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Abstract

The Geometric Steiner Minimum Tree problem (GSMT) is to connect at minimum cost
n given points (called terminals) in d-dimensional Euclidean space. We generalize a GSMT
approximation partitioning algorithm by Komlds and Shing (KS) and analyze its performance
under more relaxed conditions. These generalizations have practical applications for multi-layer
VLSI routing.

Whereas KS assumed d = 2, our algorithm works for any dimension d > 2. Moreover,
whereas their analysis assumed the rectilinear norm and a uniform distribution of input points,
our analysis holds for any norm on R? and whenever the terminals are any independent iden-
tically distributed random variables taking on values in any bounded subset of R¢. Both algo-
rithms depend on a parameter ¢ through which the user can trade off time for solution quality.

We evaluate our algorithm in terms of its performance ratio—the ratio of the cost of the
Steiner tree computed by the algorithm divided by the cost of a Steiner minimum tree. Applying
a probability theorem on subadditive Euclidean functionals by Steele, we prove the following:
under the aforementioned distribution of inputs, the limit as n — oo of the supremum of the
performance ratio of our algorithm is 1—|—O(t_1/d(d_1)), almost surely. This result generalizes the
corresponding 1—|—O(t_1/2) bound proven by KS. Along the way, we prove a useful combinatorial
lemma about d-dimensional rectangle slicings.

We prove that the worst-case time and space complexity of our algorithm is ©(nlg(n/t) +
Tysr(v,v) + nTopr(t)/t) and O(Spysr(v,v) + Ssmr(t)), respectively, where v < n +
29+1(n/t)o(t) is the number of vertices in the resulting Steiner tree. Here, Tsp7(t) and
Ssmr(t) are the time and space required to solve exactly any GSMT problem of size less than
t; Tarst(n,m) and Spyrsr(n, m) are the time and space required to find a minimum spanning
tree of a graph with n nodes and m edges; and o(t) is the maximum number of Steiner points
for any Steiner minimum tree with ¢ terminals. For example, for R? and the rectilinear norm,
the time is O(nlg(n/t) + nlg" n + nTspr(t)/t) and the space is O(nlg* n + Ssarr (¢)).

Keywords. Approximation algorithms, combinatorial optimization, geometric Steiner tree prob-
lem (GSMT), graph algorithms, partitioning algorithms, probabilistic analysis of algorithms, sub-
additive Euclidean functionals.
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1 Introduction

Partitioning is a powerful heuristic that underlies many sequential and parallel approximation
algorithms. We apply this heuristic to the Steiner tree problem in d-dimensional Euclidean space
for any d > 2, when distances are measured by any norm on R?. Moreover, we analyze the
performance of our algorithm under a wide class of distributions of inputs by applying the theory
of subadditive Euclidean functionals. This paper is of interest both for our enhanced Steiner tree
algorithm and for our application of powerful general-purpose design and analysis techniques.

The Geometric Steiner Minimum Tree Problem

The Geometric Steiner Minimum Tree problem (GSMT)is to connect at minimum cost n given
points (called terminals) in d-dimensional Euclidean space. Courant and Robbins [10, p. 354-361]
attribute this problem to the geometer Jacob Steiner, who in the early nineteenth century, pondered
the question of how to join three villages by a network of roads of minimum length; Kuhn [24] traces
this problem to Fermat (1601-1665). Today, GSMT remains of interest for its applications in VLSI
routing and network design [5, 35].1

Given any set  of n terminals in R? with d > 2, a Steiner Tree T = (V,E) for & is any tree
that spans &; i.e. # C V C R? with |[V| < oo and £ C V x V.2 The points in V — & are called
Steiner points; their use often permits lower-cost solutions than would be otherwise possible.

Given any norm | | on R?, the cost of any Steiner tree T = (V, E) in R? under | | is the sum
of the costs of its edges, where the cost—or length—of any edge (z,y) € R? x R? is given by the
induced metric |z — y|. A Steiner minimum tree (SMT) for & is any Steiner tree for & that has
minimum cost among all Steiner trees for &.

Given any dimension d > 2, any set & of n terminals in R?, and any norm on R?, the Geomelric
Steiner Minimum Tree problem is to compute any Steiner minimum tree for & under the given
norm. The problem is geometric in the sense that the terminals and Steiner points lie in Fuclidean
space.

Two special cases of GSMT are the Fuclidean Steiner Minimum Tree problem (ESMT) and the
Rectilinear Steiner Minimum Tree problem (RSMT). ESMT uses R? and the Euclidean norm | |2;
RSMT uses R? and the rectilinear norm | ;.

Although Minimum Spanning Trees (MSTs) can be computed in polynomial time [9], GSMT
is NP-hard. For example, Garey, Graham, and Johnson [15] proved that the discretized ESMT is
NP-complete (reduction from Exact Cover) and that ESMT is NP-hard (it is not known if ESMT
is in NP). Further, Garey and Johnson [16] proved that RSMT is NP-complete (reduction from
Node Cover in planar graphs). For these reasons it would be unlikely to find a polynomial-time
exact algorithm for GSMT.

There are, however, special cases in which ESMT and RSMT are efficiently solvable. For
example, Aho, Garey, and Hwang [1]; Hwang [19]; and Provan [28] describe efficient algorithms for
special cases of ESMT and RSMT when the terminals lie on the boundary of a convex polygon.

!Sherman’s motivation for this research grew out of his experiences with the MIT PI Project [29], which uses a
Steiner tree heuristic to route the signal wires globally.

?We exclude the case d = 1 because it yields the trivial Steiner minimum tree consisting of the shortest line
segment containing .
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Previous Work

To understand our results, it is helpful to know how our work relates to previous work by Karp;
Komlés and Shing; and Steele.

In 1977, Karp [22] designed a partitioning approximation algorithm for the Fuclidean Traveling
Salesman Problem (ETSP)and claimed that his approach could be adapted to ESMT and to other
geometric optimization problems.

In 1985, Komlds and Shing [23] worked out the details of a special case of Karp’s claim, giving
a partitioning algorithm for RSMT. Using elementary techniques, Komlds and Shing analyzed the
performance ratio of their algorithm assuming the terminals are independent identically distributed
(i.i.d.) random variables with uniform distribution. They proved the performance ratio of their
algorithm is 1 + O(1='/2) with probability approaching 1, as n — oo.

