set of edges removed from T'.
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Similarly, for Fy; let (), be the set of vertices removed from 7', and let Z, be the set of
edges removed from 7.

Since T is a canonical MST of Ao (V)], it has no edges between a vertex internal for
G, and a vertex external for G, which is not in ¢(X,). Similarly, 7" has no edges between a
vertex internal for G, and a vertex external for G, which is not in o(X,).

Since ¢ is a descendant of p, from Proposition 1, G, is a subgraph of G}, and V, C V.
From Lemma 2, we have that o, is the restriction of 0, to G4, which implies that o(V;) C
0(V,). Therefore, the set of vertices removed from 7' to obtain F, is a subset of the set of
vertices removed from 7" in order to obtain Fj. Similarly, the set of edges removed from T
to obtain Fj, is a subset of the set of edges removed from 7" in order to obtain F,. Thus, F,
is a subgraph of F},. [ |

Consider the restriction o, of ¢ to G,. Let II = (m,72,...,7,) be a partition of
0p(Xp). A spanning forest F' of A[S,| respects the partition II if F' induces II and does
not contain edges between vertices in 0,(X,). A spanning forest of A[S,] that respects
IT and has minimum cost among all spanning forests of A[S,] that respect II is called a
[I-minimum spanning forest (II-MSF) of A[S,]. Let MSF(II, p, 0,,) denote the cost of a II-
minimum spanning forest of A[S,]. A TI-MSF of A[S,] that does not have an edge between
a vertex in V, — 0,(X,) and a vertex in V' — V,, — 0,(X,), for any descendant ¢ of p in the
tree-decomposition 7 of G, is called a canonical II-MSF of A[S,].

Observe that the distance graph G[II] associated with a partition II of 0,(X,,) has at
most ¢ + 1 vertices, since | X,| <t + 1.

Consider a canonical minimum spanning tree T of A[S]. The terminal-restriction of T’
to Gy is a spanning forest F' of A[S,]. Let II be the partition of 0,(X,) induced by F. Since
T is an MST of A[S], F' has minimum cost among all spanning forests of S, that respect II.
Moreover, since T is a canonical MST of A[S], and o, agrees with o on all vertices in V,,, F’
is a canonical II-minimum spanning forest of A[S,].

Lemma 5 Let o be a canonical replica assignment for G, and let o, its restriction to Gy.
Let S =o(V) and S, = 0,(V,). Every canonical MST T of A[S,] can be obtained, in O(t?)
time, from a canonical II-MSF F of A[S,], for some partition I1 of 0,(X,). Further, F is a
subgraph of T, all the edges in T — F are in 0,(X,) X 0,(X,), and

MST(S,) = MSF(IL, p, o,) + MST(II).

Moreover, every canonical MST of A[S] has a II'-MSF of A[S,] as subgraph, for some
partition I of o(X,).

Proof.
Let T be an canonical MST of A[S,]. Let F' be the terminal-restriction of 7" to G). Since T'
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is a tree, F' is a forest. Since T only spans vertices in 0,(V,) = 0(V}), T and F contain the
same set of vertices. Let A C o(X,) x o(X,) be the set of edges removed from 7" in order
to get F. Forest F' induces a partition II of 0,(X,). Since T is an MST of A[S,], it follows
that F' is a II-MSF of A[S,].

Since we only removed the edges in A from T to obtain F', in order to obtain T given F',
we only need to consider edges between vertices in 0,(X,) in A[S,]. Since |o,(X,)| <t +1,
there are < (¢t+1)? such edges. Forest F can be easily extended to an MST of A[S,] by using
an MST T, for G[II] as follows. For each edge (m;,7;) in T connect the corresponding trees
in F' with an edge of minimum cost among those between vertices in m; and in 7;. Clearly,
this can be done in time O(t?), and MST(S,) = MSF(I, p, 0,) + MST(II).

