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Abstract

Monitoring applications emerge as one of the most important applications of wireless sensor

networks (WSNs). Such applications typically have long–running complex queries that are contin-

uously evaluated over the sensor measurement streams. Due to the limited energy of the sensors in

WSNs, energy efficient query evaluation is critical to prolong the system lifetime — the earliest time

that the network can not perform its intended task anymore.

We model complex queries by expression trees and consider the problem of maximizing the

lifetime of a wireless sensor network for the continuous in–network evaluation of an expression

trees T , so the value of its root is available at the base station. In–network evaluation means that

the evaluation of the operators of T may be pushed to the network nodes, and continuous means

the repeated evaluation of T (once at each round). Continuous in–network evaluation of T entails

addressing the following two coupled aspects of the problem: (a) the placement of the operators,

variables, and constants of T to network nodes, and (b) the routing of their values to the appropriate

network nodes that needed them to evaluate the operators.

We analyze the complexity and provide a simple and effective algorithm for the placement of

the nodes of T onto the sensor nodes of a WSN. Our algorithm of operator placement attempts

to minimize the total amount of data that need to be communicated. A placement of T induces a

certain Maximum Lifetime Concurrent–Flow (MLCF) problem. We provide an efficient algorithm

that finds near–optimal integral solutions to the MLCF problem, where a solution is a collection of

paths on which certain amount of integral flow is routed. Our approach to the continuous in–network

evaluation of T consists of utilizing both our placement and routing algorithms above.
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We demonstrate experimentally that our approach consistently and effectively find the maximum

lifetime solutions for the continuous in–network evaluation of expression trees in wireless sensor

networks.

Key words: Wireless sensor networks, in–network query processing, energy management, lifetime

maximization, operator placement, routing

1. Introduction

Remote monitoring applications are one of the most attractive applications of wireless sensor

networks. Such applications, like environmental monitoring and building surveillance, normally

have long running queries over the data streams that are continuously generated by sensors near the

points of interest. For example, one such query can be found in volcano monitoring application —

report the current activity level every five minutes, which is measured by processing and correlating

the data streams generated by sensors on surface vibration, air pressure and temperature, gas density

change, magnetic variance, and etc. How to energy efficiently process these long–running queries is

a critical problem to the success of the deployment and operation of wireless sensor networks, since

often replenishing the energy of the sensors by replacing their batteries is cost prohibitive or even

infeasible.

In this paper, we consider the task of the continuous evaluation of long–running complex queries

in wireless sensor networks. Such queries have multiple function–dependent operators and require

repeated evaluation once per each round. Due to the disparity between the amount of data generated

by the sensors and the amount of data the network can communicate before the sensors deplete their

energy, we aim to push the queries into the network for processing [18]. We model a query with

a rooted expression directed acyclic graph (DAG) Q, whose internal nodes are operators (functions)

with children as their operands, and its leaves are constants or variables. Each vertex ofQ has a size

for its value and a set of candidate network nodes to which it may be placed. Each variable vertex of

Q has a set of source sensor nodes, whose measurements are used to assign values to that variable.

The continuous in–network evaluation of a rooted expression DAG Q entails addressing the fol-

lowing two aspects of the task: (a) the placement of the operators, variables, and constants of Q

to network nodes, and (b) the routing of the operand values to the appropriate network nodes that

needed them to evaluate the operators. These two aspects are coupled because the placement of Q

imposes certain source–destination routing requirements among the sensor nodes, and the manner in
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which routing is performed can have a major impact on placement decisions.

While there are many important optimization goals for the continuous in–network evaluation of

queries (eg. response time, reliability, etc), we focus on maximizing the system lifetime — the time

until the sensor network losses its ability to perform its intended task due to depletion of energy at

(some of) its sensors, and analyze how to decouple the two aspects of the task at hand. We find,

as shown in our experimental evaluation, that having a near optimal solution to the routing aspect

effectively decouples the routing and placement aspects, and therefore allows us to solve these two

aspects one at a time.

To find a near optimal solution to the placement aspect of the task, we consider the minimum

communication cost placement (MCP) problem. The MCP problem is that of minimizing the total

amount of data communicated among network nodes, which have been assigned one or more vertices

ofQ, during a single evaluation ofQ. We show that the MCP problem is MAX–SNP hard even when

Q is a tree of height 1 with unit cost edges. We describe a simple and efficient greedy heuristic, which

we call the GREEDYMCP algorithm, for the MCP problem, and show practically useful cases under

which GREEDYMCP finds provably optimal solutions to the MCP problem.

To find a near optimal solution to the routing aspect of the task, we solve a maximum lifetime

concurrent flow (MLCF) problem. The MLCF problem is the problem of maximizing the lifetime

of a system that concurrently pushes flow to satisfy the data rate demands for a given set of source–

destination pairs. We provide an efficient and simple algorithm for the MLCF problem, which we

call the ALGRSM–MLCF algorithm, that finds at most n + N paths that maximize the fractional

system lifetime To for satisfying the concurrent flow data demands for N source–destination pairs

in a network with n nodes. By rounding down that fractional solution, we get an α–optimal integral

concurrent flow solution to the MLCF problem, where α = (To − n − N + 1)/To. Since often in

practice To � n+N , α ≈ 1. We experimentally show that ALGRSM–MLCF outperforms existing

routing algorithms that could be applied to the MLCF problem, in terms of system lifetime and

energy overhead. ALGRSM–MLCF is an iterative algorithm based on the Revised Simplex Method

(RSM).

Our approach for the continuous in–network evaluation of queryQ consists of using both GREEDYMCP

and ALGRSM–MLCF. First, we use GREEDYMCP to find a placement of Q on the network, and

we use ALGRSM–MLCF for routing all the data values that need to be communicated. We show,

through an extensive experimental evaluation, that our approach consistently finds the maximum
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lifetime solution for the continuous in–network evaluation of complex queries in wireless sensor

networks. Although we take a centralized approach to tackle the task at hand, we only require the

knowledge of two network metadata — the network topology and the initial energy of sensors, which

are very useful to many other network tasks as well. Note that the small size of the routing solution

found by our approach limits the overhead of distributing the routing information to the sensors.

In summary, for the task of continuous in–network processing of complex queries in wireless

sensor networks (WSNs), the original contributions of this paper are as follows:

• theoretically analyze the complexity of the MCP problem, the problem of placing expression

DAGs on WSNs with minimum total communication cost.

• provide a greedy heuristic GREEDYMCP, for the MCP problem. GREEDYMCP finds prov-

ably optimal solutions in practical useful cases.

• provide a simple and effective algorithm, ALGRSM–MLCF, that finds near–optimal integral

solutions to the maximum lifetime concurrent flow (MLCF) problem in WSNs. ALGRSM–

MLCF outperforms existing routing methods.

• we find that having near optimal solutions to the MLCF problem enables the decoupling of

the placement and routing aspects of the task at hand.

• our approach, consisting of using GREEDYMCP and ALGRSM–MLCF together is both ef-

fective and efficient at maximizing the system lifetime.

The rest of the paper is organized as follows. We review related work in section 2, and then

in section 3 we give the necessary preliminaries. We describe our GREEDYMCP algorithm for the

placement of expression DAGs into WSNs in section 4, and show that GREEDYMCP finds optimal

solutions to MCP problem instances under certain conditions. We analyze the complexity of the

MCP problem in section 4.2 and show that the MCP problem is MAX SNP–hard even for trees of

height 1 and unit cost edged provided they have restricted vertices. We then turn our attention to

the routing of operands, and we present our ALGRSM–MLCF algorithm for the MLCF problem

in section 5. We discuss the results from our experimental evaluation of the proposed approach in

section 6. We conclude in section 7.
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2. Related work

Pietzuch et al [26] consider network-aware operator placement in conventional distributed stream

processing systems. In similar network settings, Ahmad et al [1] give three operator placement

algorithms for constructing a query processing overlay network and compare their performance. The

network considered by them is internet–style and consists of nodes with ample computational power,

which is very different from the energy–limited wireless sensor networks we consider.

In wireless sensor networks, the notion of in–network processing was first introduced by In-

tanagonwiwat et al [18] to opportunistically eliminate duplicates in the context of directed diffusion.

Gehrke and Madden et al [11, 15, 24] are among the first to integrate query processing and sensor

networks so tasking sensor networks can be easily done through declarative queries. In the Cougar

project [11], a layered architecture of sensor data management is proposed for presenting the sensor

network as a distributed database system. In TinyDB [24], a framework of query processing in WSN

is introduced for addressing issues of when, where, and how often data is sampled and which data

is delivered in wireless sensor networks. Energy efficiency is one of the major factors considered

in [11, 24], but not with the goal of maximizing the system lifetime. In addition, query operators

in [11, 24] are modeled from a functionality perspective and often are rather simple operators (ag-

gregation, filter, etc), while in our work we model the operators from a communication perspective

with the consideration of their optimal placement.

Ren et al [27] consider quality aware processing of simple aggregate queries (e.g. compute the

average, min, max of measurements of sensors in a rectangular area of interest). A centralized

algorithm is proposed to find a subset of sensors whose measurements are collected using reactive

routing to the base station to compute a probabilistic answer. Hu et al [17], expanding upon the work

of Olston and Widom [25], are concerned with approximate answers to continuous aggregate queries

(sum, mean, count, etc). They provide a method to allocate a user–specified acceptable tolerance to

a query’s answer as tolerance ranges for the sensors. Subsequently, a sensor sends its measurement

to the base station if it falls outside its tolerance range. These two works are different from ours

in many respects: we consider complex queries with various operators besides min, max, avg, we

provide accurate answers to queries, and we seek to optimize the system lifetime directly.