In 1981, Steele [31, 32] proved two powerful theorems about subadditive Euclidean functionals
and mentioned that the cost of Euclidean and rectilinear Steiner minimum trees can be viewed as
such functionals. Steele’s work stems from a 1959 theorem of Beardwood, Halton, and Hammers-
ley [4].

We combine, refine, and extend this previous work in two ways. First, we generalize the
algorithm of Komlds and Shing to work in d-dimensional Euclidean space, for any d > 2. Second, by
applying Steele’s theorems, we analyze the performance ratio of our algorithm under more general
conditions. Namely, we prove the following: for any norm on R? and whenever the terminals are
any i.i.d. random variables taking on values in any bounded subset of R, the limit as n — oo of
the supremum of the performance ratio of our algorithm is 1 + O(t_l/d(d_l)), almost surely. Thus,
we generalize the algorithm of Komlés and Shing, improve its analysis, and work out the details of
claims by Karp and Steele.

Although the generalization to R? with d > 3 is primarily of theoretical interest, the general-
ization to R® has important practical applications. For example, R® provides a useful model for
multi-layer VLSI routing. In addition, by relaxing the constraints on the norm and on the input
distribution, we can apply our results to VLSI routing problems with non-rectilinear wires and to
more realistic input distributions.

Komlés and Shing stated the time complexity of their algorithm as O(nlg n+nTspr(t)), where
Tsaprr(t) is the time to solve one subproblem of size ¢; they did not state the space complexity
of their algorithm. By contrast, for our algorithm under their assumptions (i.e. R? and the
rectilinear norm), we give the tighter bounds of O(nlg(n/t) + nlg"n + nl'spyr(t)/t) time and
O(nlg* n+ Ssmr(t)) space.®

Outline

The rest of this paper is organized as follows. In Section 2, we describe our algorithm in detail,
prove its correctness, and analyze its time and space complexity. In Section 3 we briefly review
Steele’s work on subadditive Euclidean functionals and apply this work to the asymptotic cost of
any Steiner minimum tree in R? using any norm on R%. In Section 4, we prove a combinatorial
lemma about rectangle slicings and apply this lemma, together with the results from Section 3, to
analyze the asymptotic performance ratio of our algorithm. Finally, in Section 5, we summarize
our conclusions.

? Although Komlés and Shing did not state the entire effect of ¢ on the running time of their algorithm, from their
calculations, it is apparent they were aware of its effect.
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2 Algorithm 1

In this section we describe our Steiner tree algorithm, prove its correctness, and analyze its time
and space complexity. We call this approximation algorithm Algorithm 1.

2.1 Description of Algorithm 1

Given any set of n terminals in R?, Algorithm 1 computes an approximate Steiner minimum tree in
three steps. First, it partitions the terminals into ©(n/t) sets, each of size at most ¢. Second, using
an exact GSMT component algorithm, Algorithm 1 constructs a Steiner minimum tree for each of
these sets. Third, Algorithm 1 constructs and outputs a minimum spanning tree for the union of
the Steiner minimum trees found in Step 2. Our partitioning process ensures that this union will
always be connected. The parameter 2 < t < n controls the maximum size of each subproblem;
by adjusting this parameter, the user can conveniently trade off time for solution quality. Figure 1
illustrates this process on a small example.

Figures 2-4 give detailed pseudocode. Algorithm 1 recursively partitions the terminals as fol-
lows: at each step, Procedure Partition divides the current set into 2% subsets, using the medians
along each of the d coordinates. Procedure Split_Set partitions any set of terminals along one
dimension. Without loss of generality, we assume all terminals have unique coordinates along each
dimension.

For the exact GSMT component algorithm, a variety of options are available. For example,
Smith [30] gives a method for finding Steiner minimum trees in R?, for any d > 2 under the
Euclidean norm. For R? under the Euclidean norm, there are algorithms by Melzak [25], Cockayne
and Schiller [8], Boyce [6], Winter [34], Trietsch and Hwang [33], and Cockayne and Hewgill [7].
For R? and the rectilinear norm, by Hanan’s theorem [18], we can use any Steiner minimum tree
algorithm for graphs; Winter [34] reviews such algorithms. Although our performance analysis is
based on using an exact GSMT component algorithm, the user may wish to carry out additional
time-quality tradeofls by using an approximate component algorithm.

To compute the minimum spanning tree, we use the algorithm by Fredman and Tarjan [14],
which runs in O( Elg* V) time, where |E| > |V| are, respectively, the number of edges and vertices.?

Although unimportant to our theoretical asymptotic performance bounds, in practice we rec-
ommend the following two refinements to find lower-cost Steiner trees. First, refine the output
of Algorithm 1 with post-processing heuristics surveyed by Balakrishnan and Patel [3]. Second,
when combining the solutions to the subproblems (Steps 13-14), include all possible edges among
the terminals and Steiner points before computing a minimum spanning tree. With this second
refinement, for R? under the | |, norm, the time to compute the minimum spanning tree in Step 14
would increase from O(nlg*n) to O(n?), which increase typically would be modest in comparison
to the time required to solve the subproblems.

We note that Algorithm 1is correct in the sense that it always terminates and, upon termination,
finds some Steiner tree for the input terminals. To prove that the output graph is a Steiner tree,
it suffices to prove that the union of the Steiner trees for the subproblems is connected and spans
all terminals. The connectedness property holds because Procedure Split_Set includes the median-
coordinate terminal in both subsets of the partition; the spanning property holds because every
terminal is in some subproblem.

*Throughout this paper, inside asymptotic notation and only inside asymptotic notation, if S is any set, we use

the shorthand S to denote |S|. For example, O(S) denotes O(]S]).
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Figure 1: Execution of Algorithm 1 on an example with n = 13, ¢ =4, and d = 2. (a) The input consists of
13 vertices in the plane. (b) Algorithm 1 partitions the input into subproblems, each with at most 4 vertices.
The first cut of the partition is drawn along the median z-coordinate; then, each of the resulting two subsets
is cut along its median y-coordinate. (¢) A component algorithm computes a Steiner minimum tree for each
subproblem. (d) Algorithm 1 outputs as its approximate Steiner tree the minimum spanning tree of the
union of the Steiner trees computed in Step (¢). This union is connected through the median vertices, which
are included in both subsets created by each cut of the partition.
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Algorithm 1: Probabilistic. GSMT(Z, | |, t, d)

Input: A set # C R? of n terminals, a norm || | on R?, the dimension d of
the space, and an integer parameter 2 <t < n.

Output: A Steiner tree 7' for Z, such that 7' is an approximation to some
Steiner minimum tree for # under | |.