By considering a canonical MST Tj of A[S] instead of a canonical MST of A[S,], and
using similar arguments as above, we can show that there exists a partition II' of o(X,) and
a subgraph of Tj that is a canonical II'-MSF of A[S,]. |

6 Structure of Canonical [[-Minimum Spanning Forests

Consider a (canonical) replica assignment ¢ for G, and a canonical minimum spanning tree
T of Alo(V)]. Let p be a node of the tree-decomposition 7 of G.

Lemma 6 Let o be a canonical replica assignment for G. Let p be an introduce node of the
tree-decomposition T of G, x be the introduced verter for p, and q be the child of p. Let
I, = (m, 72, ..., my) and I1; be the partitions of o(X,) and o(X,) induced by the terminal-
restrictions of a canonical MST for Alo(V')] to G and Gy, respectively. Let my be the block
of I, that contains o(z). Then, MSF(IL,, p,0,) = MSF(I1,, ¢, 0,). Moreover,

o if o(z) € 0(X,), then 0(X,) = 0(X,), 0(Vp) = o(Vy), and 11, =11,.

o otheruise, o(X,) = 0(X,) — o(z), o(V;) = 0(V}) — o(2), o(z) & o(Vy), m = {o(a)},
and 11, = (ma, ..., ).

Proof.

Since p is an introduce node with child ¢, from Proposition 1, we have that X, = X, —z and
that the introduced vertex z is not in V,. Further, V, = V,—z. Then, o(V,) = o(V,)U{o(x)}
and o(X,) = o(X,) U{o(z)}.

Let T be a canonical MST for A[g(V)]. Let F, (F,) be the terminal-restriction of 7" to
G, (G,). There are two cases to consider.

Case 1: o(z) € o(X,).
Then, o(V,) = o(V,) and o(X,) = o(X,). Moreover, F, = F,, since, by the definition
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of terminal-restriction, the exact same vertices and edges are removed from 7T in order to
obtain either F), or F,. Since F,, = F,, we have that II, = II, and that MSF(II,,p,0,) =
MSF(I1,, ¢, o).

Case 2: o(z) & o(X,).

Since z is an external vertex for Gy, and since o is a canonical replica assignment for G, it
follows that o(z) & o(V;). Then, since o(V,) C o(V}), it follows that o(V,) Na(V,) = a(V,).
Furthermore, o(V,) = o(V,) U {o(z)}.

Since T is a canonical MST for A[g(V)], and o(z) is an external vertex for Gy, there
are no edges between o(x) and any internal vertex of G, in 7. By definition of terminal-
restriction then follows that the tree of F, that contains o(z) contains no other vertices
of o(V,). Therefore, m = (o(x)). Moreover, again by definition of terminal-restriction,
it follows that Fj is equal to F, with the singleton tree containing o(z) removed. Thus,

II, = (mg, ..., Tm). In addition, MSF(IL,, p, 0,) = MSF(IL,, p, 0,). u

Lemma 7 Let o be a canonical replica assignment for G. Let p be a forget node of the
tree—decomposition T of G, = be the forgotten vertex for p, and q be the child of p. Let II,
and I, be the partitions of o(X,) and o(X,) induced by a canonical MST T of Alo(V)],
respectively. Then the following hold:

o if every neighbor of o(z) in T is an internal vertex of Gp, then Il, agrees with I, on
all blocks except one block, which in 11, also contains o(zx). Further, MSF(IL,, p,0,) =
MSF(I1,, ¢, o).

e otherwise, every block of IL,, except one block m, is also a block of I1,. Let 11 be the set
of blocks of 11, that are not blocks of I1,. Then, m contains all the vertices that are in
blocks in 11, except vertex o(x); II is a partition of m U{o(x)}; and MSF(1L,,p, 0,) =
MSF(I1,, ¢, 04) + MST(II).

Proof.

From Proposition 1, we have that X, = X, —z, V, =V,, and G, = G,. Since X, C X, we
have that o(X,) C o(X,). Further, o(V,) = o(V,). Let F, (F,) be the terminal-restriction
of T to G, (G,). Note that o(z) € o(V,) = a(V}).