Many researchers have advocated the use of data–centric techniques that allow for efficient in–

network storage and retrieval of named data using queries [16]. A number of data–centric push–pull

query processing techniques have been proposed and examined [6, 8, 23, 28, 29, 31], which can
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be categorized to two main approaches: structured and unstructured, which can be represented by

the geographic hash–based data centric storage technique [29] and the comb–needle method [23]

respectively. Kapadia and Krishnamachari [20] present a comparative mathematical analysis of these

two approaches based on two types of simple one–shot queries (ALL–type and ANY–type) in single–

sink square–grid sensor networks, and later on, Ahn and Krishnamachari [2] find that the scalability

of a data–centric sensor networks performance depends upon whether or not the increase in energy

and storage resources with more nodes is outweighed by the resulting application–specific increase

in event and query loads.

Bonfils et al [5] consider the placement of operators of a query expression tree to the nodes of

a sensor network to minimize the total communication cost of evaluating such a tree. For any pair

of parent–child operators in the query tree, the induced communication cost is the product of the

length of a shortest path between the nodes where these operators are placed and the data rate from

the child to its parent. They provide a distributed protocol that attempts to refine the placement by

continuously walking through neighbor nodes to accommodate the data rate change. The overhead

of message exchange generated by walking through neighbor nodes is not considered in [5]. Our

ALGRSM–MLCF algorithm differs from theirs in that we allow data to be routed over multiple

paths rather than a single path, and that we seek to optimize the system lifetime rather than the total

communication cost. Restricting routing of child–parent data to a single path instead of allowing

multiple paths can have a detrimental effect on the lifetime. As can been seen in Fig. 10, our approach

achieves much better lifetime in all the instances over the best placement when using shortest path

routing.

Srivastava et al [30] consider the problem of placing operators onto a hierarchy of network nodes

with progressively increasing computational power and network bandwidth, such that the total cost of

computation and communication is minimized. We assume a different network model in which sen-

sors are homogeneous and are energy limited, and a different goal of optimizing the system lifetime,

which does not necessarily result from minimizing the total cost of computation and communication.

Garg and Konemann [14] describe an iterative algorithm with provable approximation ratio for

solving the maximum concurrent multicommodity flow problem, whose LP formulation is different

from MLCF. Their objective is to maximize the total network flow under limited capacity of edges,

while ours is to maximize network lifetime under limited energy of nodes. In addition, the number

of routing paths used in the solution of our ALGRSM–MLCF algorithm is bounded, while the
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algorithm in [14] finds solutions which may use as many routing path as the number of iterations.

Having fewer routing paths is important in practice, since the overhead of distributing the relevant

routing information to the sensors is kept smaller with fewer paths.

Chang and Tassiulas [7] propose a shortest path routing algorithm for maximum lifetime data

gathering using link costs that reflect both the communication energy consumption rates and the

residual energy levels at the two end nodes of each link. Though they also formulate the routing

problem as a linear programming problem, they only use it to obtain the optimal lifetime to compare

with the lifetime achieved by their proposed algorithm. We formulate that optimal routing problem

with a different linear program, and our ALGRSM–MLCF algorithm effectively solves the LP to

obtain the optimal routing directly. In addition, the performance of the algorithm in [7] is dependent

on the parameters used by the algorithm, while ALGRSM–MLCF is non–parametric.

Wu at al [32] consider constructing transmit/receive schedules for the sensors to collect data using

a given routing tree . They describe a method for allocating transmit and receive slots to the sensors

so that the collisions during transmits are reduced. This work is complementary to our work. Wu et

al [32] assume a routing tree, while our approach constructs a placement and routing to be used for

evaluation of the continuous queries. On the other hand, our ALGRSM–MLCF algorithm does not

consider conflicts during transmissions by the sensors. Deriving a detailed transmit/receive schedule

for our placement/routing is important, and their method could be a step towards that goal.

3. Preliminaries

We provide definitions and notation we utilize throughout the paper, including a simple model

for wireless sensor networks and the concept of expression trees.

3.1. Common definitions and notations

Given a graph G, we denote its vertex set with V [G] and its edge set E[G]. For brevity, we often

write v ∈ G instead of v ∈ V [G] for a vertex v, and ij ∈ G instead of ij ∈ E[G] for an edge ij. Let

G[V ′] = (V ′, E[G] ∩ V ′ × V ′) be the subgraph of G induced by a subset of its vertices V ′ ⊆ V [G].

We denote with G[A] = (V,A) the subgraph of G induced by a subset of its edges A ⊆ E[G].

Consider an edge–weighted directed graphGwith edge weights w ∈ R
|E[G]|. The edge–contraction

of G by an edge ij ∈ E[G] is the graph obtained from G by collapsing (merging) vertex i into vertex

j. Collapsing a vertex i into vertex j entails the following three steps: (a) for each edge ki ∈ E[G]
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with weight wki, if kj �∈ E[G] then add the edge kj with weight wki to G, otherwise increase the

weight of edge kj by wki, (b) for each edge ik ∈ E[G] with weight wik, if jk �∈ E[G] then add the

edge jk with weight wik to G, otherwise increase the weight of edge jk by wik, (c) delete vertex

i and any self–loop (edge jj) from G. Consider a partition Π = 〈 V1, V2, . . . , Vm 〉 of the vertex

set V [G] of G into m blocks Vi, for some m ≥ 1. We define the contraction graph of G by Π to

be the following edge–weighted directed graph GΠ. The vertices of GΠ are the blocks of Π, i.e.

V [GΠ] = {V1, V2, . . . , Vm}. There is an edge ij ∈ E[GΠ] iff there exists a cut–edge from Vi to Vj in

G, i.e. an edge with uv ∈ E[G] with u ∈ Vi and j ∈ Vj . The weight of each edge ij ∈ E[GΠ] is

equal to the sum of the weights of the cut–edges of G from Vi to Vj. Note that GΠ is isomorphic to

the graph obtained from G by contracting all of its intra–block (uncut) edges.

Given an instance I of an optimization problem, let OPT(I) and SOL(I) be an optimal and a feasi-

ble solution to I, respectively. For brevity, OPT(I) and SOL(I) will also indicate the value of the cor-

responding solution. The relative error of a solution SOL(I) is equal to |OPT(I)− SOL(I)| /OPT(I)

and its approximation ratio is equal to SOL(I)/OPT(I). We refer to continuous (integral) solutions to

instances of optimization problems, whenever fractional values for their unknowns are allowed (not

allowed).

We denote vectors and matrices with lower and upper case bold letters, e.g. x and A is a vector

and matrix respectively. The support of a vector x is defined as I(x) = {i : xi �= 0}. Given two

vectors x,y ∈ R
m, we say that x dominates y and write x ≥ y, if xi ≥ yi for i = 1, 2, . . . , m. We say

that x is lexicographically larger (smaller) than y if the smallest index non–zero component of x−y

is positive (negative). Since a matrix with a single column is a vector, many notations/operations on

matrices naturally extend to vectors.

We denote the transpose of a matrix A with AT . Given an n ×m matrix An×m and two index

sequences I ⊆ {1, 2, . . . , n} and J ⊆ {1, 2, . . . , m}, we denote by AI,J the sub–matrix X|I|×|J | =

(xij) of A where xij = aIi,Jj
, and by AJ the sub–matrix Xn×|J | = (xij) of A where xij = aiJj

.

Since a set can always be converted into a sequence by listing its elements in increasing order, we

extend the notations AX,Y and AY to index sets.

3.2. A model for wireless sensor networks

Consider a wireless sensor network (WSN) with n nodes. One node, denoted b, is designated as

the base station, with the remaining nodes being sensors. Sensors are identified by unique IDs and are
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assumed to have limited non–replenishable energy while the base station has no energy limitations.

Sensors close to the points of interest are called data sources, and they monitor and generate sensing

data at a predefined data rate. A long running query that acquires and processes the data generated

by the data sources is posed at the base station and is parsed as an expression DAG. Time is discrete,

and the data rate is defined as the number of packets transmitted by the sensor node during each time

period. For simplicity, we assume the data packet size is fixed. The system lifetime T is the earliest

time at which the wireless sensor network losses its ability to perform its intended task (e.g. query

evaluation) due to the depletion of the available energy at one or more sensors.

The topology of the wireless sensor network is modeled as a directed graph (digraph)G = (V,E),

with V = {1, 2, . . . , n} and E ⊆ V × V . There exists an edge ij ∈ E whenever i can successfully

send a packet to j. Let dij be the distance between i and j. Let τij be the energy consumed by node

i in order to transmit a single packet to node j, and let rj be the energy needed to receive such a

packet at node j. Let εi be the energy available at node i. We assume that εb = ∞. For simplicity

we consider sensor networks with a single base station, and assume a single source node near each

point of interest. In a real deployment there can be multiple sensors near the same point of interest,

and it will be ideal for them to share the data acquisition duties. As long as all the sensors around the

same point of interest can hear the communications to any one of them, this can can be easily done

as follows. Introduce a new node, i′ with ri′ = 0, to serve as the data source, and then append to G,

for each sensor j near the point of interest, two new edges i′j and ji′ with both τi′j and τji′ equal to

0. Sensor networks with multiple base stations can be handled similarly — introduce a new node, b ′,

to serve as the new single base station, and then append to G, for each current base station i, a new

edge ib′ with τib′ = 0.