Begin
%%  Initialize
1 Ly — Empty_List_Of_Sets()
2 Insert(Lg, &)
3 e [(1/d)lgn/(t— 1))
%%  Partition Terminals
4 for k — 1 topu do
5 Ly — Empty_List_Of_Sets()
6 for each Sin Ly_, do
7 Ls < Partition(S, d)
8 Append(Ly, Ls)
%%  Solve Subproblems Exactly
9 F — Empty_List_Of_Trees()
10 for each Sin L, do
11 Ts «— Exact_ GSMT(S, | |, d)
12 Insert(F', Ts)
%%  Combine Solutions of Subproblems
13 G — Forest_Union(F")
14 T — Minimum Spanning Tree(G, | |, d)
15 return 7'
End

Figure 2: Pseudocode for Algorithm 1.
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Procedure 1:

Input:
Output:

Begin

End

Procedure 2:

Input:

Output:

Begin

End

WO 0 1O O W N~

= O 00 =1 O U W N

Partition(S, d)

A set S C R? of n points, and the dimension d of the space.

A list of sets {S1,Sa,...,S24¢}, such that the sets S; partition S,
and | |S]/2¢ | < |Si| < [ |S]/2¢ |+ 1foralli=1,...,2%

Ay — Empty List_Of_Sets()
Insert(Ag, S)
fori — 1tod do
A; — Empty_List_Of_Sets()
for each A in A;_; do
(AL, Ar) < Split_Set(A, i, d)
Insert(A;, AL )
Insert(A;, Ar )

return Ay

Figure 3: Pseudocode for Procedure Partition.

Split_Set(A, i, d)

A set A C R? of n points, an integer 1 < i < d, and the dimension d
of the space.

Sets Ar = {2z | m(z) < m, # € A} and Agp =
m, z € A}, where m is the median of {m;(z) |
mi((x1, T2, ..., 2q)) = ;.

| mi(z) >
€ A} and

T
xr

Ar — Empty_Set()
Ar — Empty_Set()
if not Empty(A4) then
m — Median(A4, i, d)
for each z € A do
if m;(z) < m then
Insert(Ar, )
if m;(z) > m then
Insert(Arg, z)
return (Ar, Ag)

Figure 4: Pseudocode for Procedure Split_Set.
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2.2 Time and Space Complexity

We analyze the time and space complexity of Algorithm 1 under the uniform cost measure. In
Proposition 1, we state the complexity of Algorithm 1 in terms of the parameter { and the com-
plexities of the component algorithms that solve the GSMT and MST subproblems. Corollary 1
specializes this lemma for R? using the Euclidean norm and for R? using the rectilinear norm.

The complexity of Algorithm 1 depends on the following functions. Let T'sprr(n) and Ssarr(n)
be the time and space complexity of any exact component GSMT algorithm, where n is the number
of terminals. Similarly, let Ty s7(V, E) and Sys7(V, E) be the time and space complexity of any
MST algorithm on |V vertices and | E/| edges. Also, let o(n) denote the maximum number of Steiner
points for any Steiner minimum tree for n terminal points. We assume that Tspsr(n), Ssyr(n),
o(n), Tprsr(n, m), and Spyrsr(n, m) are asymptotically non-decreasing functions of n and m.

It is helpful to visualize the partition tree of height [(1/d)lg(n/(t — 1))] formed by the parti-
tioning process. Each node of this tree represents a set of terminals, with the z leaves being the
GSMT subproblems to be solved exactly, where n/(t — 1) < 2 < 2¢(n/(t — 1)) < 2%+ (n/t). Each
internal node has exactly 2¢ children; for each level k, each of the 2% nodes at level k corresponds
to at least |n/2%] and to at most [n/2%| 4 1 terminals.

Proposition 1. For any d > 2, for R* under any norm, the time and space complexily of Al-
gorithm 1 is ©(nlg(n/t) + Tarsr(v,v) + nTspr(t)/t) and O(Ssyr(t) + Smsr(v,v)), respectively,
where n is the number of terminals and v < n + 29 (n/t)a(t) is the number of vertices in the
resulting Steiner tree.

Proof. The running time of Algorithm 1 is the sum of four components: O(nlg(n/t)) time to
partition the terminals, O((n/t)T'sprr(t)) time to solve the z subproblems, ©(v) time to compute
the union of the Steiner trees from the subproblems (this union has v < n 4 zo(¢) terminals and
Steiner points), and Tars7(v,v) € Q(v) time to compute a minimum spanning tree of this union.
Note that the median of n real numbers can be computed in O(n) time and that each of the
operations Insert, Delete, Empty, and Append takes time O(1).

The ©(nlg(n/t)) time to partition the terminals satisfies the recurrence

n ifn <t
Aln) = { 29 A(n/2%) + O(dn) if n > 1, (1)
where the O(dn) term reflects that each call to Procedure Partition(5, d) takes time ©(dS).
Similarly, the space complexity of Algorithm 1 is the sum of four terms: @(n) space to partition
the terminals, Ssar7(t) space to solve the subproblems (we reuse space), ©(v) space to compute the
union the Steiner trees from the subproblems, and Sass7(v,v) € Q(v) space to compute a minimum
spanning tree. O

Corollary 1. With R? under the || |2 norm for any d > 2, or with R* under the | |1 norm, the time
and space complezxity of Algorithm 1 is O(nlg(n/t)+nlg* n+nTsyr(t)/t) and O(nlg* n+Ssyr(t)),
respectively, where n is the number of terminals.

Proof. For R? under the | | norm, Gilbert and Pollak [17] proved that o(n) < n — 2; for
R? under the | |; norm, Komldés and Shing [23] proved that o(n) < 2n. Further, Fredman and
Tarjan [14] give an MST algorithm based on Fibonacci heaps that runs in time O(F1g" V') on any
connected graph with |V/| vertices and |F| edges. Hence, the corollary follows from Proposition 1
with v < n+ z0(t) < n+ 2% (n/0)2t < (2442 + 1)n and Sysr(v,v) < Tarsr(v,v) € O(vlg* v). O
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3 Asymptotic Cost of Geometric Steiner Minimum Trees

To evaluate the performance of Algorithm 1, we need to estimate the cost of any Steiner minimum
tree for any set of n terminals in R? using the chosen norm. Since the cost of such Steiner minimum
trees can be viewed as a subadditive Euclidean functional, we can estimate this cost by applying a
theorem by Steele [31]. In this section, we review and apply this theorem.

