Upper and Lower Bounds on the Makespan of
Schedules for Tree Dags on Linear Arrays

Konstantinos Kalpakis' and Yaacov Yesha!??3

Abstract

We consider the problem of finding explicit tight upper and lower bounds on the
makespan of schedules of tree dags on linear arrays, and the problem of polynomial
time algorithms to find schedules that are optimal within a small constant.

We prove that n+m + (m?*—5)/4 is a lower bound on the time—processors product
of a schedule for a tree dag with n tasks and height - on a linear array that uses m
processors, and that maX{'nl/Q, h} is alower bound on the makespan of those schedules.

We find, in polynomial time, a schedule for a complete binary tree dag with n unit
execution time tasks on a linear array with m < 4(n+ 1)1/2 processors whose makespan
is (14 o(1))(n/m + m/4), i.e. optimal within a factor of 1 + o(1). The makespan of
that schedule is (1 + o(1)n/? when m = [2n'/?]. Further, given a binary tree dag T
with n tasks and height h, we find, in polynomial time, a schedule for 7" on a linear
array, with < 2,/n + 4 processors whose makespan is < 4y/n + h + 6, i.e. optimal
within a factor of 5 + o(1). Moreover, there is no link contention in that schedule.

On the other hand, we prove that explicit lower and upper bounds on the makespan
of optimal schedules of binary tree dags on linear arrays differ at least by a factor of
1+ v/2/2. We also find, in polynomial time, schedules for bounded tree dags with n
unit execution time tasks, degree d, and height h € o(n'/2) U w(n'/?) on a linear array
with < 2n'/242d processors and (1+0(1)) max{n'/2, h} makespan, i.e. optimal within
a factor of 1+0(1), this time under the assumption of links with unlimited bandwidth.

Finally, we compute an improved upper bound on the makespan of an optimal
schedule for a tree dag on the architecture independent model of Papadimitriou and
Yannakakis [14], provided that its height not too large.

Keywords: multiprocessing, parallel computation, parallel architectures, communication
delay, scheduling, tree dags, linear array, mesh array, tree decomposition.

!Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County,
1000 Hilltop Circle, Baltimore, MD 21250, U.S.A. E-mail: kalpakis@cs.umbc.edu and yayesha@cs.umbc.edu

2 Also, University of Maryland at College Park, Institute for Advanced Computer Studies.

3Supported in part by the National Science Foundation under grant number CCR-9106062.

1 Introduction

An important consideration in mapping the computational structure of a program onto
a multiprocessor system is to keep a good balance between communication overhead and
computation time. Moreover, in most multiprocessor systems not every two processors are
connected directly by a communication link. A program is represented by a directed acyclic
graph (dag). Nodes represent tasks with positive integer execution (computation) times.
Edges represent precedence constraints and functional dependencies among tasks. A parallel
machine is modeled by an undirected connected graph. Nodes represent identical processors
and edges represent communication links. Each processor has its own local memory and is
capable of executing any task. Links have propagation delay and constant bandwidth. The
propagation delay of all the links is an arbitrary positive integer. Throughout this paper,
unless we say otherwise, we assume that each link has unit bandwidth and unit propagation
delay, all tree dags are of bounded degree, and that all tasks are unit execution time tasks.

In this paper, we consider the problem of finding explicit tight upper and lower bounds
on the makespan of schedules of tree dags on linear arrays, and the problem of polynomial
time algorithms to find schedules that are optimal within a small constant.

Papadimitriou and Ullman [13], Papadimitriou and Yannakakis [14], Jung et al. [8],
and Aggarwal et al. [1] study the problem of finding efficient methods to execute given
programs on parallel machines. Our model differs from the architecture independent model
of Papadimitriou and Yannakakis [14], which we call the PY model, since in their model
there is no notion of limited bandwidth and all communication steps take the same time
7. Further, our model differs from the model of Aggarwal et al. [1] since in their model
pipelining is not allowed and all communication steps take the same time.

Ghosal et al. [6] give a polynomial time algorithm to find a schedule for a binary
tree dag with n tasks and height A on a d-dimensional mesh with O(min{n'/(**1 n/h})
processors achieving makespan O(max{n'/(**1) h}logn) (optimal and processors-optimal
within an O(logn) factor). (Throughout this paper, log denotes the base 2 logarithm. The
makespan of a schedule equals the time to execute that schedule.) Ghosal et al. [7] extend
their schedules to bounded degree tree dags with tasks of arbitrary positive integer execution
times. Kalpakis and Yesha [9] give, for any fixed positive real €, a polynomial time algorithm
that finds a schedule for a tree dag with n tasks and height & & (n'/2=¢,n'/?1log n) on a linear
array achieving optimal within a constant makespan O(n'/? + k), while the time-processors
product is optimal within a constant when A < n'/27¢ and is optimal within O(logn) when
h > n'/?logn. They extend those schedules to d-dimensional meshes when the tree dags
have height A > dn'/(*+1) log n, achieving O(h) makespan. Kalpakis and Yesha [9] also show
that the makespan of an optimal schedule for tree dags with n tasks and height A for the
PY model with interprocessor communication delay 7 is O(7 log(n/7)/log(7/h)). Further,
they prove that, for tree dags, the linear array is strictly more powerful than the PY model
when 7 equals the diameter of that linear array. They show that there exist binary tree dags

2

with n tasks and height o(n'/?) whose optimal schedule for the PY model has makespan
Q(vnlogn/loglogn) and they provide schedules for those tree dags on linear arrays with
optimal within a constant makespan O(n'/?).