In this paper, we do not consider issues related to signal and channel interference, and the schedul-

ing of transmissions to avoid or reduce such interference. Scheduling of transmissions can be done

after the routing decisions have been made, which can increase the latency of query evaluation.

3.3. A model for complex queries and their continuous evaluation

We describe a simple model we will use for the continuous (repeated) processing of complex

queries. A query with only one operator (eg add, multiply, etc) or only one kind of an operator

(eg. sum, count, min, max, etc) is called simple, otherwise it is called complex. We are interested

in complex queries over measurements of sensors in a WSNs. At each round (sensing period), a

query is evaluated using the current measurements of the sensors (and possibly prior measurements

9/44



as well).

We model queries using rooted expression directed acyclic graphs (DAGs). A rooted expression

DAG Q is a DAG with a single root (vertex without any parents), internal vertices that correspond to

operators, and leaves (vertices without any children) that correspond to constants or variables. Each

vertex v ∈ V [Q] has an associated value of constant but varying size size(v), which is measured in

units of packet sizes. The weight of each edge uv ∈ E[Q] is equal to size(u). Each operator vertex

has one or more operands (children) and its value is a function of its operands. In the AND–operator

(OR–operator) model, the evaluation of the function of an operator requires the values of all (any

one) of its operands. 1

Such expression DAGs arise in various domains, e.g. in the continuous evaluation of the TinyDB

SQL query

SELECT f l o o r , room , AVG( t e m p e r a t u r e )

FROM s e n s o r s

WHERE f l o o r <6

GROUP BY f l o o r , room

HAVING AVG( t e m p e r a t u r e ) > 70

SAMPLE PERIOD 30 s ;

which has a tree DAG representation whose operators are relational algebra operators and leaves are

the sensor samples (measurements).

An operator can be evaluated when the values of its required operands are available, in an eager

(as soon as possible) or lazy (when its output is requested) way. The evaluation of Q at a certain

round (time) t requires the assignment (binding) of values to (possibly not all) its variables and the

evaluation of (possibly not all) its operators in an appropriate order so that the value of its root

becomes available to the user.

LetH be a wireless sensor network in which an expression DAG Q is to be evaluated. We callH

the host graph and Q the guest graph. The value assigned to a variable v ∈ V [Q] at time t depends

on the measurements up to time t of a set of host network nodes (sensors) src(v) ⊆ V [H], called

1Multiple queries can be modeled by a DAG with multiple roots. Further, more general operator models are possible,

e.g. k–out–of–m, etc.
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the data source set of v. Typically, the data source set of a variable is a singleton or a small set of

sensors located nearby each other.

In order to evaluate a guest Q in a host H, we need to place all the guest vertices to one or

more host nodes. Each vertex v ∈ V [Q] can be placed at a specified set of candidate host nodes

cands(v) ⊆ V [H]. If v is a variable then cands(v) = src(v). Each candidate host node in cands(v)

is capable of computing the value of v, once the values of all its required operands, if any, are

available to it. A guest vertex v is called free if cands(v) = V [H], pinned if |cands(v)| = 1,

and restricted otherwise. We extend the data source set and candidate hosts set to any subset of

guest vertices X ⊆ V [Q] as cands(X) = ∩v∈Xcands(v) and src(X) = ∪v∈Xsrc(v). We call an

X ⊆ V [Q] admissible iff cands(X) �= ∅. Fig. 1 gives an example query expression DAG (tree).

A placement of the guest DAG Q onto the host network H is the placement of each vertex v ∈

V [Q] to a non–empty set host(v) ⊆ cands(v) of host nodes. Whenever the value of a vertex v ∈

V [Q] is needed, a host node i ∈ host(v) is asked to provide that value – doing so may require sensing

or computing at the network node i, or even communication between i and other host network nodes.

Fig. 2 provides an example placement of an expression DAG onto a wireless sensor network.

Hereafter, we only consider placements where each guest vertex is placed at exactly one host

node, i.e. there is no replication of the guest vertices in the host network.

Consider a placement of the guest DAG Q onto the host networkH. The intersection of candidate

sets of the set of guest vertices placed at the same host node is always non–empty. Consequently,

by removing the edges between guest vertices placed at different host nodes (cut edges), we get a

collection of connected components of the guest graph, such that all the vertices Vi of each such

connected component are placed at the same host node ui. In other words, a placement of the guest

Q onto the hostH induces a partition Π = 〈 V1, . . . , Vi, . . . 〉 of V [Q], such that all the guest vertices

in Vi are placed at a host node ui ∈ cands(Vi). Note that each block Vi of Π is admissible – we call

such partitions of V [T ] admissible. Furthermore, the amount of data communicated at each round of

evaluatingQ equals the total cost of the cut edges induced by the placement at hand. In other words,

the total amount of communication required for a single evaluation of Q for the given placement is

equal to the total weight of the contraction QΠ of Q by the partition Π. In fact, the total amount of

communication required from host node ui to host node uj is equal to the weight of the edge ViVj

in QΠ. Define the cost of a placement to be equal to the total amount of data communicated in each

round of evaluatingQ. Define the communications demand graphR of the placement at hand to be
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the graph obtained from QΠ by relabeling each vertex Vi ∈ V [QΠ] with the host node ui to which

the guest vertices in Vi are placed. The weight of an edge uiuj ∈ V [R] is equal to the total amount of

data that needs to be communicated in one round from host node ui to host node uj due to the guest

vertices placed at ui and uj.

We define the Minimum communication Cost Placement (MCP) problem of Q onto H as the

problem of finding a placement of the guest vertices onto candidate host vertices with minimum

cost (amount of data communicated). Since the cost of a placement of Q onto the host H is equal

to the total weight of cut edges induced by that placement, it follows that the MCP problem is

essentially equivalent to the following graph partitioning problem. We define the Minimum Cost

Constrained Partitioning (MCCP) problem 〈G, f 〉 as follows: given any edge–weighted graph G

and a function f : V [G] −→ U , find a minimum cost set of cut edges (edge–cut) A such that

f(V [Gi]) = ∩v∈V [Gi]f(v) is non–empty for each connected component Gi of G − A. An optimal

solution to the MCCP problem instance 〈Q, cands 〉 is also an optimal solution to the MCP problem

for the guest Q onto the host H, and vice versa. We study the complexity of the MCP and MCCP

problems in section 4.2.

Given a placement of the guest Q onto the host H, we now need to find an energy efficient way

to satisfy the data routing requirements indicated by the communication demands graph R in order

to maximize the system lifetime. In other words, we need to find the maximum lifetime T together

with routes that satisfy the communication demands Tλi for the collection of source–destination

pairs (edges) (si, di) ∈ E[R], where the demand λi is equal to the weight (amount of data to be

communicated in one round) of the edge from host node si to host node di. This is the Maximum

Lifetime Concurrent Flow (MLCF) problem which we consider in section 5.

In this paper, we assume expression DAGs with the AND–operator model. We also assume that

the data source set of a variable v ∈ V [Q] is a singleton, and thus v is pinned at its single data source

host network node. Furthermore, we assume that the root of Q is pinned at the base station and that

there is no replication in the placement of the vertices of Q, i.e. |host(v)| = 1 for all v ∈ V [Q].

Moreover, we assume that the energy consumed to either compute the value of an operator v, or take

a measurement and assign a value to a variable v, or furnish the value of a constant v, is negligible

compared to the energy consumed for communication for all vertices v ∈ V [Q].
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tag each edge u→ v with the size of u’s value. Pinned vertices are indicated with heavy outlines.
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Figure 2: An example placement and operand routing for the expression DAG Q in Fig. 1 to a WSN with 10 nodes.

We indicate the vertices of Q placed at each node within the brackets, and label the links of the WSN with the operand

they are tasked to route. For example, node 2 is hosting the operators/variables A, B, and E, the operand (value of the

operator) E is routed from node 2 to node 7 using the two paths (2, 9, 7) and (2, 5, 8, 7), and the operand C is routed

from node 3 to node 7 using the two paths (3, 6, 7) and (3, 9, 7).

4. The Minimum communication Cost Placement (MCP) problem

We present a greedy approximation algorithm for the Minimum communication Cost Placement

(MCP) problem of a guest query expression DAG Q onto a host network H, and analyze the com-

putational complexity of the general MCP problem. Our algorithm works by finding an admissible

small–cutsize partition ofQ, and then placing each one of its blocks to nodes of the hostH. Utilizing

the idea of edge contractions from Karger’s randomized min–cut algorithm [21], we find a small–

cutsize admissible partition of Q by contracting the edges of Q in decreasing order of their weight,

excluding any non–contractible edges. An edge uv ∈ Q is contractible iff cands(u) ∩ cands(v) is

not empty. See Algorithm 1 (GREEDYMCP) for details.
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During the edge–contraction process, we maintain for each remaining guest vertex v the fol-

lowing three quantities: the set Block[v] of guest vertices that merged (collapsed) into v, the set

Hosts[v] = ∩u∈Block[v]cands(u) of candidate host nodes for all the vertices in Block[v], and the

total energy e[v] of the host nodes in Hosts[v]. Because we are interested in admissible partitions of

Q, we only contract edges uv ∈ Q for which Hosts[u] ∩Hosts[v] is not empty.