Since T is a canonical MST of A[o(V)], and z is an internal vertex of G,, every neighbor
of o(x) in T is either an internal vertex of G, or a vertex in o(X,). There are two cases to
consider:

Case 1: every neighbor of o(x) in 7T is an internal vertex of G,.

Since every internal vertex of G, different than x is also an internal vertex of G, it
follows that F), = F,, since the exact same set of vertices and edges are removed from 7" in
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order to obtain F, and F,. Therefore, I, = (m — o(z),ms,..., ™) and MSF(IL,,p, 0,) =
MSF(I1,, ¢, 0,). In other words, I, agrees with II, on all blocks except one block, which in
I1, also contains o(z).

Case 2: o(x) has neighbors in 7" that are in o(X,).

Let T" be the tree in F), that contains o(z), and let 7, be the block in II, that contains
all the vertices of 7" that are in 0(X,). Vertex o(x) has at least one neighbor in F}, that is
in 0(X,). By removing from 7" all the edges between o(z) and vertices in o(X,) we obtain
a forest F'. Let A be the set of edges removed from 7" in order to get F”’. Let V' be the set
of vertices of T". Since T" belongs to F},, and F}, is a II,-MSF of A[o(V})], it follows that T"
is an MST of A[V']. Forest F' induces a partition [T’ of the set of vertices m; U{o(z)}. Since
T" is an MST of A[V'], F' is a ['-MSF of A[V']. Furthermore, the cost of all the edges in
A is equal to MST(II"). Hence, the cost of 7" is equal to the cost of F' plus MST(IT').

Observe that F;, can be obtained from F}, by simply removing all edges in A from F,. In
addition, Fj can also be obtained from F, by replacing 7" with F' in F,. Thus, the partition
of 0(X,) induced by F; consists of all the blocks in II, except the block my, and all the
blocks in II'. Moreover, since the costs of all the edges in A is MST(IT"), MSF(II,, p, 0,) =
MSF(I1,, ¢, 0,) + MST(II'). Note that II' is a partition of the only block of II, that is not a
block of II,, together with the vertex o(z), and that I consists of all the blocks of II, that
are not in IL,. [ |

Lemma 8 Let o be a canonical replica assignment for G. Let p be a join node of the tree—
decomposition T of G, and q and r be the two children of p. Let 11, 11,, II, be the partitions
of 0(X,), 0(X,), 0(X,) induced by a canonical MST T of Alo(V)], respectively. Then,
MSF(IL,, p, 0p,) = MSF(I1,, ¢,0,) + MSF(IL,, 7, 0,), II, and II, are refinements of II,, and
I, =11, ® I1,.

Proof.
Recall that, from Proposition 1, X, = X, = X,, V,NV, = X, and G, = G, ® G,.

Let F; be the terminal-restriction of T' to G;, for ¢ = p,q,r. Since T is a canonical
MST of A[o(V)], T does not have any edges (u,v), such that v is an internal vertex of G,
and v is an internal vertex of G,. Since F), is a subgraph of T', F,, does not have any such
edges either. Then, F}, is the union of Fj, and F,. Moreover, since none of the F),, Fy,, F, has
any edges between vertices in 0(X,), and since F, and F, have no common edges and have
only the vertices in ¢(X,) in common (because o is canonical), it follows that

MSF(IL,, p, 0p) = MSF(I1,, ¢, 0,) + MSF(IL,, 7, o). (5)

Moreover, since both F, and F, can be thought of as terminal graphs with o(X,) = 0(X,) =
0(X,) as their set of terminals, we also have that F, = F, @ F,.
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Observe that whenever any two trees T; € Fy and T, € F,, have any common vertex,
which must be a vertex in o(X,), they both become subtrees of a tree T3 in F,. Moreover,
if m; is the set of vertices of T} that are in o(X,), for j = 1,2, 3, then 73 contains the all
the vertices in m; Umy. Therefore, by the definition of the ® operator for partitions, we have
that I, = I, ® II,. [

Lemma 9 Let o be a canonical replica assignment for G. Let p be a leaf node of the tree—
decomposition T of G, and let x be the single vertex in G,. Let 11, be the partition of o(V,)
induced by a canonical MST of Alo(V))]. Then, o(V,) = o(X,) = {o(2)}, II, = {o(z)}),
and MSF (11, p, 0,) = 0.