Kalpakis and Yesha [10] improve upon the results in [9] by providing optimal within a
constant explicit upper bounds on the makespan of schedules for tree dags on mesh arrays of
processors, and polynomial time algorithms to find schedules with makespan matching these
bounds. They find, in polynomial time, a (non—preemptive) schedule for a binary tree dag
with n tasks and height & on a d-dimensional mesh array with m processors whose makespan
is O(n/m—l—nl/(d"'l) +h), i.e. optimal within a constant factor. We note here that for the case
of binary tree dags and linear arrays the makespan of their schedules is < 6n/m+5m+h+ 1.
Further, they extend these schedules to bounded degree forest dags with arbitrary positive
integer execution time tasks and to meshes with the propagation delay of all the links an
arbitrary positive integer.

Kalpakis and Yesha [10] also show how to schedule tree dags on any parallel archi-
tecture that satisfies certain natural, not very restrictive, conditions that are satisfied by
most parallel architectures used in practice. For any fixed positive real number ¢, they
provide polynomial time computable schedules for binary tree dags with n tasks and height
h & (g(n)n=¢, g(n)logn) on any parallel architecture satisfying those conditions with optimal
within a constant makespan O(g(n) + k), where ¢ is a function that depends only on that
architecture. To construct these schedules they simulate for tree dags the PY model with a
parallel architecture, where 7 is > the diameter of the machine used. Further, Kalpakis and
Yesha [10] extend all their schedules to the case of bounded degree forest dags with tasks of
arbitrary positive integer execution times and architectures with the propagation delay of
all the links a given arbitrary positive integer.

We prove that n+m+ (m?—5)/4 is a lower bound on the time-processors product of a
schedule for a tree dag with n tasks and height & on a linear array that uses m processors, and
that max{n'/?, 1} is a lower bound on the makespan of those schedules. The key observation
in deriving these bounds is that the makespan of a schedule is greater than or equal to the
sum of the number of tasks assigned to a processor and the distance of that processor from
the processor that has been assigned the root of that tree dag.

We provide an optimal within a factor of 1 + o(1) schedule for a complete binary tree
dag T with n tasks on a linear array with m < 4(n + 1)"/2 processors. In particular, we find,
in polynomial time, a schedule for T" on a linear array with m processors whose makespan is
(I+o(1))(n/m+m/4), i.e. optimal within a factor of 1+0(1). Taking m = (an/ﬂ, we obtain
a schedule for T on a linear array with [2n'/?] processors whose makespan is (14 o(1))n'/2,
i.e. optimal within a factor of 1 +o(1). The idea behind those schedules is to assign the root
of T' to a processor close to the middle processor of the linear array, while assigning to each
processor a number of tasks that is proportional to its distance from the middle processor.
However, additional effort is required in order to ensure low link contention.

Given a binary tree dag 7' with n tasks and height h, we find, in polynomial time, a
schedule for 7" on a linear array, with < 2,/n+4 processors whose makespan is < 4,/n+h+6,
i.e. optimal within a factor of 5 + o(1), which improves by a factor of 2(6/5)"/? upon
the schedules in [10]. Given an integer m, 5 < m < 4[\/n/2], we find, in polynomial
time, a schedule for 7" on a linear array with m processors whose makespan is < 4n/(m —
4) + m 4 h + 2, an improvement over the 6n/m + 5m + h 4+ 1 makespan schedules in [10].
Moreover, there is no link contention in both of these schedules. These schedules use the
path—centroid decomposition method in [10] and a more careful assignment of the subtrees
in that decomposition to processors.

We also prove that there is a gap between explicit lower and upper bounds on the
makespan of schedules of binary tree dags on linear arrays. Specifically, we construct an
infinite sequence of pairs of binary tree dags (74, T3), each with n tasks and height h, where
2-1/2 _ o(l) < h/n'/? < 2712 4 o(1), and such that Tlgax > (1 + 2-1/2 _ 0(1))711/2 and
T2 = (14 o(1))n'/?, where T') is the makespan of an optimal schedule for T}, j = 1,2,
on a linear array with O(n'/?) processors.

Shedding some light on the role of the limited bandwidth of the links on the makespan,
we find, in polynomial time, schedules for tree dags with n tasks, degree d, and height
h € o(n'/?) U w(n'/?) on a linear array with < 2n'/? + 2d processors and links of unlimited
bandwidth, so that the makespan of these schedules is (1 4 o(1)) max{n'/?, h}, i.e. optimal
within a factor of 1 + o(1).

Finally, we compute an improved upper bound on the makespan of a schedule for a
tree dag on the PY model, provided that its height not too large. Upper bounds on the
makespan of schedules of tree dags on the PY model are used in [10] in order to estimate
the makespan of some of the schedules for tree dags on parallel architectures given there.
In particular, we show that the makespan Tpy of an optimal schedule of a tree dag with
n tasks, degree d, and height h, on the PY model with 7 an integer such that (d + 1)k <
r<nisTpy <(1+ %)% + 47 4 2, where ¢ is an arbitrary real number such that
1 <e<7/((d+1)h). By choosing ¢, so that the right hand side of the expression above is
minimized, we improve upon the previous upper bound [9] which was with ¢ = 1.