GREEDYMCP resolves ties between contractible edges uv ∈ E[Q] with equal maximum weight

based on e[u] and e[v]. Other than resolving such ties, GREEDYMCP does not consider the available

energy of host nodes nor how host nodes spend their energy — those considerations are left to the

MLCF problem. In GREEDYMCP, we assume that a guest vertex ofQ can not be placed (replicated)

at multiple host nodes, which we plan to relax in future work. We also assume that there is no limit

on how many guest vertices (number of operators) may be placed at each host node. When such

limitations exist, one more condition can be added to line 8 to also check if |Block[u] ∪ Block[v]|

exceeds the load limit of the candidate host nodes of v.

Next, we analyze the running time of GREEDYMCP. The repeat–loop in lines 7–15 is executed

O(V [Q]) times, and each iteration takesO(V [Q]+V [H]) time. Lines 1–6 and 16–20 takeO(V [Q]+

E[Q]) time. Hence, the running time of GREEDYMCP is O(V [Q]× (V [Q] + V [H])).

4.1. Optimality of GREEDYMCP

We show conditions under which GREEDYMCP finds an optimal solution to the MCCP problem,

and thus the MCP problem as well. In particular, we show conditions under which the MCCP prob-

lem is a matroid (see definitions below), which implies that the greedy approach of GREEDYMCP

finds an optimal solution to both the MCCP and MCP problems.

First, we need a few definitions. A set system 〈U,F 〉, with F ⊆ 2U , is called an independence

system if ∅ ∈ F and it has the inheritance property, i.e. A ⊆ B ∈ F implies A ∈ F . The elements

of F are called independent. A matroid is an independence system that has the exchange property,

i.e. for any two maximal independent sets A and B, if x ∈ A − B then there exists y ∈ B − A so

that B + x− y is also independent.

Second, we define a particular set system that is useful in studying the MCCP problem. Consider

the MCCP problem instance 〈G, cands 〉. Consider the following set system IG = 〈E[G],FG 〉,

where an edge–set A ⊆ E[G] belongs to FG if each connected component Gi of G[A] has a non–
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Algorithm 1 The GREEDYMCP algorithm for placing a guest Q to a hostH
Input: A guest query expression DAG Q, host networkH, and host node initial energies ε.

Output: A placement of the guest vertices of Q to host nodes.

1. for each vertex v ∈ V [Q] do

2. Hosts[v]←− cands(v)

3. Block[v]←− {v}

4. e[v]←− ∑
x∈Hosts[v] εx

5. for each edge uv ∈ E[Q] do

6. weight[uv]←− size(u)

7. repeat

8. find edge uv ∈ E[Q] with maximum (weight[uv], 1
e[u]
, e[v]) and Hosts[u] ∩Hosts[v] �= ∅

9. if no such edge uv exists then

10. break

11. Hosts[v]←− Hosts[v] ∩Hosts[u]

12. Block[v]←− Block[v] ∪Block[u]

13. e[v]←− ∑
x∈Hosts[v] εx

14. contract edge uv by collapsing u into v

15. until true

// Place the guest vertices of Q to host network nodes

16. for each remaining vertex v ∈ V [Q] do

17. let u be a host network node in Hosts[v] ∩ V [H]

18. for each vertex x ∈ Block[v] do

19. host(x)←− u

20. return placement {host(v) : v ∈ V [Q]}.
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empty set of candidate nodes cands(V [Gi]). 2 Note that A ⊆ E[G] belongs to FG iff G[A] has no

path between any two subsets of vertices X, Y ⊆ V [G] whenever cands(X) ∩ cands(Y ) is empty.

Lemma 1. The set system IG is an independence system.

Proof. Since when A = ∅, each connected component of G[A] is a singleton, it follows that ∅ ∈ FG.

Next, we show that IG has the inheritance property. Consider two subsets A ⊆ B where B is

independent. Since B is a superset of A, each connected component Gi of G[B] consists of one or

more connected components Gj of G[A]. Since B is independent, each candidate set cands(V [Gi])

is non–empty. Consequently, since V [Gj ] ⊆ V [Gi], we also have that cands(V [Gj]) is non–empty.

Hence, A is also independent and it belongs to FG.

Third, we show that the set system IG is a matroid when G is a tree, and cands is such that there

are no distinct guest vertices pinned to the same element (host node).

Lemma 2. Suppose that the guest G is a tree with all guest vertices free or pinned, and without any

two distinct guest vertices pinned to the same host node. Then, the set system IG is a matroid.

Proof. Since IG is already shown to be an independence system, we only need to prove the exchange

property.

Consider two maximal independent sets A,B ⊆ E[G]. Suppose that there exists an edge e = uv

that belongs to A− B. Since e �∈ B, the edge e is between two different connected components Gu

and Gv of G[B]. Each connected component Gu and Gv contains exactly one pinned vertex, say x

and y respectively. Note that cands(x) ∩ cands(y) = ∅, and at least one of x or y is not incident to

e. If we were to add the edge e to B, we would establish a path between the two pinned vertices x

and y, rendering B + e non–independent. Since G is a tree and A is independent, the vertices x and

y belong to different connected components of G[A]. Since x or y is not incident to e, there exists

another edge e′ ∈ B−A along the single x–y path in G. Moreover, since G[B+ e− e′] has no paths

between pinned vertices, it follows that B + e− e′ is also independent.

Lemma 3. Suppose that the guestG is a path or a cycle, and all guest vertices free or pinned. Then,

IG is a matroid.

Proof. Since IG is already shown to be an independence system, we only need to prove the exchange

2The connected components of a directed graph G correspond to the connected components of undirected graph

obtained by ignoring the direction on G’s edges.
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property.

Consider two maximal independent sets A,B ⊆ E[G]. Suppose that there exists an edge e = uv

that belongs to A− B. Since e �∈ B, the edge e is between two different connected components Gu

and Gv of G[B]. Each connected component Gu and Gv contains a set of pinned vertices, say X and

Y respectively. Note that cands(X) ∩ cands(Y ) is empty, while both cands(X) and cands(Y ) are

non–empty.

Consider two vertices x ∈ X and y ∈ Y such that x–y is a shortest X–Y path in G that contains

e. Since e ∈ A and e �∈ B, at most one of the vertices x or y is incident to e. Then, the single x–e–y

path inG has two or more edges. Let e′ be an edge on the x–e–y path which is different than e. Then,

the subgraph G[B + e − e′] has no paths between pinned vertices with disjoint candidate sets, and

hence B + e− e′ is independent.

The conditions in the two lemmas above are as general as possible, in the sense that relaxing

them in any way renders the independence system IG a non–matroid.

Lemma 4. Suppose that the guestG has all its vertices free or pinned. The independence system IG
is not a matroid in the following cases:

(i) G is a tree with two or more distinct guest vertices pinned to the same host node.

(ii) G’s vertices are free or pinned to distinct hosts, and

(ii.1) G becomes a tree by removing a single edge, or

(ii.2) G becomes a simple cycle by removing a single edge.

(iii) G is isomorphic to ii.1 or ii.2 after a sequence of edge contractions.

Proof. Figure 3 (a), (b), and (c) show counter–examples for the cases (i), (ii.1), and (ii.2) respectively.

We indicate the edges in a set A or B by placing the label A or B next to those edges. In each case,

we demonstrate maximal independent sets A,B ∈ FG, such that there exists an edge e ∈ A− B for

which there is no single edge e′ ∈ B −A so that B + e− e′ is independent.

Since edge contractions preserve the matroid structure of any set system, (iii) follows from (ii).

Lemma 2 together with Theorem 13.20 in [22], shows that our GREEDYMCP algorithm finds a

minimum cost placement of a guest expression DAG G onto a host network, when (i) G is a tree with
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all the guest vertices either pinned or free, and there are no two distinct guest vertices pinned to the

same host node, or (ii) G is a path or a cycle with all guest vertices free or pinned. GREEDYMCP

may not optimally solve the MCP and MCCP problems in the other cases, such as those mentioned

in Lemma 4. In the next subsection, we consider the computational complexity of the general MCP

problem.
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Figure 3: Counterexamples used in the proof of Lemma 4. Each edge is labeled with the independent set (A or B) to

which it belongs. Pinned vertices are indicated with heavy outline (with different color) and labeled with the node to

which they are pinned to. All other vertices are free. An edge e ∈ A−B is shown as a heavy line in each subfigure.

4.2. Complexity of the MCP problem

We showed in the previous section that GREEDYMCP finds optimal solutions to MCP problem

instances under certain conditions, and that there are MCP problem instances for which GREEDYMCP

does not find optimal solutions. In this section, we analyze the computational complexity of the MCP

problem, and show that the MCP problem is NP–hard and MAX–SNP–hard even for trees DAGs with

height 1 and unit costs edges as long as they have restricted vertices.

We analyze the complexity of the MCP problem by studying the complexity of the simpler

MCCP problem. Recall that an optimal solution to the MCCP problem instance 〈G, cands 〉 pro-

vides us with an optimal solution to the minimum communication cost placement (MCP) problem

of a guest G onto a host network H and vice versa.