To this end, given any finite set # of points in R?, let Ls(%) be the cost of any Steiner minimum
tree for & using the chosen norm. Similarly, let d;(#) be the length of any shortest path through
these points using the Fuclidean norm.

3.1 Subadditive Euclidean Functionals

We shall use the following terminology throughout.

A functional is any function L : P(R?) — R, where P(R?) is the set of all finite subsets
of RY. The functional L is Euclidean iff I dilates linearly and L is invariant under translation;
that is, for any & € P(R?) and for any ( € R, L({ ® &) = |(|L(%) and L(¢ ® &) = L(&). The
dilation operator ® : R X RY — R? and the translation operator @ : R X RY — RY are defined as
follows. For any point y = (y1, 2, ...,y4) € R and any constant ¢ € R, (©®y = (Cy1,Cy2,- - -,(Ya)
and (B y = (C+ wn,¢+ y2,.--,C + ya). We lift these operators to act on sets of points as
follows: (@2 ={(Oz1,(®ze,...., O a,},and (B & = {(D 21, P 29,...,( D x,}, whenever
& = {x1,29,...,2,} is any set of points in R?. For convenience, we will sometimes write (# = (® 2.

A Euclidean functional L : P(R?) — R is monotone iff, for any # € P(R?) and any y € R?,
L(z) < L(#U{y}). And L is subadditive iff L satisfies Steele’s subadditive hypothesis: there exists
some positive real constant Cf(d) such that, for any set & of n terminals in R?, for any positive
integer m, for any positive ( € R, and for any partition {Q; : i = 1,...,m?} of the unit cube
[0,1]% into m? identical subcubes with edges parallel to the axes, L(2 N [0,(]¢) < Cp(d)(m?~t +
E;idl L(2 N ¢Q;). Given any real numbers a < b, the d-dimensional cube [a,b]? is the set {z : z =
(z1,...,24) € R? and a < z; < b}.

Let © be any sample space with probability measure ¢. A random wvariable in R? is any
¢-measurable function X : Q@ — R?. Let X = {X1,X3,...,X,} be any set of n independent
identically distributed (i.i.d.) random variables in R?, and let L : P(R?) — R be any functional.
Define the random variable f, : @ — R by f, = L(X) For any constant £ € R, the phrase
“limy—eo frn = € almost surely” refers to pointwise convergence of f, almost everywhere; that is,
d({w € Q:lim, o fr(w) =€}) = 1.

The support of any function g : R — R is the set {x € R? : g(z) # 0}. By the Lebesgue
Decomposition Theorem [26, p. 216], any probability density function (p.d.f.) can be written as the
sum of two functions: one that is is absolutely continuous and one that is singular with respect to
Lebesgue measure. The support of the singular part of any distribution is called the singular sup-
port. All integrals in this paper are Lebesgue integrals with respect to the d-dimensional Lebesgue
measure [12]. For a review of additional concepts from probability theory, see Moran [26].

Next, we review a powerful theorem by Steele [31] concerning the asymptotic value of subaddi-
tive Euclidean functionals. Intuitively Theorem 1 says that, under suitable conditions, the asymp-
totic value of any such functional is @(n(d_l)/d) almost surely. For definitions of scale bounded,
simply subadditive, and upper linear, see Steele [31].
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Theorem 1 (Steele). Let n and d > 2 be any positive integers. Let X be any set of n i.i.d.
random variables in R® with probability distribution of bounded support and absolutely continuous
part f(z). Let L : P(Rd) — R be any monotone, scale bounded, simply subadditive, upper linear,
subadditive Fuclidean functional that has bounded variance. Then there exists some positive real
constant fr(d) such that

Jim 5 = Buld) [ (@) da (2)

almost surely.

Steele uses the properties of scale boundedness and simple subadditivity to show that, if any
set of n 1.i.d. random variables X is restricted to the singular support of their common p.d.f., then
their contribution to L is small: by Lemma 3.1 in Steele [31], their contribution is only o(n(d_l)/d)
almost surely.

Finally, we review a theorem by Few [13] that we use to bound the cost of trees computed by
Algorithm 1. This theorem bounds the cost of shortest paths through points in R? and can be
viewed as a special case of Theorem 1.

Theorem 2 (Few). Let d > 2 be any positive integer. There exists some positive real constant
cq such that, for any positive real { and for any set of n points & € [0,(]%, 82() < cq¢ nld=1/4,

3.2 Application of Steele’s Theorem

We apply Steele’s theorem to find the asymptotic cost of geometric Steiner minimum trees in R?
when the norm is arbitrary and when the terminals are any set X of n i.i.d. random variables taking
on values in any bounded subset of R?. For this case, we prove the cost of any Steiner minimum
tree for X converges as n — oo to ©(n(4=1/?) almost surely. This result is similar in spirit to an
analogous but less general result proven by Karp [22] for ETSP.

A norm | | on R? is Puclidean bounded iff there exists some positive real constant ¢ such that,
for any 2 € R%, |z| < £]z]2. We use this property in conjunction with Theorem 2 to derive various
upper bounds. Note that every norm on R? satisfies this property. For convenience, we assume
the terminals are chosen from some bounded subset D C R?, which implies that the p.d.f. of the
terminals has bounded support.

To apply Theorem 1, we must prove that for any norm on R?, the function Lg : P(D) — R
satisfies the hypotheses of Steele’s theorem; we do so in Lemma 1.

Lemma 1. For any dimension d > 2 and for any norm on R, the function Ls is a monotone,
scale bounded, simply subadditive, upper linear, subadditive Fuclidean functional. Furthermore, if
X is any set of n i.i.d. random variables taking on values in D, then Ls(X) has bounded variance.

Proof. Most of the properties are straightforward albeit tedious to prove; subadditivity and upper-
linearity require the most work. For details, see Appendix A or Kalpakis and Sherman [21]. O

Proposition 2. Let d > 2 be any positive integers and let X be any set of n i.i.d. random variables
taking on values in any bounded subset of R* with any distribution of absolutely continuous part
f(2). For any norm on R?, there exist positive real constants B1,.(d) and B.(d) such that
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lim AX/)C[ = B1.(d) /Rd f(2)d=D/ gy (3)

n—o00 n(d—l)

almost surely, and

Ls(X
Tim_ B (ﬁ) = F(a) [ S (4)
Proof (direct proof). Equation 3 follows immediately from Lemma 1 and Theorem 1.