The rest of the paper is organized as follows. Preliminaries are in section 2. In section 3
we prove the lower bounds on the time—processors product and the makespan. In section 4 we
present our optimal within a factor of 1 4 o(1) makespan schedules for complete binary tree
dags on linear arrays. Then, in section 5 we present the gap between explicit lower and upper
bounds on the makespan of schedules of binary trees on linear arrays, and in section 6 we give
our polynomial time computable optimal within a factor of 5 + o(1) makespan schedules of
binary trees on linear arrays. In section 7 we give our polynomial time computable optimal
within a factor of 1 4+ o(1) schedules for binary tree dags on linear arrays, this time under
the assumption that links have unlimited bandwidth. Finally, in section 8 we present the
improved upper bound on the makespan of schedules of trees on the PY model.

2 Preliminaries

2.1 Tree Dags, Linear Arrays, and Schedules

A bounded degree tree dag T is a rooted directed bounded degree tree, where the edges are
directed towards the root of the tree. (The degree of a node of T' equals the number of its
predecessors and the degree of T' is the maximum of the degrees of its nodes.) Nodes rep-
resent computational tasks and edges represent both precedence constraints and functional
dependencies among tasks. Each task v has a positive integer execution (computation) time
w(u). For simplicity, we write v € T or (u,v) € T whenever v or (u,v) is a node or an edge
in T respectively. A node v of T'is called successor of a node v of T'if (u,v) € T, and node
v is called a predecessor of node u if (v,u) € T'. A leaf node is a node with no predecessors.
The level of a node v € T is equal to its distance from the root of T', while its height is
equal to the height of the subtree of T' rooted at u. Hereafter, unless we state otherwise, we
assume bounded degree tree dags with tasks of unit execution times.

A linear array is modeled by an undirected connected graph that is a chain. Nodes
represent identical processors and edges represent communication links. Each processor has
its own local memory and is capable of executing any task. Links have propagation delay
and (unless we state otherwise) constant bandwidth. The propagation delay of all the links
is an arbitrary positive integer. Throughout this paper, unless we state otherwise, we assume
that each link has unit bandwidth and unit propagation delay.

Tasks are assigned to processors for execution. A task may be assigned to more than
one processor, in which case this processor holds a copy of that task. If there is at least one
task with more than one copy then we say that we have recomputation. Recomputation is
necessary for inverse tree dags [8]. All our schedules have no recomputation. For simplicity,
we refer to a copy of a task simply as a task. We say that a task is readyif the values of all its
predecessors are available to it. Processors perform computation according to the following
eight rules:

(1) Computation is synchronized.

(2) Execution of tasks is non-preemptive.

(3) A non-leaf task can not be executed before it becomes ready. All leaf tasks are ready.
(4) Each processor can execute in w(u) time units a copy of a task u that is assigned to it.
(5) At each time unit at most one value can be sent over a link.

(6) A value sent over a link arrives at the other end of that link after a number of time
units equal to the propagation delay of that link.

(7) After a copy of a task is executed, its value is available to the processor to which it is
assigned.

8) If a value is transmitted by a link to a processor then it becomes available to that
P
processor.

The makespan T,ax of a schedule is the number of time units that pass until all copies
of each task are executed. Given a tree dag and a linear array, a schedule is called optimal
if its makespan T,.x i1s minimum among all possible schedules for that dag on that linear
array. A schedule is called processors—optimal with respect to a given time ¢ if the number
of processors used is minimum among all schedules for that dag whose makespan is ¢.

Given a bounded degree tree dag T and a linear array, our objective is to find a schedule
for T" with the following two properties:

(1) Its makespan T,y is optimal or close to optimal.

(i1) The number of processors used is close to the minimum number of processors required
to achieve time T}, x.

2.2 Path—Centroid Decomposition of a Tree Dag

Let 7' be a binary degree tree dag with n nodes and height h. It is well known that, by
removing an appropriate edge from 7', we can partition 7" into two subtrees each with no
more than [2rn/3] and no less than [n/3| nodes. To find such an edge proceed as follows.
Find a path from the root of T' to a node u of 1" such that the subtree that is rooted at u
has between |n/3] and [2n/3] nodes. The required edge is the edge on that path that is
incident to u. This method is known as the edge—centroid decomposition method. Given a
positive integer 3, we can partition 7', using this method recursively, into < [3n/3] subtrees
such that each subtree has no less than |3/3| and no more than nodes [3, 12]. To find
such a decomposition of T', we do the following. Remove from 7' the edge found by applying
the edge—centroid decomposition method to 7', and recursively decompose each subtree in
the resulting forest that has more than 3 nodes. Such a decomposition of T' can always be
computed in polynomial time.

Another way to decompose T' is to partition it into a set of paths as follows. Take
a directed path from a leaf of T' to its root, remove that path from 7', and recursively
decompose each tree in the resulting forest. The set of all such paths forms a partition of 7.
The number of paths in that partition equals the number of leaves of T. We call such a
partition of T' a path decomposition of T.