Proof.
Follows directly from the definitions and Proposition 1. [ |

7 Characteristics of Replica Assignments

Let o be a replica assignment for G, and let 7" be a canonical MST of A[g(V)]. Let p be
a node of the tree-decomposition 7 of G, and II, be the partition of o(X,) induced by the
terminal-restriction of T" to G,,.

Consider the restriction o, of o to G,. Let 6, : X, — 0,(X,) be the restriction of o, to
Xp. We define the characteristic of o, for G to be the tuple

char(op) = (65,11, [05(V3)[, C(0p))- (6)

The characteristic of o, provides us with all the information we need to know about o, in
order to see whether it can be extended to a replica assignment for G' of minimum cost.

We associate with p, a set FS(p) of characteristics as follows. For each canonical replica
assignment o, add the characteristic char(o,) to FS(p), unless FS(p) already contains a tuple
(6p, 1L, lop(V)|, x) with x < C(o,). We call the set FS(p) the full set of characteristics of p.

Lemma 10 Let p be an introduce node in the tree-decomposition T of G and let q be the
child of p. Let x be the introduced vertex for p. Let 0, (0,) be a canonical replica assignment
for G, (Gy). Then, char(o,) € FS(p) if and only if char(o,) € FS(q), where o, is the
restriction of o, to Gy. Moreover, 6, is the restriction of 6, to X,, and

o if 6,(x) € 6,(Xy), then I, =1, |o,(Vp)| = |04(Vq)|, and

Clop) = Clog) +1(2) - 6(z, 6p(x)) + Wiota - (MST(IL,) — MST(IL,)), (7)
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o otherwise, I1,, consists of all the blocks of I1, plus the block {G,(x)}, |op(Vp)| = |og(Vy)|+
1, and

Clop) = Clog) +1(x) - 0(,6p()) + Wigtar - (MST(II,) — MST(IL,)) + 5(6p(2))-(8)

Proof.
From Lemma 2 we know that o, can be extended to a canonical replica assignment o of

G. Then, the restriction of o to G, is equal to the restriction o, of o, to G,. Let T" be a
canonical MST for Ao (V)].

Let char(o,) = (0,(X)p), Iy, |0,(V3)[, C(0p)), and char(oy) = (04(X), g, log(Vo)], C(oy))-
Observe that

Calop) = Calog) = 1(2) - §(2, 0p()), 9)

since V, = V), — x.

From Lemma 5, we have that MST(0,(V},)) = MSF(II,,p,0,) + MST(II,) and that
MST(o4(V,)) = MSF(I1,, ¢, 04) + MST(II,). From Lemma 6, we have that MSF(I1,, p, 0,) =
MSF(I1,, ¢, 04). Then,

Cu(op) — Culoy) = Wiota - (MST(II,) — MST(IL,)). (10)
From Lemma 6, we have that if 0,(z) € 0,(X,) then 0,(V,) = 04(V,), which implies

that Cs(0,) — Cs(0,) = 0. Further, if 0,(z) & 0,(X,) then 0,(V,) — 0,(V;) = {o,(z)}, which
implies that C(o,) — Cs(0q) = s(op(2)).