To prove Equation 4, first note that expectation E(Lg(X)/n(¢=1/%) exists because Lg(X) is a
bounded, measurable function (Lg(X) is measurable because it can be expressed as the minimum
of a countable set of functions). We complete the proof by applying the Dominated Convergence
Theorem (Moran [26, p. 206]) to Equation 3. To this end, let [0,¢]? be the smallest d-cube that
contains D, the bounded set from which the terminals are drawn. To apply the Dominated Con-

vergence Theorem, it suffices to show there exists some positive real constant By _(d) such that
Ls(X)/nl4=D/% < By _(d)(, which follows from the scale boundedness of Ls. O

Note that when the terminals are i.i.d. random variables uniformly distributed over [0, 1]%, the
integral in Equations 3 and 4 equals 1.

4 Probabilistic Performance Analysis of Algorithm 1

We evaluate Algorithm 1 in terms of its performance ratio Ro(X) = ¢(Tapr(X))/c(Topr(X)),
where TAPR(X) is the Steiner tree found by Algorithm 1 for terminals X; TOPT(X) is any Steiner
minimum tree for X; and ¢ is the cost function for Steiner trees under the chosen norm. Thus,
«(Topr(X)) = Ls(X). First, we compute upper bounds on ¢(T4pr(X)), making use of a novel
combinatorial lemma about the sum of perimeters of rectangle slicings. Second, we combine these
bounds with the asymptotic cost of TOPT(X) computed in Section 3 to obtain an asymptotic upper

bound on the performance ratio.

4.1 Slicings of Rectangles in Euclidean Space

Let & be any finite set of terminals contained in any d-rectangle Ry C R?. As Algorithm 1 partitions
Z, there is a natural corresponding slicing of Rg. To bound the cost of the Steiner tree computed by
Algorithm 1, it is helpful to know the sum of perimeters of the rectangles in this slicing. Lemma 2
computes this sum. Before presenting this lemma, we define slicing and some related concepts.

Let Q = [a1,b1] X [az,b9] X ... X [ag,bq] be any d-rectangle in R? for any d > 2, and let
1 < j < d. A slicing of Q along coordinate j is any partition {Qr,Qr} of @ into any two
d-rectangles @1, Qg such that Qr, = [a1,b1] X ... X [a;_1,b;_1] X [a;,¢;] X [a;41,bj41] X ... X [aq, b4]
and Qr = [a1,b1] X ... X [aj_1,b;_1] X [¢j,b;] X [@j41,b;41] X ... X [aq, bg], for some real number
¢; € (a;,b;). We say that the slicing is uniform iff ¢; = (a; + b;)/2.

Since Procedure 1 partitions the terminals along each of the d dimensions, it is helpful to intro-
duce the following more general notion of slicing. Let W C {1,2,...,d} be any set of coordinates.
A slicing of @ along the set of coordinates W is defined recursively as follows: if W = 0, it is {Q};
otherwise, it is 57 U 53, where 57 and 53 are the slicings of )1 and ()5 along the set of coordinates



Kalpakis and Sherman, Probabilistic Analysis of an Enhanced Steiner Tree Algorithm—May 21, 1993 11

W —{i}, respectively, where {Q1, @2} is any slicing of ) along any coordinate : € W.> This slicing
is uniform iff each of the slicings Sy, 99, and {Q1,Q2} is uniform.

Procedure 1 partitions terminals & into sets &1,39,...,29a. A corresponding slicing of
the bounding rectangle Rg is any slicing {Q1,Q2,...,Q@5a} of Ry along the set of coordinates
{1,2,...,d} such that, for any integer 1 < i < 2¢, #; C Q;.

The following lemma computes the sum of the perimeters of the rectangles in any slicing of ¢
along the set of coordinates {1,2,...,d}. To this end, let I'(()) denote the perimeter of rectangle @,
the sum of the lengths of the edges of () measured by the Euclidean norm.

Lemma 2 (Slicing Lemma). Let d > 1 be any integer and let @ be any rectangle in R, If
{Q1,Q2,...,Q4a} is any slicing of Q along the setl of coordinates {1,2,...,d}, then E?il I'(Q;) =
24-17(Q).

Proof (by counting). Let Q = [ay,b1] X [ag,b2] X ... X [ag,bg] be any rectangle in R?, and let
S =1{Q1,Q2,...,Q4a} be any slicing of ) along the set of coordinates {1,2,...,d}. We proceed
in three steps. First, we calculate I'(Q)). Second we prove, that without loss of generality, we may
assume § is a uniform slicing. Third, we compute E?il I'(Q;) assuming S is uniform.

Step 1. To calculate the perimeter of rectangle Q, note that Q has 2¢ vertices and d2?~! edges.

Moreover, for any coordinate 1 < k < d, each of the 29~ edges of () along coordinate k has the
same cost ex = |ag — by| under | |;. Therefore,

d
(@) =2 Y e 5
k=1

Step 2. Let 1 < i < d be any coordinate, and let {Q 1, Qr} be any slicing of () along coordinate 4.
We will show that I'(Qr) + I'(Qr) depends only on ¢ and (). By the definition of slicing, there is
some real number ¢; € (a;, b;) such that [a;, ¢;] is the projection of @1, along dimension 7 and [¢;, b;]
is the projection of ) p along dimension ¢. Note that the costs of the edges of @1, Qr, and @ are
equal, except for their 2¢=1 edges along dimension i. Hence by Equation 5,

D(Q) + L(Qr) = 2I(Q) + 297" (la; — ¢i] + |ei = bi| — 2¢;) = 2I(Q) — €277 1. (6)
Since Equation 6 does not depend on ¢;, without loss of generality, we may assume § is a uniform
slicing of Q).
Step 3. Assuming S is uniform, for any coordinate 1 < k < d and any index 1 < j < 2¢, each
edge of (); along coordinate k has cost ey /2. Therefore, from Equation 5 it follows that

24 d
2 1(@) =2'T(@) = (zd—l > 5’“) = 211(Q). (7)
O

®Note that a slicing along a set of coordinates depends on the choice of 1 at each step; Algorithm 1 always chooses

i = min(W).
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4.2 An Upper Bound on the Cost of the Steiner Tree Computed by Algorithm 1

To compute an upper bound on the performance ratio of Algorithm 1, we need an upper bound on
the cost of any Steiner tree computed by Algorithm 1. In Lemma 3, we prove such a bound from
our combinatorial lemma.