Given a tree dag T' with n nodes and a positive integer 5 < n, Kalpakis and Yesha [10]
develop another way to decompose a T' into subtrees such that each subtree T; in that

6

Figure 1: Path—centroid decomposition of a tree. Basic paths are denoted by thick lines
(circles in case a basic path consists of a single node).

decomposition will satisfy the following two properties:

Property 1: 7T; has no more than 5 nodes.

Property 2: All the nodes of T}, that have a predecessor in 1" that is not in 7}, are on a
single path from a leaf of T} to the root of T;.

Also, they require that such a decomposition of 7' satisfies the following property:
Property 3: there are at most 2[3n /3] subtrees in that decomposition of 7'

To find find such a decomposition of T' they combine the edge—centroid decomposition and
the path decomposition methods. (See Appendix A for more details.) The resulting method
is called the path—centroid decomposition method. See Fig. 1 for an example.

Lemma 1 Let T' be a binary tree dag with n nodes and let 3 be a positive integer < n.
Then, using the path—centroid decomposition method, we can decompose T into no more
than 2[3n/3] subtrees Ty, Ty, Ts, ... so that each subtree T; has < 3 nodes and all nodes of
T; with a predecessor in another subtree are lying on a single path (in T;) to the root of T;.
Further, this decomposition is polynomial time computable.

Proof: Omitted. See Kalpakis and Yesha [10] or Appendix A for details. u

Given any decomposition of a bounded degree tree dag T' into subtrees 11, T5,..., T}, .. .,
we construct, by collapsing each subtree into a single supernode, a compressed tree 7. as
follows. For each subtree T; we have a supernode v in 1., i.e. each supernode represents
a subtree in that decomposition of T'. There is an edge in T, from v € T, to v € T, if the
successor node of the root of the subtree represented by w is in the subtree represented by
v. We call T, the compressed tree that corresponds to that decomposition of 1. Moreover,
for each subtree T; in that decomposition we define a path in 7;, which we call the basic
path that corresponds to T; as follows. If T; has a node whose predecessor(s) in 7' is not
in T}, then the basic path for T; is the single path in 7; from that node to the root of T;.

Otherwise, basic path for 7; consists of the root of 7; only.

3 A Lower Bound on the Time-Processors Product
of Schedules for Trees on Linear Arrays

We prove lower bounds on the time—processors product and the makespan of schedules
for tree dags on linear arrays. These lower bounds are based on the observation that the
makespan of a schedule is greater than or equal to the sum of the number of tasks assigned
to a processor and the distance of that processor from the processor that has been assigned
the root of that tree dag.

Theorem 1 Let T be a tree dag of n unit execution time tasks, and let m be a positive
integer. Then, the time—processors product of an optimal schedule for T' on a linear array
with m processors is

2
-5
meaXZn—l—m—l—m4 , (1)

where Thax is the makespan of that schedule. In addition,
n, ifm=1o0rn=1
Tmax > { n/m+m/4, ifm < 4n =5 (2)
\/m/Q + 1, otherwise.

and Tmax > /1.

Proof: Number the processors of the linear array from left to right with consecutive positive
integers so that the leftmost processor is numbered 1. Let & be the processor of the linear

8

array that has been assigned the root of 7'. Let x; be the sum of the computation times of
all the tasks that have been assigned to the ¢th processor, 1 <: < m. We assume, without
loss of generality, that z; > 0 for all 1 < ¢ < m, w.e. each processor has been assigned at
least one task of 7.

Consider a processor ¢ of the linear array. The value of the last task executed by that
processor is needed in order to compute the root of 1'. Consequently, Ty > x; + |t — k| + 1
ifi#£k,and Ty > @+ |0 — k| + 1 if ¢ = k. Summing up for all 1 <@ < m, we get that

meaXEExi—I—ZH—H—I—(m—l). (3)
=1 =1

Since each task has to be executed by some processor, from (3) it follows that

k(k—1) (m—k)(m—k+1)
2 + 2

M max > 1 + +m—1>n+m+(m*—5)/4. (4)

By dividing both sides of (4) by m and finding the minimum of the resulting right hand
side, we obtain a lower bound on 7,,.x. Note that it m =1 or n = 1 then T,.x = n. Suppose
now that n > 2 and m > 2. From (4) we have that Ty > n/m+ m/44+1—5/(4m), which
implies that Thax > n/m +m/4 it m < /4n —5/2 + 1 and that Thax > V4n —5/2 + 1
otherwise. In all cases, Thax > /7. |

4 A (1+0(1))n'> Makespan Schedule for Complete Bi-
nary Trees

We provide an optimal within a factor of 1 4+ o(1) schedule for a complete binary tree dag
T on a given linear array. The idea is to assign the root of 7' to a processor close to the
middle processor of the linear array, while assigning to each processor a number of tasks so
that its distance from the middle processor plus its number of tasks is close to n'/?. Further,
tasks closer to the root are assigned to processors closer to the middle processor. However,
since the number of values that need to routed towards the middle of the linear array can be
large, additional effort is required in order to ensure low link contention. To achieve that,
we assign at regularly spaced processors certain tasks whose role is to reduce the number of
values that need to be routed towards the middle of the linear array. We assume, without
loss of generality, using Theorem 1, that the number of processors m of a linear array used
to schedule a tree dag with n unit time tasks is < 4(n + 1)1/2.