Consider an instance of the MCCP problem 〈G, f 〉, where f : V [G] −→ U . Call a vertex

v ∈ V [G] free if f(v) = U , pinned if |f(v)| = 1, and restricted otherwise.
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The MCCP with all vertices either free or pinned to distinct elements of U is equivalent to the

MULTITERMINAL CUT problem in graphs: given a graphG and a set ofK terminals, find a minimum

cost edge–cut A so that G− A has no path between any two terminals. To see this observe that, by

treating the pinned vertices as terminals, any edge–cutA that ensures thatG−A has no path between

terminals also ensures that each connected component Gi of G − A has at most one pinned vertex

(and hence non–empty f(V [Gi])).

Dahlhaus et al [10] show that the MULTITERMINAL CUT problem is NP-Hard even for planar

graphs with unit cost edges, and provide a simple 2-approximate algorithm based on the “isolation

heuristic”. For each terminal u, compute a min–cost cut that isolates u from all other terminals.

Since the union of any K − 1 such isolating cuts is a multiterminal cut, by taking the union of all but

the heaviest of these isolating cuts, they show that the resulting multiterminal cut is optimal within a

factor of 2. Dahlhaus et al [10] also show that the problem is MAX SNP–hard for any fixed number of

terminalsK ≥ 3. 3 Chopra and Rao [9] provide a polynomial–time dynamic programming algorithm

for the MULTITERMINAL CUT problem for trees. Erdos and Szekely [13] provide a polynomial–time

dynamic programming algorithm for a generalized multiterminal cuts in trees.

We study the complexity of the MCCP problem for trees with restricted vertices by linearly

reducing the K–HITTING SET problem to it.

The K–HITTING SET problem 〈 V, C 〉 is defined as follows: given collection C of K-subsets

of a set V , find a minimum–size subset S ⊆ V that intersects (hits) each subset in C. A K–subset

is a subset of size ≤ K. We assume, w.l.o.g., that each v ∈ V appears in at least one subset in C.

The K–HITTING SET problem is equivalent to the K–SET COVER problem (to see this, simple

switch the roles of elements and sets in the two problems) [3]. Consequently, the K–HITTING

SET problem is NP-hard, MAX SNP-hard, APX-complete, and approximable within a factor of∑K
i=1

1
i
− 1

2
≈ lgK + 1

2
(see [12, 3]).

Given a K–HITTING SET instance 〈 V, C 〉, we construct an MCCP instance 〈G, φ 〉 as follows.

The graph G is a tree with root a new vertex r �∈ V , leaves V , height 1, and unit cost edges. The

function φ : V −→ 2V is defined so that the root r is free and all the leaves are restricted. In

particular, for each leaf v ∈ V , φ(v) consists of all the K-subsets X of V that contain v and either

are not in C or |X| < K.

3MAX SNP–hard problems do not have polynomial–time approximation schemes unless P = NP .
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Lemma 5. Consider any subset X ⊆ V [G] with at most K vertices. Then,

• φ(X) = X if |X| < K.

• φ(X) = X if |X| = K and X �∈ C.

• φ(X) = ∅ if |X| = K and X ∈ C.

Proof. By construction.

Lemma 6. The K–HITTING SET linearly reduces to MCCP, i.e. the MCCP instance 〈G, φ 〉 has

a feasible edge–cut A of size m iff the K–HITTING SET instance 〈 V, C 〉 has a feasible hitting set

S of size m.

Proof. Consider the K–HITTING SET instance 〈 V, C 〉 and the corresponding MCCP instance

〈G, φ 〉.

Consider a feasible edge–cutA for the MCCP instance. We show that the set S = { u : ur ∈ A }

hits each subset in C, i.e. S is a feasible hitting set. First, observe that, for anyX ⊆ V with an empty

φ(X), the edge–cut A cuts the subtree G[rX]. 4 Second, consider any subset X ∈ C. By Lemma 5,

the set φ(X) of X is empty. Thus, A contains an edge xr from the subtree G[rX], which implies

that x ∈ S ∩X and S ∩X �= ∅. Since for each X ∈ C, S ∩X is not empty, S hits each X , and S is

a feasible hitting set, and |S| = |A|.

Consider now a feasible hitting set S for the K–HITTING SET instance 〈 V, C 〉. We show that

A = { ur : u ∈ S } is a feasible edge–cut to the MCCP instance 〈G, φ 〉. Consider any subtree

G[rX] such that φ(rX) is empty. Since r is a free vertex, φ(X) is empty. There are three cases to

consider.

Case 1: |X| = K. By Lemma 5, since φ(X) = ∅, we have that X is in the collection C. Since S is

a hitting set, S ∩X is not empty, and hence there exists x ∈ X ∩ S. By construction, xr is in

A. Thus, A cuts the subtree G[rX].

Case 2: |X| < K. Since |X| < K, for each vertex x ∈ X , φ(x) contains X . Consequently, the set

φ(X), which by definition is equal ∩x∈Xφ(x), is non–empty as it contains at least one element

(namely X). Contradiction, since φ(X) is supposed to be empty.

4For brevity, G[rX ] indicates the subtree of G spanning the vertices {r} ∪X .
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Table 1: Complexity of the MCCP problem 〈G, φ 〉, and its corresponding MCP problem 〈G, H, cands 〉.
Structure G Vertices Complexity class Available Algorithms

General graph free or pinned NP-hard 2-Approx [10]

Planar graph with unit cost edges free or pinned NP-hard 2-Approx [10]

Tree with unit cost edges restricted NP-hard MAX–SNP–hard, APX–complete (this paper)

Tree free or pinned P Dynamic Programming [9, 13]

Tree free or pinned to distinct nodes P GREEDYMCP (this paper)

Case 3: |X| > K. If X hits S, then A cuts subtree G[rX]. If some K–subset Y of X is in C, then

A cuts the subtree G[rY ], and subtree G[rX] as well. Otherwise, X is disjoint from S and

no K-subset Y of X is in C. Hence, none of the elements of X appear in any subset in the

collection C. Contradiction, since we assume that each element of V appears in at least one

subset in C.

Hence, A is a feasible edge–cut for the MCCP instance at hand, and |A| = |S|.

Theorem 1. The MCCP problem 〈G, φ 〉 is NP-hard even for trees of height 1 and unit cost edges.

In fact, MCCP is MAX SNP-hard.

Proof. Follows from Lemma 6 and the complexity of the K–HITTING SET.

We summarize the complexity of the MCP and MCCP problems in Table 1.

5. The Maximum Lifetime Concurrent Flow (MLCF) Problem

In the previous two sections we considered the problem of placing the vertices of an expression

tree DAG to the nodes of a wireless sensor network so that the total amount of operand data that

needs to be communicated in each round of evaluating that DAG is minimized. We now turn our

attention in how to route those operand data in order to maximize the number of rounds that DAG can

be evaluated by the wireless sensor network.

Given a placement of the guest query expression DAG onto the host network, we need to find

an energy efficient way to satisfy the data routing requirements indicated by the communication

demands graph. In other words, we need to find a solution to an MLCF problem instance.

Consider a wireless sensor network G = (V,E) with initial energy at the nodes ε ∈ R
|V [G]|, and

with unit transmit and receive costs τ , r ∈ R
|V [G]|×|V [G]|. Let S be a set of n source–destination pairs

of nodes 〈 si, di 〉, and let λ ∈ Z
|S| be such that the demand data rate for pair 〈 si, di 〉 ∈ S is λi.
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The MLCF problem is concerned with finding the maximum lifetime T such that we have total

data flow λiT for each pair 〈 si, di 〉 ∈ S, while respecting the initial energy ε of all the nodes. An

instance of the MLCF problem is given as I = 〈G, ε, τ , r,S,λ 〉.

Let P be a set of directed paths pj in G, where each path pj is an si � di path for some pair

〈 si, di 〉 ∈ S. We assume, w.l.o.g., that, for each pair 〈 si, di 〉 ∈ S, the set P contains all paths

si � di in G. Let H = (hij) ∈ {0, 1}|S|×|P|, where hij = 1 iff the path pj ∈ P is an si � di

directed path for some pair 〈 si, di 〉 ∈ S. Let Q = (qkj) ∈ R
|V [G]|×|P| be such that qkj is the energy

consumed by node k due to the flow of one data unit along the path pj ∈ P . Let F = (fij) ∈ R
|S|×|P|

be such that fij is the amount of data flow for the pair 〈 si, di 〉 ∈ S along the path pj ∈ P . Observe

that even though P can be very large, as we will see shortly, we never store or otherwise explicitly

consider each element of P , or any of the other large objects F, Q, or H.

Our approach to the MLCF problem is based on the Revised Simplex method of linear program-

ming. We provide an overview of linear programming concepts in Appendix A. The reader is referred

to a text such as [4, 22] for further details on linear programming.

We formulate the MLCF problem as the following integer program (IP)

maxT such that∑|P|
j=1 hijfij ≥ λiT, for each pair 〈 si, di 〉 ∈ S,∑|S|
i=1

∑|P|
j=1 fijqkj ≤ εk, for each node k ∈ V [G],

and non–negative integral F = (fij).