Lemma 3. Let d > 2 be any dimension; lel & be any set of n lerminals in R?; and let Ry be any
d-rectangle that contains #. For any norm on R?, there exist positive real constants a; and ay, such
that

d—1 d—1
. . n\ a4 _ _ n\ 4
(Tarn(d)) < (Topr() +arl(Ro) () T + (R0 ()T )
where t > 2 is the parameter in Algorithm 1.
Proof (by construction). As Algorithm 1 partitions the terminals & into subsets &1, 23,. .., Zqud,
it creates a corresponding slicing Ri, Rg,..., Ryua of Ry along coordinates {1,2,...,d}, where

p = [(1/d)lg(n/(t — 1))]. Thus, each rectangle R; contains the set #;. For each 1 < i < 2¢?, the
component algorithm computes a Steiner minimum tree 7; for &;. The Steiner tree computed by
Algorithm 1 is a subtree of the connected graph formed by the union of these T;’s.

We bound the cost of Typr(Z) in three steps: First, for each 7, we construct a connected
graph G; spanning &; from the restriction of Topr(Z) in R;. Second, using Theorem 2, we find an
upper bound on ¢(G;) for each G;. Third, applying our slicing lemma, we find an upper bound

on Z?ﬁi ¢(G;), which is an upper bound on T4pr(#) since ¢(T;) < ¢(G;) for all 1 <7 < 2#4,

Step I: Constructing G;.

For each 1 < 1 < Q“d, we construct a connected graph G; spanning Z; from the restriction
G. = Topr(2) N R;. If Gl is connected, then choose G; = G’; otherwise, connect G by adding
some extra points and edges as follows.

For each connected component Zj of G, Z;, has some edge that intersects some facet F; ; of R;
at some point a; ;5.6 Let A;; = {a;;r : 1 < k < ce(i)}, where cc(i) is the number of connected
components of G. For each facet F;; of R;, add to G the points in A; ; and the edges along any
shortest path through these points.

Further augment G’ as follows. From each non-empty set A; ;, select one point v; ;; let V; be
the collection of these points. Add to G’ the points in V; and the edges along any shortest path
through them. The resulting graph G is connected and spans ;.

Step II: Computing an upper bound on the cost of G;.
By the construction of Gj, it follows that

fa
o(G;) < c(Topr(2) N R;) + 6(V;) + Z 6(A; ), (9)

where f; = 2d is the number of facets in any d-rectangle, and §(-) denotes the cost—under the
specified norm—of any shortest path through any set of points in R<.

We now separately bound 6(V;) and 6(A; ;). Since V; contains at most f; points, 6(V;) <
Efal'(R;), where € is the constant from the Euclidean-boundedness property of the specified norm.

®FEach facet of R; is a (d—1)-rectangle [27].
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Next, consider any 1 < j < f;. Since A; ; is contained in facet F; ;, which is a (d—1)-rectangle, we

can apply Theorem 2 with ¢ = e; ;, where e; ; is the maximum cost of any edge of F;; under | |5.

By Theorem 2, there exists some constant ¢q_; such that §(A4; ;) < fcd_leivj|Ai7j|(d_2)/(d_1).
Using the facts that e; ; < F(Ri)/Qd_l and |4; ;| < |&;] < t, Inequality 9 yields

o(Gi) < e(Topr(d) N Ri) + EfaT(Ri) + Ecqy f427 DI (Ry =2/ (=1, (10)

Step III: Computing an upper bound on Y2 c( i)

To compute an upper bound on Ei:i ¢(G;), we compute the sum of the lengths of the perimeters
of the rectangles Ry, Ry, ..., Ryua. To this end, consider how Algorithm 1 creates these rectangles
in terms of the partition tree of rectangle Ry. Each node of this partition tree is a rectangle
Qk,i, for some level 0 < k < p and some position 1 < 7 < 2kd  n particular, Ry = (o1, and
for each 1 < i < 2#4, rectangle R; = (),; is a leaf of the partition tree. For each 0 < k < p
and each 1 < ¢ < de, Algorithm 1 partitions rectangle () ; into the 24 rectangles (r41,;, for
(1 —1)2¢ + 1 < j < 2%, We shall apply the Slicing Lemma at each internal node of the partition
tree.

By the Slicing Lemma the following statement is true: E?Z T(Qr;) = 2K4=DT(Qq 1) for all
integers 0 < k < u. We will now prove this statement by induction on k. The basis case k =
0 is trivially true. For the inductive case, let k& be any integer 0 < k < p and assume that
S T(Qri) = 2M0DT(Qo 1), We must show that Y20, T(Qpn ) = 2+D(=D1(Qp ). This

fact is a consequence of the following equalities:

9(k+1)d 9kd i2d gkd
S oT@Qe) =Y Y T(@Qeerg) = D27 Q) = 297 (2MIT(Qo ), (11)
=1 =1 j= (i—-1)29+1 1=1

where the first equality of Equation 11 follows from the definition of Qyy1,; the second equality
follows from the Slicing Lemma; and the third equality follows from the inductive hypothesis.
Thus Y207 F(Ri) = 2#4=DT(Ry). Therefore, from Inequality 10, it follows that

gud

3" (@) < e(Topr(#)) + 22" DT (Ro) + €egoy f427 1 ld=D/ @000 (Ry). (12)

=1

Because ¢(T4pr(2)) < Zfﬁi ¢(G;), the lemma follows from Inequality 12 and the fact that 2#¢ €

O(n/t). O

4.3 Upper Bounds on the Performance Ratio of Algorithm 1

To find an asymptotic upper bound on RA(X), we combine Proposition 2 and Lemma 3.
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Theorem 3. Let d > 2 be any positive integer and let X be any set of n i.i.d. random variables
taking on values in any bounded subset of R? with any p.d.f. of absolutely continuous part f(z).
Then,

) N (~1/(d(d-1))
imsup Rp(X)=1+0 O (13)

almost surely, where t > 2 is the parameter in Algorithm 1.

Proof (direct proof). To prove Equation 13, we divide both sides of Inequality 8 by ¢(Topr(X)) > 0
and take limits to obtain

lim sup R4 (X) < 145 (1407 4 (1/66D)) n(4-/ (14)
imsup RAo(X) <1456t + ¢ B imsup ———,

n—oo n—oo LS(AXV)
for some constant b. Because d > 2 implies ¢~1/(4(d=1)) > ¢=(d=1)/d  Fquation 13 follows from
Equation 3 of Proposition 2. O

Again we note that, if the terminals are uniformly distributed over [0, 1]?, the integral in Equa-
tion 13 equals 1.