Therefore,

C(op) — Clog) = r(2) - 6(z, 0p()) + Wiotar - (MST(IL,) — MST(I1,)) (11)
if o, (x) € 0,(X,), and

Clap) = Clog) = 1(z) - 6(x, 0p(2)) + Wiotar - (MST(TLy) — MST(TL)) +s(0p(z))  (12)

otherwise. Recall that char(o,) is in FS(p) iff C(0,) has minimum among all characteristics
that that agree with char(o,) on the first three components. Similarly, for o,. Note that
FS(p) has a tuple (6,, I, |0,(V},)], x) iff FS(q) has a tuple (64, I1,, |0,(V,)], x'). The difference
C(op) — C(o,) depends only on z, 0,(X,), and II,. Therefore, C(0,) is minimum if and only
if C(0,) is minimum. Consequently, char(o,) € FS(p) if and only if char(o,) € FS(q). u
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Lemma 11 Let p be a forget node in the tree—decomposition T of G and let q be the child
of p. Let x be the forgotten vertex for p. Let o, (0,) be a canonical replica assignment for
G, (G,). Then, char(o,) € FS(p) if and only if char(o,) € FS(q), where o, is the restriction
of o, to Gy. Moreover, every block of Il,, except one block 7, is also a block of 11,, and the
set I, consisting of blocks of I1, that are not blocks of I1,,, forms a partition of m U {G,(x)}.

Further, 6, is the restriction of 64 to Xp, |0,(Vp)| = |og(Vy)], and
C(op) = Cloy) + Wiotar - (MST(II,) — MST(II,) + MST(II)). (13)
Proof.

From Lemma 2 we know that o, can be extended to a canonical replica assignment o of
G. Then, the restriction of o to G, is equal to the restriction o, of 0, to G,. Let T" be a
canonical MST for Ao (V)].

Let char(o,) = (0,(Xp), Iy, |0,(Vp)[, C(0p)), and char(oy) = (04(Xq), g, log(Vo)], C(oy))-
Observe that Cy(0,) = C,(0y), since V, = V.

From Lemma 5, we have that MST(o,(V,)) = MSF(II,, p,0,) + MST(II,) and that
MST(0,(V,)) = MSF(I1,, ¢, 0,) + MST(I1,).

From Lemma 7 we know that all blocks of II, except one are also blocks of II,. Let II
be the set of blocks of 11, that are not blocks of 11,,. If II consists of a single block then, again
from Lemma 7, we know that II, agrees with II, on all blocks except one block, which in II,
also contains 6,(x). Moreover, MSF(IL,, p, 0,) = MSF(Il,, ¢, 0,). If II consists of more than
one blocks, then, from Lemma 7, we know that: II is a partition of 7 U {6,(x)}, where 7 is
the single block of IT,, that is not a block of II,. Moreover, MSF(IL,, p, 0,,) = MSF(II,, ¢, 0,) +
MST(IT). Since when II consists of one block only, we have that MST(IT) = 0, we conclude
that MSF(II,, p, 0,) = MSF(Il,, ¢, 0,) + MST(II), which implies that

Cu(op) — Culoy) = Wiotar - (MST(II,) — MST(II,) + MST(II)). (14)
Since V, =V, and o, is the restriction of g, to G,, we have that 0,(V},) = o,(V}), which

implies that C(o,) — Cs(0,) = 0.

Therefore,
C(op) — C(04) = Wiotar - (MST(II,) — MST(IL,) + MST(II)) (15)

where II consists of all the blocks of II, that are not blocks of II,,.

Recall that char(o,) is in FS(p) iff C(0,) has minimum among all characteristics that
that agree with char(o,) on the first three components. Similarly, for o,. Note that FS(p)
has a tuple (6p,11,, |0,(V,)], x) iff FS(¢) has a tuple (64,11, |04(V,)], x"). The difference
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C(op) — C(o,) depends only on z, 0,(X,), and II,. Therefore, C(0,) is minimum if and only
if C'(o,) is minimum. Consequently, char(o,) € FS(p) if and only if char(o,) € FS(g). u

Lemma 12 Let p be a join node in the tree—decomposition T of G and let q and r be the
two children of p. Let 0,, 04, and o, be canonical replica assignments for G, G4, and G,
respectively. Then, char(o,) € FS(p) if and only if char(o,) € FS(q) and char(o,) € FS(r),
where o, and o, are the restrictions of o, to G, and G, respectively. Moreover, I, = I1,®I1,,
6p =04 = 0y, |0p(Vp)| = log(Vo)| + |or (V)| — [6,(X,)], and

Clop) = Clog) +Clor) + Wigtar - (MST(II,) — MST(II,) + MST(II)) —
= > r(v) - 8(v,6,(v)) — D s(v). (16)

vEX, vEGH(Xp)

Proof.