Theorem 2 Let T' be a complete binary tree dag with n unit execution time tasks and height
h. Let m be a given positive integer < 4(n+ 1)"/2. Then, we can find, in polynomial time, a

9

schedule for T on a linear array with m processors whose makespan is (1+o(1))(n/m+m/4),
i.e. optimal within a factor of 14+0(1). In particular, when m = [2n'/?], we obtain a schedule
for T on a linear array with [2n'/?] processors whose makespan is (1+0(1))n'/?, i.e. optimal
within a factor of 1 4 o(1).

Proof: Let o = [(h + 3)/4], and let z = 2%t — 1.
I. Partitioning the linear array.

Number the processors of the linear array with consecutive positive integers from left
to right so that the leftmost processor is numbered 1. A region of the linear array is a
contiguous sub-array of the linear array. Let k& = [m/x]. Partition the linear array into k
regions Ry, Ra, ..., Ry such that region R;, 1 < j <k —1, consists of processors (j — 1)z +1
through jx, while region Rj, consists of the rightmost m — (k — 1)x processors of the linear
array. The index of a region R; is equal to 7. The region of a processor ¢ is R; if processor ¢
is contained in R;. Let p be the index of the region that contains processor [m/2]. Region
R, is called the middle region. We say that a region R; is a left region if 1 < j < p, and
we say 1t is a right region otherwise. The leader of a region R; is defined to be the highest
numbered processor in R; if R; is a left region, otherwise it is defined to be the lowest
numbered processor in R;. The middle leader is defined to be the leader of R,, which is
processor px. The distance between two regions R; and R; is equal to |7 — j|.

II. Scheduling the tree.

Our schedule for T' consists of two phases. We execute all the tasks in 7' — T" during
phase 1, where 7" is a certain subtree of 1" rooted at the root of 7" and defined below. Then,
we execute all the tasks in 7" in phase 2.

First, we define the combinator and the envelope of a subset of the tasks of T'. Given
a subset V of the tasks of T', we define the combinator Comb(V') to be the minimal fixed
point solution of the following equation

Comb(V) ={ u | v € V or all predecessors of u are in Comb(V') }. (5)

Note that Comb(V') can be computed by a straightforward iterative algorithm. Observe that,
given the values of all the tasks in V, all other tasks in Comb(V') can be executed without
ever needing a value of a task not in Comb(V'). Further, since 7' is a complete binary tree
dag, it follows that |V| < [Comb(V)| < 2|V|— 1. We define the envelope Env(V) of V to be
the set of tasks u € V such that the successor of u in T' is not in V. Observe that, if all the
tasks in V have been executed, then only the values of the tasks in the envelope Env(V) are
needed to compute those tasks of T' not in V. See Figure 2 for an example.

Fix a left to right order for the predecessors of each task of T. Let vy,vy,...,vgn-a,
denote, in left-to-right contiguous order, the 2"~ tasks of 7" whose level is equal to h — a.

10

Conb(A + B)

Figure 2: The combinators of two sets of nodes A and B. Shaded circles denote nodes
in either A or B. Curves enclose the combinators of A, B, and A U B. Observe that
Comb(AU B) — (Comb(A) U Comb(B)) is non-empty. Nodes in the envelope of Comb(A) or
Comb(B) are marked with a # or *, respectively. Nodes in the envelope of Comb(A U B)
have thick outline.

Each task v; is the root of a subtree T; of T' with height o and x = 2*** — 1 tasks. Let V;;
be the set of tasks v;, viy1,vira,...,0;, 1 <1 < j < 207> Note that, since T' is a complete
binary tree dag, |Vi;| < |Comb(V;;)| < 2|V;;| — 1 and that |Env(Comb(V;;))| < 2(h — «),
1 << g <2k,

Phase 1.

Task assignment. First, we assign the subtrees 71,75, ..., Toh—a to the processors of the
linear array as follows. We say that a processor in region R; of the linear array, 1 < j <k,
is available if it has been assigned less than [n/(ma)+ m/(4x)] — |j — g — 1| of the subtrees
T; above. For ¢ = 1,2,...,2" %, assign subtree T; to the leftmost available processor. In
other words, each processor is assigned a number of subtrees that decreases proportionally
to the distance of its region from the middle region. Note also that we can assign at least
(n/2 + m/8)/2% subtrees to the m processors of the linear array. The set of tasks that
consists of the roots of the subtrees assigned to the ith processor in region R; forms a
contiguous sub—sequence of the sequence vy, vs,...,vyn-a, which we denote by Z; ;. Assign
to processor ¢ of region R; the set of all the tasks in the combinator Comb(Z; ;) of Z, ;. Let
S; = Comb(Uier, Z; ;) — Uier, Comb(Z; ;). Assign to the leader processor of region R; the
set of tasks S;. Note that S; consists of all those tasks in the combinator Comb(UieRJ Zi i)
which have not already been assigned to some processor in region R;.

The tasks of T' that have not been assigned to any processor at this point induce a
subtree 7" of T'. This subtree 1" is rooted at the root of 7' and we call it the top subtree of

11

T. Observe that 7" has < 2"~ — 1 tasks and height < h — a — 1, and that if a task u of 7"
has a predecessor v not in 7" then v € U*_;Env(S;) = Env(T — T").