For any dimension d, we can calculate from Equation 13 the minimum ¢ sufficient to achieve any
desired performance ratio B > 1 as n — oo. Thus, if the terminals are uniformly distributed, we
require £ > (A/(B—1))"4=1) where ) is the constant factor in the big-Oh expression of Equation 13.
For example, for this case with d = 3 and B3 = 1/0.813052 ~ 1.23 under | |2, Algorithm 1 attains
a performance ratio smaller than B3 when ¢ > (A\/(Bs — 1))® & (4.35))% this bound is of special
interest in light of Smith’s [30] disproof of the Gilbert-Pollak conjecture [17, 11] for 3 < d < 9.

5 Conclusion

We have presented and probabilistically analyzed a deterministic partitioning approximation algo-
rithm for the GSMT problem in R?, for any dimension d > 2. Applying a theorem by Steele on
subadditive Euclidean functionals, we proved the limit as n — oo of the performance ratio of our
Algorithm 1is 1+ O(t‘l/d(d_l)) almost surely, where { is a parameter the user can adjust to trade
off time for performance. Our analysis holds for any norm on R?, assuming the n terminals are
any ii.d. random variables taking on values in any bounded subset of R?. The running time of
Algorithm 1 is polynomial in n and, using the best available exact GSMT component algorithms,
superpolynomial in ¢.

These results are significant because they yield a fast algorithm that has a guaranteed (with
probability 1) worst-case performance ratio under more general assumptions than had been consid-
ered by Komlés and Shing [23]. The generalization to d = 3 under arbitrary norms on R? is useful
in multi-layer VLSI routing where wires are not restricted to be rectilinear.

Algorithm 1 can be easily extended to parallel and distributed versions. Partitioning is a natural
parallel notion, and there are parallel algorithms for the other subroutines, such as computing
medians and minimum spanning trees. Currently, Ravada Sivakumar is implementing Algorithm 1
to measure its performance ratio experimentally.

This paper illustrates how the ideas of partitioning, approximation, and probabilistic analysis—
augmented by the theory of subadditive Fuclidean functionals—yield powerful tools for dealing with
computationally difficult problems.
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Appendix A: Proof of Lemma 1

Our results depend crucially on several properties of the functional Lg : P(D) — R, which given
any set of terminals # in the bounded subset D C R?, computes the cost of any Steiner minimum
tree on & using the chosen norm. In this appendix we prove Lemma 1, which states that Lg satisfies
all hypotheses of Theorem 1.

We shall use the following notation. Given any tree T in R%, let ¢(T') denote the cost of 7 under
the chosen norm. For any subset A C R?, let p(A) denote the diameter of A under the chosen
norm, and let py(A) denote the diameter of A under | |2. Similarly, given any finite set of points
i € RY, let § denote the cost of any shortest path through & under the chosen norm, and let 6,
denote the cost of any shortest path through & under | |2.

Lemma 1. For any dimension d > 2 and for any norm on R?, the function Ls is a monolone,
scale bounded, simply subadditive, upper linear, subadditive Fuclidean functional. Furthermore, if
X is any set of n i.i.d. random variables taking on values in D, then Ls(X) has bounded variance.

Proof. Lemmas 4 through 10 separately prove each of the required 7 properties. O

Lemma 4. The function Lg is a Fuclidean functional.

Proof. Straightforward verification of definition. O

Lemma 5. The Fuclidean functional Lg is monotone.

Proof (direct proof). Given any set A € P(D) and any point y € R?, we must show that
Ls(A) < Ls(AU{y}). Let T4 be any SMT for A, and let T4y, be any SMT for AU {y}. Since
Taugy) is also a Steiner tree for A, it is true that Ls(A) = ¢(Ta) < ¢(Taugyy) = Ls(AU{y}). O

Lemma 6. Let n be any positive integer. IfX is any set of n i.i.d. random variables over D, then
Ls(X) has bounded variance.

Proof (direct proof). We must show that Var[Lg(X)] < co. This inequality follows from the fact

that Lg(X) < np(D) < co. O

Lemma 7. The Fuclidean functional Lg is scale bounded.

Proof (direct proof using Theorem 2). We must prove there exists some positive real constant
Br,.(d) such that, for any positive real ¢ and for any set of n points & C [0,¢]¢, it is true that
Ls(2)/(¢nt?=D/1) < Br (d). Choose Br.(d) = £cg, where £ is the constant from the Euclidean-
boundedness property of the chosen norm and ¢4 is the constant from Theorem 2. The desired
inequality follows from Theorem 2 and the fact that Lg(&) < £62(2) for every & € P(D). O



Kalpakis and Sherman, Probabilistic Analysis of an Enhanced Steiner Tree Algorithm—May 21, 1993 18

Lemma 8. The Fuclidean functional Lg is simply subadditive.

Proof (direct proof). We must prove there exists some real number By, _(d) > 0 such that, for
any real number ¢ > 0 and for any finite subsets Ay, A, of [0,(]%, it is true that Ls(4; U Ay) <
Ls(Ay)+ Ls(Az)+ (Bry(d). Choose B (d) = £(v/d, where £ is the constant from the Euclidean-
boundedness property of the chosen norm. Let { be any positive real number and let A; and A,
be any finite subsets of [0,(]%. If A; = 0 or Ay = 0, the desired inequality is trivially satisfied;
so assume neither A; nor A, is empty. Let z; € Ay and x5 € Ag, and let Ty and T3 be any
SMT for A; and A;, respectively. Form a Steiner tree T3 for A; U Ay by connecting 77 and
Ty with the edge (z1,22). Now, Lg(A; U Az) < ¢(T5) < Ls(A1) + Ls(Az) + ¢(zq1,22), where
e(z1,22) < p([0, CJ) < ECpa([0, 1]%) = £CVA. O

Lemma 9. The Fuclidean functional Lg is subadditive.

Proof (by construction). We prove Lg satisfies the subadditivity hypothesis by showing that the
constant Cp(d) = d2%e; + p([0,1]%) works. Here, €; is the length of the unit d-cube under the
chosen norm. Let & be any set of n terminals in R?; let m be any positive integer; let ¢ be any
positive real number; and let {Qy,@a,...,Q,.a} be any partition of the unit cube [0,1]? into m?
identical subcubes with edges parallel to the axes. We must show that

ma

Ls(#") < Cpr(d)¢m™™" + 3 Ls(&)), (15)
=1
where 3/ = 2 N[0,(]?, and & = &N (Q; for each 1 < i < m?. Note that {21,29,...,2 .} is a
partition of &’.
We bound Lg(#') in two steps. First, we construct a Steiner tree 7" for ' by connecting SMT's
for each of the sets &}. Second, we bound the cost of T'.