From Lemma 2 we know that o, can be extended to a canonical replica assignment o of G.
Then, the restriction of o to G, (G;) is equal to the restriction o, (o,) of 0, to G, (G,). Let
T be a canonical MST for A[o(V)].

Let char(o,) = (0,(Xp), yp, [0p(Vp)|, Clop)), char(og) = (0q(Xy), g, [og(Vo)], Cloy)),
and char(o,) = (0,(X;), I, |o-(V})|, C(0,)).

From Proposition 1, we know that V, NV, = X, = X, = X,. Thus, ¢, = 6, = 0,, and
|05 (Vo) | = log(Vo)| + lor (Vo) | = 16p(Xp)|-

Observe that

Ca(0p) = Calog) = Calor) = = 3 1(v) - (v, 55(v)) (17)

veEX)

since the access cost for the vertices in X, is counted twice in Cy(0,) + C,(0,).

From Lemma 5, we have that MST (0,(V,)) = MSF(I1,, p, 0,)+MST(I1,), MST(c0,(V;)) =
MSF(I,, g, o,) + MST(IL,), and MST (0, (V;)) = MSF(IL,, 7, 0,) + MST(IL,).

From Lemma 8 we have that MSF(IL,, p,0,) = MSF(Il,, ¢, 0,) + MSF(IL,, 7, 0,), and
that IT, = I, ® II,. Thus,

MST(0,(Vp)) — MST(04(V,)) — MST (o, (V;)) = MST(I1,) — MST(II,) — MST(IL,),(18)
Therefore,

Cu(0,) = Cul0g) = Cu(0v) = Wiggar - (MST(II,) — MST(IT,) — MST(IL,)). (19)
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Since both o4, 0, are restrictions of oy, it follows that o,(V;)No,(V;) = 0,(Xp) = 6,(X))-
Consequently,

CS(UP) - CS(UQ) - Cy(0,) == — Z s(v), (20)

vEGp(Xp)

since the storage cost for the vertices in 6,(X,) is subtracted twice.

Therefore,

C(op,) — C(oy) — Cl(oy) = Wigtar - (MST(II,) — MST(IL,) + MST(II)) —
=3 0) b))~ Y s(). (21)

veXy, vEFP(Xp)

where I, = I, ® I,.

Recall that char(o,) is in FS(p) iff C(0,) has minimum among all characteristics that
that agree with char(o,) on the first three components. Similarly, for o, and o,. Note that
FS(p) has a tuple (6,11, |0,(Vp)], xp) iff FS(¢) and FS(r) have a tuple (6,, I, |o4(Vo)], X")
and (6,, 11, |0, (V;)|, x") respectively. The difference C(o,) — C(0,) — C(0,) depends only
on 6,(X,), II, and II, (IL, = II, ® I1,). Therefore, C(0,) is minimum if and only if both
C(o,) and C(o,) are. Consequently, char(o,) € FS(p) if and only if char(o,) € FS(gq) and
char(o,) € FS(r). |

Lemma 13 Let p be a leaf node in the tree—decomposition of G and let x be the single node
in X, = Vp. The full set of characteristics FS(p) consists of the characteristics of all the |V|
replica assignments o, : {z} — V.

Proof.
Follows from Lemma 9 and the definition of characteristics of a replica assignment. u

8 Computing Optimal Replica Assignments

8.1 Algorithm Description
Our algorithm is based on a technique, introduced by Arnborg and Proskurowski [1] and
Bern [2], described by Bodlaender [4].