Task execution. Processors execute the tasks in T'— 7" assigned to them in greedy manner.
Each processor p executes a task u assigned to it as soon as it becomes ready (break ties
arbitrarily). If task u has a successor task u’ and u’ has not been assigned to p then the
value of task u needs to routed to the processor that has been assigned u'. There are three
cases to consider. If processor p is not the leader of its region then p routes the value of u to
the leader of its region. Otherwise, if p is the leader of its region then p routes the value of u
to the middle leader processor of the linear array. If p is the middle leader processor then it
stores all the values that are routed to it; those values will be distributed during the second
phase of our schedule. Routing is always done over a shortest path and link contention is

resolved in FIFO order.

Let tg be the time to complete phase 1, that is the time at which the values of all the
tasks in Env(7' — T") = U*_;Env(S;) are available to the middle leader processor.

Phase 2.

In phase 2, we execute the top subtree 7'. Observe that each task in 7" depends
only on tasks in 77 or in Env(7T — 7"). In addition, the values of all the tasks in Env(T —
T') are available to the middle leader processor by time to. It is easy to see that we can
execute a complete binary tree dag with unit execution time tasks and height & on a linear
array with 2021 processors in time < 4 - 2["/?1 Consider a linear sub-array with m’ =
min{m, 2[(A=2=1/21} processors, centered at the middle leader processor. Since |Env(T —
| = | Ui, Env(S;)] < 2(h — a)[m/z], we can distribute the values of all the tasks in
Env(T — 7") from the middle leader processor of the array to each processor in that sub-
array in time 2(h — a)[m/x| 4+ [m'/2]. Then, we can execute 7" on that sub-array in time
4[2[0=e=)/2])y 2[(h=e=1)/21 " Consequently, the makespan of our schedule for 7' is

Tmax < to+2(h —a)[m/ja] 4+ [m')2] + 4[2[0=ea=D/21 jp ol (hme=1)/2], (6)

II1. Bounding the makespan.

Bounding the time to complete Phase 1. The time t5 to complete phase 1 is equal to
the time to execute all the tasks in 7' — 7" and route the values of the tasks in Env(7 —T")
to the middle leader processor. Consider the assignment of the tasks in 7'—T" to processors.
Let A; ; denote the set of tasks in the union of the subtrees of 1" that are rooted at a task in
Z; ;. Processor ¢ of region j is assigned the tasks in A, ; U Comb(Z, ;) U S;, if it is the leader
of region R;, and is assigned the tasks in A; ; U Comb(Z; ;) otherwise.

First, we derive upper bounds on |A4; ; U Comb(Z, ;)| and |S;|. Observe that, for each
processor ¢ in region R;, |Z;;| < [n/(mx) 4+ m/(4x)] — |7 — ¢ — 1]. Since |Comb(Z; ;)| <
2|Z; ;| — 1, it follows that

|Aij U Comb(Zi5)| < (x + 2)([n/(me) + m/(de)] = |j — p = 1]). (7)
12

Next, we find an upper bound on |S;|. Consider the set of tasks S; assigned to the leader
of region R;. Let T be the subtree of 7" induced by the tasks in S;. Observe that if a
task u € T} has a predecessor v in 1" which is not in 77 then v is in U;er, Env(Comb(Z; ;)).
Since T} is a binary tree, we conclude that |S;| < 3| Uier, Env(Comb(Z; ;))|. Further, since
| User, Env(Comb(Z;;))| < Y iR, |Env(Comb(Z; ;))| and |Env(Comb(Z; ;))| < 2(h — «), it
follows that

15,1 < 6(h — a)e. (8)

Second, using the upper bounds computed above, we find an upper bound on the time
that each processor takes to execute all the tasks assigned to it. Consider a processor @
that is in a region R;. Processor i executes all the tasks in A;; U Comb(Z; ;) assigned to
it by time (z 4 2)([n/(mz) + m/(4x)] — |j — g — 1|). If processor ¢ is the leader of region
R; then it has also to execute the tasks in S;. The tasks in S; depend only on tasks in
S5 U (User,Env(Comb(Z; ;))). The values of all the tasks in U;er Env(Comb(Z;;)) can be
routed from the various processors in region R; to its leader processor in time < x4+2(h—a)z.
Since S| < 6(h — a)z, it follows that the leader processor of region R; finishes executing
all the tasks in S; by time

(z 4+ 2)([n/(mz) + m/(4z)] = |7 — p = 1]) + & + 8(h — a)z. (9)

Third, we compute our upper bound on %y, the time to complete phase 1. Since the
leader processor of each region R; routes the values of the tasks in Env(S;) to the middle
leader processor and |Env(S;)| < 2(h — «), it follows that the values of all the tasks in
Env(S;) are available to the middle leader processor by time ¢;,

ti < (e+2)([n/(me)+m/(42)] = |j —p—1]) + 2 +8(h—a)z +

= e + 2(h — a)[m/a]. (10)
Therefore, all the tasks in T'—T" are executed and the values of all the tasks in U;?:lEnV(Sj)
are available to the middle leader processor by time g,

to < (x4 2)[n/(mz)+m/(4z)] + 8(h —a + 1)z +2(h —a)[m/x] + 2. (11)
Bounding the makespan of our schedule for 7. Using (6) and (11), and after some

algebra, we find that the makespan Ti,.x of our schedule for 7' on a linear array with m <
4(n + 1)1/2 Processors is

Tmax < nfm +m/4+ On*® +n®*/m) = n/m +m/4 + o(n/m). (12)

Clearly, by taking m = [2n'/?], we obtain a schedule for 7' on a linear array with [2n'/?]
processors and makespan nt/? + O(n3/8) =(1+ 0(1))711/2.