(1)

Since solving integer programs is in general computationally intractable, we focus our attention to

the linear relaxation of this IP. We consider the standard form of the linear relaxation of the IP above,

min cT · x such that

A · x = b and

x ≥ 0,

(2)

by appropriately defining A,b, c and x. Observe that there always exists an optimal solution where

there is no excess data flow for any source–destination pair in S. We account for the residual energy

of the nodes using the vector of slack variables z = (zj) ∈ R
|V [G]|. We collect all the K = 1 + |S| ·

|P|+ |V [G]| unknowns into a single vector x ∈ R
K ,

xT = (T fT zT ) (3)

where f is obtained by a row–major traversal of the matrix F. Let ψ[v] be the index an unknown

v maps to in the vector x. Further, the first |S| rows of the matrix A ∈ R
(|S|+|V [G]|)×K account
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for the |S| constraints due to the demand data rates for the source–destination pairs in S, while the

remaining |V [G]| rows account for the energy constraints at the nodes. The vectors c and b, and the

columns of A are defined as follows:

c b Aψ[T ] Aψ[fij ] Aψ[zj ]

−e
(ψ[T ])
K×1 O|S|×1 −λ hije

(i)
|S|×1 O|S|×1

ε O|V [G]|×1 Qj e
(j)
|V [G]|×1

(4)

where e
(i)
j×1 ∈ R

j denotes the vector with all zeros except that its ith entry is equal to 1, and Oi×j

denotes an i× j matrix of all zeroes.

We show that the Revised Simplex method can be used to find an optimal solution to the LP in

Eq. (2) for the MLCF problem by showing how to efficiently find (a) an initial basic feasible solution

(BFS), and (b) a variable that enters the BFS at each pivoting step, without explicitly manipulating the

entire matrix A or vector c. The details of our iterative algorithm for solving the LP for the MLCF

problem, which is based on the Revised Simplex method, are given in Algorithm 2 (ALGRSM–

MLCF).

An initial base B and its corresponding BFS x is obtained as follows. Initialize x to 0. For each

〈 si, di 〉 ∈ S, choose one path pji = si � di in G; if there is no path for some pair 〈 si, di 〉 ∈ S then

this instance of the MLCF problem is infeasible. Choose an initial lifetime xψ[T ] = εko/êko , where

ko = arg min
1≤k≤|V [G]|

{εk/êk} , (5)

and êk =
∑|S|
i=1 λiqkji , 1 ≤ k ≤ |V [G]|. Push flow xψ[fiji

] = λi · xψ[T ] on each chosen path pji ,

i = 1, 2, . . . , |S|; note that there is no flow on any other paths. Set xψ[zk] to the residual energy of

each node k ∈ V for the current flow assignment F; note that node ko exhausts all its initial energy,

i.e. xzko
= 0. Observe that the x constructed above satisfies the equation A · x = b. By taking the

initial base, which corresponds to x, to be

B = { ψ[T ], ψ[fiji], ψ[zk] : i = 1, 2, . . . , |S| and k ∈ V [G]− {ko} }. (6)

we have that |B| = |S| + |V [G]| and AB has full–rank, which implies that x is a BFS.

At each pivot iteration (lines 13–29 of Algorithm 2), we choose a variable xm that should enter the

current base B and a variable xl that should exit B, where m = ψ[fij], 1 ≤ i ≤ |S| and 1 ≤ j ≤ |P|.

No other variable ever needs to enter B, since all other variables outside B are slack variables. By the

theory of linear programming, a variable should enter the current base, if its current relative cost is
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negative, and if no such variable is found then B corresponds to an optimal solution and the algorithm

terminates. The relative cost of a variable xψ[fij ] outside B is

cψ[fij ] = cψ[fij ] − (ρT πT )

⎛
⎜⎝ hije

(i)
|S|×1

Qj

⎞
⎟⎠ = cψ[fij ] − hijρTe

(i)
|S|×1 − πTQj = −hijρi − πTQj. (7)

where the shadow prices vector is (ρT|S|×1 πT
|V [G]|×1) = cTBA

−1
B . In other words, xψ[fij ] should enter

B, if the energy cost of the path pj under the energy prices −π is at most hijρi. Such a path can be

found by running a shortest path algorithm on the graph G where the weight of each edge ij ∈ E[G]

is given by wij = −πiτij − πjrij. A variable xl that exits the current base B is chosen according

to the lexico–min rule, which relies on AB and Aψ[fij ]. The lexico–min rule guarantees termination

in a finite number of pivoting steps [4]. By the theory of the Revised Simplex method of linear

programming, ALGRSM–MLCF is correct and terminates with an an optimal fractional solution,

whenever such a solution exists.

The ALGRSM–MLCF algorithm finds a fractional solution that maximizes the system lifetime

To and consists of at most n+N paths for satisfying the concurrent flow data demands forN source–

destination pairs in a network with n nodes. By rounding down that fractional solution, we get an

α–optimal integral concurrent flow solution to the MLCF problem, where α = (To−n−N +1)/To.

Since often in practice To � n +N , it follows that α ≈ 1.

NOTE: It is possible, though rare, to have negative weight cycles in G under the weights w in

lines 18–21 of ALGRSM–MLCF, which may lead into a scenario where the shortest path called

upon in line 21 does not exist. In such a case, we consider walks instead of simple paths, and this

consideration preserves the correctness of the algorithm – a variable xψ[fij ] enters the base B if it

corresponds to a walk pj = si � di in G of weight at most hijρi under the edge weights w. At

termination, without increasing the energy consumed by the sensors, each walk in the base B is

converted to a simple path by eliminating all of its cycles.

Next, we consider the running–time of ALGRSM–MLCF. Lines 1–14 takeO(V [G]+E[G]+S)

time, while lines 34–39 take O((S + V [G])3) time. The running–time of each pivot iteration in

lines 16–32 of ALGRSM–MLCF. is O((S + V [G])3). Thus the running time of Algorithm 2 is

#iterations × O((S + V [G])3). Typically, in our experimental results, we find that the number of

iterations is quite small.
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Algorithm 2 The ALGRSM–MLCF algorithm for finding an optimal fractional solution to the

MLCF problem.
Input: MLCF instance I = 〈G, ε, τ , r,S,λ 〉.

Output: OPT(I) = 〈 T,Po, f 〉, where T is the lifetime, Po is a collection of at most |V [G]| + |S|

paths, and f is the vector of path flows.

// find an initial basis

1. path←− a vector with |S|+ |V [G]| nulls.

2. let B ←− 〈 〉 and ê←− 0|V [G]|×1

3. for each 1 ≤ i ≤ |S| do

4. find a directed path pj = si � di in G for the pair 〈 si, di 〉 ∈ S

5. if no path pj exists then

6. return instance I is infeasible

7. append ψ[fij ] to B

8. path[|B|]←− pj

9. increase êk by λiqkj for each node k on pj

10. ko ←− arg min1≤k≤|V [G]| {εk/êk}

11. T ←− εko/êko

12. append ψ[T ] to B

13. for each 1 ≤ k ≤ |V [G]|, k �= ko do

14. append ψ[zk] to B

// Pivoting

15. repeat

16. done←− true

17. (ρT πT )←− cTB ·A−1
B

18. for each edge ij ∈ E[G] do

19. wij ←− −πi · τij − πj · rij
20. for each pair 〈 si, di 〉 ∈ S do

21. find a shortest path pj = si � di in G with edge weights w

22. if the cost of pj is less than ρi then

23. done←− false

24. u←− A−1
B ·Aψ[fij ]

25. if the support I(u) is empty then

26. return instance I is unbounded

27. let ai be the ith row of the matrix AB, 1 ≤ i ≤ |B|

28. l ←− arg lexico–min{[xi, ai]/ui : i ∈ I(u)}

29. B(l)←− ψ[fij ]
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5.1. Computing an upper bound on the lifetime

We compute an upper bound on the system lifetime during each iteration of ALGRSM–MLCF

using the duality theory of linear programming. Such an upper bound allows us to continuously

assess the distance of the current feasible solution to MLCF from the optimal, and hence enables us

to terminate ALGRSM–MLCF early if that distance is below some desired threshold.

Consider the primal linear program for the MLCF problem. The dual linear program of this

primal linear program is

minyT · b such that

yT ·AJ ≥ cTJ and

yI ≥ 0,

(8)

where J = { ψ[T ], ψ[fij] : 1 ≤ i ≤ |S| and 1 ≤ j ≤ |P| } and I = {|S| + 1, . . . , |S| + |V [G]|}.

To see this observe that for any primal feasible solution x, we have xJ ≥ 0, AI,J · xJ ≤ bI , and

AI,J · xJ = bI . By duality theory, cT · x ≤ yT · b for any pair of primal–dual feasible solutions

(x,y). We show how to find a dual feasible solution for any primal BFS, and thus provide an effective

mechanism for estimating the sub–optimality of the BFS computed at each iteration of ALGRSM–

MLCF.

Consider a primal BFS x with basis B such that xψ[T ] > 0. Let the corresponding shadow prices

vector be

yT = (ρT|S|×1 πT
|V [G]|×1) = cTB ·A−1

B . (9)

Vector y may fail to be a dual feasible solution because yI �≥ 0 or because yT ·AJ �≥ cJ . We rectify

any such shortcomings of y by constructing a feasible dual solution based on y.