The cost of an optimal replica assignment for G can be computed from the full set of
characteristics of the root of 7. The full set of characteristics can be computed in polyno-
mial time since the terminal graphs of leaf nodes have one vertex. Moreover, Lemmas 10, 11,
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and 12, allow us to compute the full set of characteristics for all other nodes of the tree—
decomposition 7 of G in a bottom—up from FS()’s of their children only. We provide pseu-
docode for accomplishing that in Figures 1, 2, 3, 4, and 5.

OptimalReplication(G, k)

1 compute the distance graph A[V] of G;

2 compute a nice tree-decomposition 7 of G;
3 foreach node p of 7, in preorder, do

4 if p is an introduce node then

5 Call ComputeFSoflntroduceNode(p);
6 else if p is a forget node then

7 Call ComputeFSofForgetNode(p);

8 else if p is a join node then

9 Call ComputeFSofJoinNode(p);
10 else

11 Call ComputeFSofLeafNode(p);
12 end;

13 end;

14 let r be the root node of T
15 find a tuple Sg = (6,,11,,4, x) € FS(r) with minimum cost x and i < k;
16 return Sy

Figure 1: Pseudocode for computing an optimal replica set and an optimal k-replica set for
a graph G for a given k.

8.2 Analysis of Running Time

Lemma 14 Let p be a node in the tree-decomposition T of G. The number of elements in
the full set of characteristics FS(p) is < (t + 1)12"1nt2 = O(n'*2). Moreover, FS(p) can
be computed from the full sets of characteristics of the children of p in time O((t + 1)3[(t +
1)!2t+1nt+2]2) — O(?’L2t+4).

Proof.

First, we find an upper bound on the size of FS(p). There are no more than n/X#»/ < nt+!
replica assignments 6,,. There are no more than m!2™ < (¢ + 1)!12!™! partitions of 6,(X,),
where m = |6,(X,)| < ¢+ 1. Further, |0,(V})| < |V,| < n. Therefore,

|FS(p)| < n|Xp|(|&p(Xp)|)!2\&p(Xp)\|V;)| < nt+1(t+ 1)!2t+1n — (t-l— 1)!2t+1nt+2. (22)
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ComputeFSofIntroduceNode(p)

1 let FS(p) = 0;

2 let = be p’s introduced vertex;

3 let ¢ be the child node of p;

4 foreach tuple (64,114, kg, xq) € FS(g) do

5 foreach vertex v € V' do

6 let 6, be a replica assignment compatible with 6,(X,) U {v};
7 if ;, is not an extension of &, then continue;

8 if 6p(z) € 64(Vg) then

9 let xp = xq +1(z) - 6(z,6,(2));

10 add the tuple (6,, 14, kg, xp) to FS(p);

11 else

12 let IT,, consist of all the blocks of II; plus the block ,(x);
13 let Xp = Xg + 1(2) - 5(, 6(2)) + Woga1 - (MST(Pi) — MST(IT,) + ()
14 add the tuple (6p,11,,k; + 1, x,) to FS(p);

15 end;

16 end;

17 end;

18 return;

Figure 2: Pseudocode, based on Lemma 10, for computing the full set of characteristics of
an introduce node given the full set of characteristics of its child node. Note that when
adding a tuple z to FS(p), if FS(p) already has a tuple y that agrees with z on the first three
components, we simple set y’s cost to the minimum cost of z and y.