13

Next, we show how to derive (12). Recall that a = [(h +3)/4] = [(log(rn + 1) +2)/4].
Since z = 2*t* — 1 it follows that (n + 1)1/4 <z <6(n+ 1)1/4. Then, since m < 4(n+ 1)1/2,
from equation (11) it follows that

to < n/m 4+ m/4452(n +)Y og(n + 1) + 2034 /m + 4. (13)
In addition,
2(h —a)[m/xz] <9(n+ 1)1/4 log(n + 1). (14)

Since [(h —a —1)/2] < (3h 4+ 1)/8, it follows that
3(2[(}%@—1)/21 /m/“:z[(h—a—l)/ﬂ < 3((71 4 1)3/8/m/“ (n 4 1)3/8‘ (15)
Using (13), (14), and (15) in (6) we find that

Tmax < n/m+m/4+52(n+ 1)1/410g(n + 1)+ 2n3/4/m +4+
9(n + 1)1/410g(n + 1) +m//24+1+
3(n + 1)%%/m' + 3(n + 1)*. (16)

Since m/ = min{m, 2[(h=a=1/21+11 "\ye have that
min{m, (n 4+ 1)3/%/2} < m’ < min{m, 2(n + 1)*/%}. (17)

Then, from (16) and (17) it follows that

Thmax < n/m+m/4+61(n+ 1)1/410g(n +1)+ 2n3/4/m +5+
(n+ 1)3/8 + max{3(n + 1)3/4/m, 6(n + 1)3/8}. (18)

from which it follows that
Tmax < n/m4+m/4+T(n+ 12+ 803 /m + 61(n + 1)Y*log(n + 1) + 5. (19)
Therefore, the makespan Tax of our schedule for T' is given by (12). |

We note here that Kalpakis and Yesha [11], using a simpler method, show a schedule for
a complete binary tree dag with n unit execution tasks on a linear array with < 2(n 4 1)*/2

processors whose makespan is 3(n + 1)1/2/2 +log(n +1)/2 + 1.

14

5 A Gap between Upper and Lower Bounds on the
Makespan of Schedules of Trees on Linear Arrays

Its easy to see that the makespan T},.x of a schedule for a tree dag with n tasks and height
h on a linear array is at least h. Further, from Theorem 1, we have that T}, > nl/?,
Moreover, there exist tree dags for which Ty = (1 + o(1))n'/?, namely a complete binary
tree dag with n tasks, or Thax = b + 1, namely a chain with n = h + 1 tasks. Consequently,
max{n'/? h} is the best possible explicit lower bound on the makespan Ty, of a schedule
for a tree dag with n tasks and height & on a linear array, in the sense that any lower bound
that depends only on n and h must be < (1 4+ o(1)) max{n'/2, k}. It is natural therefore to
ask if (1 4+ o(1)) max{n'/2,h} is an explicit upper bound on Tpax. In this section, we prove
that any explicit lower and upper bounds on Ty, must differ by a factor of at least 14+1/2/2.
Hence, (14 o(1)) max{n'/?,h} can not be an explicit upper bound on Tyax.

Let fu, fuv : N x N — N be two functions such that fi;(n, k) and fu(n, k) are a lower
and an upper bound on the makespan of an optimal schedule of any binary tree dag 7" with
n unit execution time tasks and height A on linear arrays with links of unit propagation

delay and unit bandwidth. Without loss of generality, we only consider trees T' for which
h < n'/%2. We show that

Jw(n, h)

Yy, sup, Sz =1 (20)
and
. . fub(n7 h) \/5 P
A I S 2 (21)

where the inf and sup are taken over all binary tree dags with n tasks and height b < n'/2.
That is, there is a gap of at least 1 ++/2/2 between upper and lower bounds on the makespan
that depend only on n and h. Inequalities (20) and (21) follow from the next theorem.

Theorem 3 There exists an infinite sequence of pairs of binary tree dags Ty and Ty, each
with n unit execution time tasks and height b, where 2712 —o(1) < h/n'/? < 27Y240(1), and
such that T8 > (14272 —o(1))n'/? and T, = (1+0(1))n'/?, where TY) is the makespan

of an opltimal schedule for T;, 7 = 1,2, on a linear array with links of unit propagation delay
and unit bandwidth.

Proof: Let 2 be a positive integer. Let n = 221 4 9214 974 1 and h = 28 +2i + 1. Note that
2-1/2 _ o(l) < h/n'/? < 2712 4 o(1). Let Ty be a complete binary tree dag with 2%+ — 1

15

tasks and height 2:. Let 7’ be the root of Tj. Let P, be a path with 2! + 1 tasks, P, be a
path with 22 4+ 1 tasks, and P; be a path with 2t 4+ 27 + 2 tasks.

For each ¢ we construct two binary trees T} and T, as follows. Tree T} is constructed
from P;, P;, and T as follows: make the root of Ty the only predecessor of the leaf of P;
and make the root of P, a predecessor of the root of P;. The tree 15 is constructed from Ps
and T} as follows: make the root ' of Ty to be a predecessor of the root of Ps. Clearly, both
trees T and T have n tasks and height h.