Since xψ[T ] > 0, it follows that ψ[T ] ∈ B and

1 = cψ[T ] = yT ·Aψ[T ] = (ρT πT ) ·Aψ[T ] = ρT · (−λ) (10)

Further, since λ > 0, it follows that ρ has at least one negative component. Moreover, for any

ψ[fij ] ∈ B, we have

0 = cψ[fij ] = yT ·Aψ[fij ] = πT ·Qj + hijρ
T · e(i)

n×1 = πT ·Qj + hijρi. (11)

Define the vector π̃ = max(π, 0) ≥ 0. Let µ̃i ≥ 0 be the length of a shortest path si � di in

G under the energy prices π̃. Let γmin = min{γ : γµ̃i ≥ −ρi}. Since ρ has at least one negative
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Table 2: Node locations for network topologies with n nodes. All nodes whose location is not explicitly indicated are

uniformly distributed in a 50m× 50m field. Node 1 is the base station.

node Topology I Topology II Topology III Topology IV

1 (45m, 45m) (45m, 45m) (45m, 45m) (45m, 45m)

2 (20m, 20m) (10m, 30m) (10m, 30m) (10m, 30m)

3 (30m, 10m) (20m, 20m) (10m, 20m)

4 (30m, 10m) (20m, 10m)

5 (30m, 10m)

6–n

component, γmin > 0. Let π̂ = γmin · π̃. Since π̃T ·Qj ≥ µ̃i for any path pj ∈ si � di, it follows

that (γminπ̃)T ·Qj ≥ γminµ̃i ≥ −ρi. Therefore, for all ψ[fij ] ∈ J , we have

cψ[fij ] = 0 ≤ π̂T ·Qj + hijρ
T · e(i)

n×1 = (ρT π̂T ) ·Aψ[fij ]. (12)

Consequently, the vector ŷT = (ρT π̂T ) is a dual feasible solution with value π̂T · ε ≥ cT · x, where

x is a primal BFS.

6. Experimental Evaluation

In this section we experimentally evaluate the performance of our method, which uses GREEDYMCP

for the placement of the operators and then uses ALGRSM–MLCF for the routing of the operands,

for the continuous evaluation of complex queries. We use the first order radio model used in [19]

as our sensor energy model with the following parameter values: the energy consumed to run the

transmitter and receiver circuitry is 50nJ/bit, the energy consumed to run the transmitter amplifier

is 100 pJ/bit/m2, and the packet size is 1000 bits. With these parameters, the energy consumed by a

sensor i to receive a packet is ri = 5mJ and the energy to transmit a packet to a node j at distance dij

meters is τij = 5+0.1 ·d2
ijmJ . Each sensor has 1 J initial available energy. In our experiments here,

in order to better demonstrate the benefits of our routing algorithm, we avoid taking advantage of the

base station’s unlimited available energy when routing operands by setting both its initial energy ε b

and its receive energy rb to 0.

We consider wireless sensor networks with n nodes and four different topologies I–IV. In each

instance of a network topology the location of certain nodes is fixed while all other nodes are ran-

domly distributed in the field. Node 1 is always the base station. See Table 2 for more details. We
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show example wireless sensor networks with these four topologies in Fig. 4. In our experiments, we

generate 20 instances of network topology I with n = 20 and n = 40 nodes, and 10 instances for

each network topology II, III, and IV with n = 30 nodes.

All of our experiments were done in Matlab running on a standard desktop PC.

6.1. ALGRSM–MLCF vs. FA for maximum lifetime single source–destination routing

First we compare the performance of ALGRSM–MLCF with that of the Flow Augment al-

gorithm (FA) by Chang and Tassiulas [7] for solving the MLCF problem. We do this evaluation

because a maximum lifetime routing of all the operand values during the continuous evaluation of

an expression tree gives rise to an instance of the MLCF problem. Here we compare the achieved

system lifetime of ALGRSM–MLCF with that of the FA algorithm for routing one unit demand (one

packet) in each round for the single source–destination pair, the pair 2–1. The parameters (x, λ) of

the FA algorithm are set to the values (x = 30, λ = 5000bits), suggested as their optimal values

in [7]. The FA algorithm collects the current residual energy information of every sensor for every

λ bits transmitted from source to destination. The amount of energy consumed by the sensors to

collect that information from them is not taken into consideration, despite the fact that it can be quite

significant.

Fig. 5 gives a scatter plot of the lifetimes achieved by ALGRSM–MLCF and the FA algorithm,

with each point corresponding to an instance of network topology I with n nodes. We use 20 instances

of network topology I with n = 20 and 40 nodes. ALGRSM–MLCF achieves better lifetime than

the FA algorithm for all the network instances. For λ = 5000bits and packets of size 1000 bits, the

FA algorithm needs to collect the residual energy information of every sensor once every five packet

transmissions from source to destination. The energy consumed to collect all that information is at

least 20% of the energy used to transmit packets with operand values. Taking the energy required to

collect all that information from the sensors would significantly reduce the lifetime achieved by the

FA algorithm, leading to significant benefits of using ALGRSM–MLCF instead of FA.

6.2. Performance of our placement and routing approach for the continuous evaluation of queries

For evaluating the performance, in terms of system lifetime, of our placement and routing algo-

rithms for the continuous evaluation of query expression trees, we use the expression trees shown in

Fig. 6.
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The tree DAGs we experiment with have operands of various sizes (small, medium, large). The

values 1, 2, and 5 are chosen as sample values for small, medium, and large size operands. For

example, the tree DAG T13 could model the TinyDB [24] SQL query

SELECT windowA . l i g h t , windowA . t e m p e r a t u r e , windowB . t e m p e r a t u r e

FROM windowA , windowB

WHERE windowA . l i g h t = windowB . l i g h t

SAMPLE PERIOD 10 s FOR 100 s ;

where

CREATE STORAGE POINT windowB SIZE 32

AS ( SELECT nodeid , l i g h t , t e m p e r a t u r e FROM s e n s o r s

WHERE node id = ’B’ SAMPLE PERIOD 10 s ) ;

CREATE STORAGE POINT windowA SIZE 32

AS ( SELECT nodeid , l i g h t , t e m p e r a t u r e FROM s e n s o r s

WHERE node id = ’A’ SAMPLE PERIOD 10 s ) ;

and where the operator C of T13 corresponds to the natural join specified in the SQL SELECT state-

ment above, while the operands A and B correspond to the windowA and windowB storage points

respectively. Moreover, we present results only for some combinations of operand sizes for the given

tree DAGs. Our choices of the different operand size combinations were guided by the desire to in-

duce different placements of the free operators of the tree DAGs (while exploiting symmetries in the

DAGs and the locations of the fixed operators), and to have tree DAGs that model common (SQL)

queries.

We consider the evaluation of all expression trees T1j in instances of network topology II, T2j

and T3j in instances of network topology III, and T4j in instances of network topology IV. We use

10 instances of each network topology II–IV with n = 30 nodes. For each expression tree Tij
and each instance G of the corresponding network topology, we compute the lifetime PO(Tij ,G)

achieved when placing Tij on G using GREEDYMCP, together with the sequence PALL(Tij ,G) of

lifetimes achieved by each one of all possible placements of Tij on G, indexed by those placements

of Tij, while using ALGRSM–MLCF to route the required operand values during the continuous

evaluation of Tij in G.
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Fig. 7 showsPALL(T1j ,G), indexed by the placement of the only non–pinned vertex of T1j (vertex

C), for one instance G of network topology II. GREEDYMCP places vertex C of T11, T12, and T13
at network nodes 1, 2, and 1, respectively. Observe that these placements found by GREEDYMCP

provide the optimal lifetime, and all the other placements of T1j achieve comparable lifetimes to each

other, which are all substantially smaller than the one achieved by our GREEDYMCP placement. that,

in maximizing the system lifetime for the continuous evaluation of an expression tree, (a) the system

lifetime seems to be less sensitive to the placement of the tree vertices, provided a near–optimal

routing is used to route the operand values, and (b) a placement that strives to minimize the total size

of all operands communicated, tends to provide the largest system lifetime.

Similar observations can be made when looking at the results for each expression tree Tij in each

instance G of the corresponding network topology (e.g. see Fig 8). Due to limited space, we cannot

plot and present all of these results like in Fig. 7 and 8. Instead, we compute and present in Table 3

the average and standard deviation of each one of the following measures PO, max(PALL(Tij ,G)),

min(PALL(Tij ,G)), avg(PALL(Tij ,G)), median(PALL(Tij,G)), and pct95%(PALL(Tij ,G)), , for each

Tij over all 10 relevant network topology instances G. We also show these measures as boxplots in

Fig. 9. Table 3 and Fig. 9 demonstrate that our placement and routing algorithms provide near optimal

system lifetimes for the continuous evaluation of expression trees in wireless sensor networks. 5. In

fact, as can be seen from both Table 3 and Fig. 9, GREEDYMCP achieves significantly better lifetime

than the 95% percentile of the lifetime achieved over all possible placements.

Observe that since all the expression trees in our experiments have their nodes fixed or free, it

follows from Lemma 2, that GREEDYMCP solves the MCP placement problem optimally for all our

expression trees. Also, recall (see section 5) that ALGRSM–MLCF computes an integral solution

to the MLCF problem that is optimal within a factor of α = (To − n− N + 1)/To, where To is the

optimal fraction lifetime, n is the number of network nodes, and N is the number of edges of the

DAG. Since in all our experiments n ≤ 40 and N ≤ 7, it follows that ALGRSM–MLCF computes a

solution to the MLCF problem that is always within 47 rounds of the optimal lifetime. Furthermore,

since the average To ≥ 4905 (see Table 3), it follows that ALGRSM–MLCF computes integral

solutions to the MLCF problem that are within 1% of the optimal lifetime on the average.