Step 1. Construct a Steiner tree T for &’ as follows. For each 1 < i < m?, let T; be any SMT
for z!; and let G' be the forest consisting of all trees 7;. Connect G as follows. Add to G the
connected graph Gg that consists of all “corner” vertices and edges from all cubes (@;. Also, for
each 1 < i < m? with nonempty T}, connect T; to (Q; by adding one edge from any vertex in T}
to any corner vertex in ();. Now G is a connected graph that spans &’. Finally, let 7" be any
spanning tree of G.

Step 2. From the construction of 7" and G, and from the fact that every edge in any (Q); costs
at most p({Q1), it follows that

ma

Ls(@) < e(T) < e(G) < (Go) +mp(CQ1) + D e(Th). (16)

We now separately bound ¢(Go) and p((Q1). Using the fact that every d-cube has exactly d2?~!

edges, it follows that ¢(Go) = m?~1d2?71Ce;. Also, note that p(¢Q1) = (p([0, 1]%)/m.
The Lemma now follows from Inequality 16 and the fact that, for each 1 < i < m?, ¢(T}) =
LS(QA?/-). O

K3
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Lemma 10. The Fuclidean functional Lg ts upper linear.

Proof (by construction). Let s and n be any positive integers; let {Q1,Q2,...,Qs} be any collection
of s d-cubes with edges parallel to the axes of R?; and let & be any set of n terminals from D. We
must prove that

S Ls(&) < L&) + o{nlé-1/4), (17)

where 2 =2 N Q;, & =&NQ, and Q = U:_;Q;. Our proof is similar to that of Lemma 3.

Let T be any SMT for &’. We bound Lg(#') in three steps: First, for each 1 <7 < s, we con-
struct a connected graph G; spanning &% from the restriction of 7" on @);. Second, we bound the cost
of each G;. Third, using Holder’s Inequality, we bound the sum Y 7_; ¢(G;). Since Lg(#}) < ¢(G;)

for each 1 < ¢ < s, this sum is an upper bound on > 7_; Lg(z!).

Step I: Constructing G;.

For each 1 <7 < s, construct a connected graph G; spanning &’ from the restriction T; = TNQ;.
If T; is connected, then choose G; = T;; otherwise, connect 7T; by adding some extra vertices and
edges as follows.

Let T;1,Ti2, ..., T; cc(sy be the connected components of T; that contain at least one terminal
from &, where cc(i) is the number of such connected components. Each such connected compo-
nent 7; ; intersects some facet F;j of ); at some point a; ;% Let A;p = {a; ;1 1 < j < cc(e)} be
the collection of these points. For each facet Fjj of ();, add to T; the vertices in A; ; and the edges
along any shortest path through them.

Further augment 7; as follows. From each non-empty set A; ., select one point a;x; let V; be
the collection of these points. Add to T; the vertices in V; and the edges along any shortest path
through them. The resulting graph G; is connected and spans .

Step 1I: Computing an upper bound on the cost of G;.
From the construction of G;, it follows that

fa
C(GZ) < C(Ti) + (5(‘72) + Zé(Ai,k)v (18)
k=2
where f; = 2d is the number of facets in any d-rectangle.

We now separately bound &6(V;) and 8(A; ). Since V; contains at most f; points, §(V;) <
(fa — )p(Q;). Next, consider any 1 < k < f;. Since A;j is contained in facet F}j, which
is a (d — 1)-rectangle, we can apply Theorem 2 with { = e;, where ¢; is the maximum cost of
any edge of (); under | |;. By Theorem 2, there exists some constant cq_; such that §(A4;;) <
Cd_1€€i|Ai7k|(d_2)/(d_1), where £ is the constant from the Euclidean-boundedness property of the
specified norm. Thus,

fa
o(Gi) < e(Ti) + fap(Qi) + carber 3 | A2/ =1), (19)
k=1
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Step 111: Compuling an upper bound on Y ;_, ¢(G;).
From Inequality 19, we have that

s s fa

3" e(Gi) < Ls(@') + sfap(Qi) + cam1bemaz » > |Aiy| 72/ 471 (20)

=1 i=1 k=1

where pp0: = max{p(Q1),p(Q2),...,p(Qs)} and e,,q; = max{eq,ez,..., €5}

If d = 2, then the lemma follows since 6(A4; %) < £e; for each 1 < i < s. Otherwise, d > 2 and
we apply Hélder’s Inequality to each summation in the double summation in Inequality 20 to show
that

s Jfa - -
ZZ|Ai7k|(d_2)/(d_1) < (sfq)/ D) (fden) (d-2)/(d-1) (21)

=1 k=1
Thus, using the fact that (d —2)/(d — 1) < (d — 1)/d for d > 1, Inequalities 20 and 21 yield

S

i Ls(&)) <3 e(Gi) < Ls(@') + o(nld=1/7), (22)

=1

Finally, we show how to apply Hoélder’s Inequality [2, p. 87] to prove Inequality 21 when d > 2.
Holder’s Inequality states that

> (e < (Z cb?) F (Z ¢§) E ; (23)
) )

A

for any sequences of positive real numbers (¢3)$2; and (¥3)32; such that > 52, #% < oo and
SS2 ¥) < oo, and for any real constants r,¢ > 1 such that rl 4 g =1,

Applying Hélder’s inequality with r = (d—1)/(d—2),q = d—1, ¢y, = 1, and ¢y, = |A; z|(?=2/(4-1)
(Y, = ¢, = 0 for all k > fy), we have that

i P (d-2)/(d—1)
S A @R ED < /D (Z |Az-,k|) : (24)

k=1 k=1
Applying Holder’s inequality again, with r = (d — 1)/(d —2), ¢ = d -1, ¢, = 1, and ¢; =

d—2)/(d—1
(Eidzl |Ai7k|)( /=) (¢; = ¢; = 0 for all ¢ > s), we have that

./ (4-2)/(4-1) . (4-2)/(4-1)
> (Z |Az‘,k|) < st (Z > |Ai7k|) : (25)
k=1

=1 = i=1 k=1

Since |A; k| < cc(i) < |#}| and since each terminal can be in at most 2¢ d-cubes, it is true that
Yo Eidzl |A; k] < f42%n. Therefore, Inequality 21 follows from Inequality 25. O