Next, we consider the time it takes to compute FS(p) from those of its children. There
are four cases to consider.

e p is an introduce node. From the pseudocode in Figure 2, we have FS(p) can be
computed in time O(|FS(q)|((t + 1)!12'Tt + £2)n) = O([(¢ + 1)!12!72n'+3).

e p is a forget node. From the pseudocode in Figure 3, we have that FS(p) can be
computed in time O(|FS(q)|(2°F! + (¢ + 1)?)) = O((¢ + 1)!12%#+2n!+2),

e pis a join node. Evaluating IT, ® II, can be done in time O(¢*). Then, from the pseu-
docode in Figure 4, we have that FS(p) can be computed in time O(|FS(q)||FS(r)|((t+
12+ (t+1)%) = O([(¢t + )12 In* 22t 4 1)%).

e pisaleaf node. From the pseudocode in Figure 5, we have that FS(p) can be computed
in time O(n).

Therefore, FS(p) can be computed in time O((t + 1)3[(t + 1)!121n*2]?) = O(n?+4). |
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ComputeFSofForgetNode(p)
let FS(p) = 0;
let = be p’s forgotten vertex;
let ¢ be the child node of p;
foreach tuple (64,114, kq, x4) € FS(g) do
foreach each subset II of blocks of II, do
let 7 be the set of all the vertices # &4(z) of the blocks of II;
let II,, consist of all the blocks in II; — II plus the block ;
let xp = Xq + Wiotal - (MST(II,) — MST(IL;) + MST(II));
let 6, be the restriction of 54 to X;
add the tuple (6p, II,, kg, xp) to FS(p);
end;
end;
return;

0~ O O W N

= N e )
W N = O

Figure 3: Pseudocode, based on Lemma 11, for computing the full set of characteristics of a
forget node given the full set of characteristics of its child node.

Theorem 1 Let G be a graph with n nodes and treewidth bounded by a constant t. Let k be

an integer 1 < k < n. We can find an optimal replica set for G, with < k replicas, in time
O((t+ 1)3[(t + 1)!2t+1nt+2]2n) — O(n2t+5).

Proof.

Consider the pseudocode in Figure 1. The time to find a nice tree-decomposition 7 of G
with O(n) nodes is O(n). Let root(7T) be the root node of 7. From Lemma 14, we can
compute the full set of characteristics of all the nodes in the tree-decomposition in time

O((t + 1)?[(t + 112" 'n'*?2n) = O(n®*5). (23)

An optimal replica set, with < k replicas, for G' can be found by inspecting FS(root(7)),
which can be done in time

O(n*™(t + )12 1) = O((t + 1)12"1n'*2). (24)

The procedures given in Figures 1- 5 find just the cost of an optimal replica set for G
with at most k replicas. It is easy to modify the pseudocode to compute a corresponding
replica assignment, without an increase in the asymptotic running—time of the algorithm (e.g.
by recording during the bottom-up pass the elements from FS(g) and FS(r) that lead to
each element in FS(p), and then using them, once a minimum cost elemt in the FS(root(7))
is selected, to construct a replica assignment). |
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ComputeFSofJoinNode(p)
1 let FS(p) = 0;

2 let ¢ and r be the two children nodes of p;

3 foreach tuple (64,114, kq, xq) € FS(g) do

4 foreach tuple (6,,11,, k-, x») € FS(r) do

5 if 6, = 6, then

6 let TT, = T, ® I,

7 let ky, = kg + ky — |64(X,)];

8 let § = e, 1(0)3(0, 60(1)) + Sucs, (x,) $(w);

9 let xp = Xg + Xr + Wiotal(MST(II,) — MST(TI,) — MST(II,.)) — y;
10 add the tuple (64,1I,, kp, x) to FS(p);

11 end;

12 end;

13 end;

14 return;

Figure 4: Pseudocode, based on Lemma 12, for computing the full set of characteristics of a
join node given the full sets of characteristics of its childlen nodes.

ComputeFSofLeafNode(p)
1 let FS(p) = 0;

2 let = be the single vertex in X);

3 foreach vertex v € V do

4 let 6p : {z} — {v};

5 let x, = C(6p);

6 lot T, = ({u});

7 add the tuple (6,11, 1, xp) to FS(p);
8 end;

9 return;

Figure 5: Pseudocode, based on Lemma 13, for computing the full set of characteristics of a
leaf node.
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