To further demonstrate the performance of our placement and routing approach for the continuous

5The boxplot for each expression tree T ij shows the average min(PALL(Tij ,G)), pct25%(PALL(Tij ,G)),
pct50%(PALL(Tij ,G)), pct75%(PALL(Tij ,G)), and max(PALL(Tij ,G)), over all the relevant network topologies G.
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Table 3: Average ± std. deviation of PO(Tij ,G) and certain other measures (e.g. maximum, minimum, median, etc)

based on PALL(Tij ,G), with the summarizing done over all relevant network topology instances G.

Tree PO max(PALL) min(PALL) mean(PALL) median(PALL) pct95%(PALL)

T11 17531± 1448 17531± 1448 6145± 107 7106± 64 6589± 25 9556± 353

T12 6503± 162 6503± 162 2422± 16 2680± 14 2489± 3 3290± 46

T13 9034± 774 9034± 774 2140± 55 2642± 37 2426± 20 2686± 134

T21 16967± 1422 16967± 1422 4601± 324 5483± 54 4963± 14 6537± 124

T22 4905± 90 4905± 90 2137± 77 2373± 11 2215± 2 2832± 29

T31 16968± 1287 16968± 1287 4588± 113 6279± 31 6464± 49 6639± 10

T32 6534± 136 6534± 136 2143± 20 2616± 8 2483± 5 3299± 42

T33 6534± 136 6534± 136 1928± 33 2547± 5 2482± 5 3299± 42

T34 8710± 705 8710± 705 1859± 100 2390± 16 2402± 26 2495± 2

T35 6532± 134 6532± 134 1302± 22 2301± 16 2391± 30 2482± 7

T41 16928± 1746 16928± 1746 2960± 277 5854± 53 6367± 91 6600± 30

T42 6577± 97 6577± 97 1697± 98 2572± 9 2484± 4 3289± 30

T43 6482± 291 6482± 291 1186± 49 2322± 10 2471± 8 2496± 1

T44 6482± 291 6482± 291 942± 78 2200± 15 2459± 13 2495± 1
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evaluation of expression trees, we compare our ALGRSM–MLCF routing to a naturally alternative

routing: whenever an operand value needs to be routed from a network node x to network node node

y, we use an x–y shortest path in the network, where the cost of each network link uv is equal to the

energy τuv+rv consumed to send a packet from u to v. We re–run the simulation for each expression

tree Tij and each instance G of the corresponding network topology, and we find the best lifetime

among all possible placements of Tij onto G, this time using shortest paths to route the required

operand values during the continuous evaluation of Tij in G.

Fig. 10 shows the scatter plot of the optimal lifetimes achieved by using ALGRSM–MLCF vs.

fixed (shorest) paths for the expression tree Ti1. Each point in Fig. 10 represents a topology instance

G. We see that ALGRSM–MLCF achieved much better lifetime (over 20% on average) in all the

instances. Again, this demonstrates that our method provides near optimal system lifetimes for the

continuous evaluation of expression trees in wireless sensor networks.

7. Conclusions

In this paper we consider the problem of maximum lifetime continuous in-network evaluation of

complex queries Q in wireless sensor networks. This task includes two coupled aspects that impact

each other as well as the system lifetime — to which network nodes should one place the operators,

variables, and constants of Q, and how to route the values of the operands among network nodes

during the continuous evaluation of Q. While most of the existing work focuses on the placement

aspect and treats the routing as a substrate, we address both the placement and routing aspects of the

task together.

We present a simple, effective, and efficient algorithm for the maximum lifetime concurrent flow

(MLCF) problem in wireless sensor networks that facilitates the decoupling of the placement and

routing aspects of the task at hand. We also present a simple greedy heuristic, GREEDYMCP, for

the minimum communication cost placement (MCP) problem of an expression DAG to a network,

and show that it finds provable optimal solutions on certain practical useful cases, while we prove

that the MCP problem is MAX–SNP hard even for trees with unit costs edges. Through an extensive

experimental evaluation, we show that our approach consistently finds the maximum lifetime solution

for the continuous in–network evaluation of complex queries in wireless sensor networks.

Designing fault–tolerant algorithms for the maximum lifetime continuous in-network evaluation

of complex queries in highly dynamic wireless sensor networks remains an important open problem
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to be addressed in future work.
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Appendix A. Linear Programming Primer

This appendix provides an overview of some concepts in linear programming used in this paper.

Further details can be referred in a text such as [22, 4].

Consider a linear program in standard form

min cTx such that

A · x = b and

x ≥ 0,

(13)

where A ∈ R
n×m, c,x ∈ R

m, b ∈ R
n, and n ≤ m. The linear program above defines a convex

polyhedron P = {x : Ax = b,x ≥ 0}. For convenience, and without loss of generality, suppose

that the constraint matrix A is of full–rank n and that b ≥ 0. The case where A has rank less than

n leads to degeneracies requiring special handling, see [4]. We further assume, w.l.o.g., that the

polyhedron P is bounded and non–empty, i.e. the linear program has a bounded optimal solution.

Let B be a sequence (ordered set) of n column indexes in {1, . . . , m}. Let AB be the n × n

sub–matrix of A whose ith column is AB(i). A sequence B is called a base if AB is of full-rank

(invertible). It is called a feasible basis if A−1
B b ≥ 0. Since A is of full–rank and the linear program

is feasible, a feasible basis always exists. A variable xi (column Ai) with index in B is called a basic

variable (basic column), otherwise it is called a non–basic variable (non–basic column).

Construct a feasible solution x corresponding to a feasible base B by taking xB = A−1
B b and

xB = 0. Such a solution is called a basic feasible solution (BFS). There is a bijection between

basic feasible solutions and vertices (extreme points) of the polytope defined by A. Furthermore, an

optimal solution always occurs at one of its vertices.

Associate with each constraint a shadow price (or dual variable). The shadow prices π ∈ R
n
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corresponding to a base B is given by

πT = cBA−1
B . (14)

The relative cost c̄j of each non–basic column Aj is given by

c̄j = cj − πTAj (15)

The Simplex method, discovered by Dantzig, systematically explores the set of basic feasible

solutions, starting from an initial BFS, until an optimal BFS is found. The process of moving from a

BFS to an adjacent BFS is called pivoting. In pivoting, we exchange a basic column with a non–basic

column, without increasing the cost of the best feasible solution so far.

We describe next a variant of the Simplex method, the Revised Simplex Method (RSM) with

the lexico–min rule. An arbitrary non–basic column Aj enters the current base B if its relative cost

c̄j < 0. If all non–basic columns have relative cost≥ 0, then the current BFS is optimal and Simplex

terminates. Otherwise, a basic column to exit the current base B needs to be selected. There are

multiple approaches to do so. We describe the lexico–min approach for choosing the basic column

to exit the current basis B, since it guarantees termination in a finite number of pivoting steps [4].

Let ai denote the ith row of the matrix AB. Let l be the index of the lexicographically smallest row

[xi, ai]/ui with ui > 0,

l = arg lexico–min

{
[xi, ai]

ui
: ui > 0

}
, (16)

where u = A−1
B Aj and x = A−1

B b. Column Aj enters the base B replacing column AB(l), i.e.

B(l)←− j. An index l always exists, since otherwise ui ≤ 0 for all i and the problem is unbounded.

Extensive computational experience since the discovery of the Simplex method demonstrated that

in practice it is an efficient algorithm. The Revised Simplex method offers computational advantages

for linear programs with sparse constraint matrices. Moreover, observe that RSM allows us to solve

linear programs with exponentially many variables by performing few pivots in practice, provided

that we can either find, in polynomial–time, a non–basic column with negative relative cost or show

that no such column exists.
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Figure 4: Example wireless sensor networks with topology I, II, III, and IV. Fixed nodes are indicated with squares, while

random nodes are indicated with circles. Node 1 is always the base station.
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Figure 5: Lifetime achieved by ALGRSM–MLCF and the FA algorithm for the source–destination pair 2–1 with unit

demand, for each instance of network topology I.
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vertex size s11 s12 s13 s21 s22 s31 s32 s33 s34 s35 s41 s42 s43 s44

root 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A 1 5 1 1 5 1 5 5 1 5 1 5 5 5

B 1 2 2 1 2 1 2 2 2 2 1 2 2 2

C 1 1 5 1 1 1 1 1 5 1 1 1 1 1

D 1 1 1 1 2 2 2 1 1 5 5

E 1 1 1 1 5 1 1 2 2

F 1 1 1 1

G 1 1 1 5

(e) Vertex size vectors

Figure 6: Expression trees used in the experiments. Each expression tree structure T i in (6a)–(6d) and each operand

(vertex) size vector sij in (6e) provides an expression tree Tij , where the vertices of Ti have their size specified by the

vector sij . The values 1, 2, 5 are proxies for small, medium, and large size operands.
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1, 2, and 1, respectively. All of them are optimal placement.
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Figure 8: System lifetime sequence PALL(T3j ,G), indexed by the placement of C, E ∈ T3j , and PO(T3j ,G), for an

instance G of network topology IV with n = 30 nodes.
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Figure 9: Boxplot of the average system lifetime achieved for each expression tree for all possible placements, and across

all the relevant random network topologies. We also show the lifetime achieved by the GREEDYMCP placement.
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Figure 10: Optimal lifetime achieved by using fixed (shortest) paths vs. using ALGRSM–MLCF to route the required

operand values during the continuous evaluation of T i1.
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