First, consider an optimal schedule for T} on a linear array of processors. Let T/(}) be

the makespan of that schedule. From Lemma 1 it follows that task r’ is executed at time
> (2241 — 1)'/2. Consequently, the root of Ty is executed at time > 2 4 (2%+1 — 1)1/2 41,
Since

. 22 + (222'-}—1 . 1)1/2 + 1
oo (22i+1 + 20 4+ 27 + 1)1/2

=1+27"7 (22)

it follows that T'(1) > (1 42712 — o(1))n'/2.

Second, consider an optimal schedule for 73 on a linear array of processors. Let Ti(2)

be the makespan of that schedule. From Theorem 2 it follows that 1y can be executed by a
linear array with [2(2%+1 —1)1/2] processors in time (1 + o(1))(2%*+! —1)/2. By inserting an
additional processor next to the processor of that linear array that has been assigned r’ in
the schedule provided by Theorem 2, it follows that 73} < max{(14o0(1))(2%+* —1)}/2 2' +

max —

2t + 1} 4+ O(1), while the number of processors used is [2(22}“"1 — 1)1/2W + 1. Since

max{(1 + o(1))(22+1 — 1)¥/2 20 4 2 + 1} + O(1)

we conclude that Tlfa)x =(1+ 0(1))n1/2. [|

Corollary 1 Let cl,¢2,¢3 be positive real numbers. If c;n'/? + c;h + csmax{n'/?,h} is a
lower bound on the makespan of an optimal schedule of a tree dag with n tasks and height h
on a linear array then max{c; + ¢z, ¢1 + ¢3,¢ + 3} < 1.

Proof: Follows from Theorem 3. |

6 Optimal within a factor of 5 + o(1) Schedules for
Binary Trees on Linear Arrays

Given a binary tree dag T' with n tasks and height h, we can find, in polynomial time, a
schedule for 7" on a linear array with < 2y/n+4 processors whose makespan is < 4\/n+h+6,

16

i.e. optimal within a factor of 5+ o(1). Further, given an integer 5 < m < 4[\/n/2], we
can find, in polynomial time, a schedule for T" on a linear array with m processors whose
makespan is < 4n/(m —4) + m + h + 2. Moreover, there is no link contention in any of
these schedules. To accomplish that, we use the path—centroid decomposition method (see
section 2.2). In particular, we do the following. First, given an integer 1 < B < n we
decompose T' into subtrees each with < [n/B] tasks. Then, using that decomposition, we
find, in polynomial time, a schedule for 7" on a linear array with m processors whose makespan
is < [n/B] 4+ m+ h+ 1, where m is the number of subtrees in that decomposition. Second,
we show that the number of subtrees in any decomposition of 17" with parameter x, that
is constructed using the edge—centroid method recursively, is no more than [2n/z]. Since
the number of subtrees in a path—centroid decomposition of 7' is at most twice the number
of subtrees in a decomposition of 7' that is constructed using the edge—centroid method
recursively, we conclude that m < 4B. Consequently, by choosing appropriate values for the
parameter B we obtain the claimed results.

Lemma 2 Let T be a bounded degree tree dag with n unit execution time tasks and height
h. Let B be a positive integer < n. Let m be the number of subtrees in a path—centroid
decomposition of T with parameter [n/B|. Then, we can find, in polynomial time, a schedule
for T on a linear array with m processors and links of unit propagation delay and unit
bandwidth whose makespan is < [n/B] +m+ h+ 1. Further, there is no link contention in
this schedule.

Proof: Consider the path-centroid compressed tree T, with parameter [n/B] (see sec-
tion 2.2). Let m be the number of supernodes of T.. Each supernode represents a subtree
of T with < [n/B] tasks. Our schedule for T is recursive and is based on this compressed
tree T,.

Task assignment. We assign the tasks of 7" to processors recursively using this compressed
tree T.. For brevity, hereafter, we say that we assign a supernode to a processor whenever all
the tasks in the subtree of T' represented by that supernode are assigned to that processor.
We assign each supernode to a distinct processor.

First, we introduce the necessary definitions to describe our task assignment method.
Let L(u) denote the linear array to which all the supernodes in the subtree T.(u) of 7.
rooted at a supernode u have been assigned. Let {(u) be the distance between the processor
in L(u) that has been assigned supernode u and the farthest end—processor of L(u). The
end-processor of L(u), that is closest to the processor that has been assigned w, is called the
closest—end processor of L(u). For each task v in the subtree of T' represented by supernode
u, let {(v) = l(u), and let t(v) = [n/B| + l{(v) + h(v) + 1, where h(v) is the height of v in
T. Further, let t(u) = t(v'), where v’ is the root of the subtree represented by u. Intuitively,
t(v) is the time at which a task v on a basic path finishes executing.

17

vl

v2 v3 v4 v5

V6

L(vl) L(v2) L(v3) L(v4) L(v5) L(v6)

| o | o | o Jeof o e [e |
L(v2) L(v4) L(v6) u L(v5) L(v3) L(vl)
L(u)

(b)

Figure 3: (a) The subtree T.(u) of a compressed tree T, rooted at a supernode u. The
predecessor supernodes vy, vs,... are sorted left-to-right in decreasing order of their #(v;)
values. The linear arrays L(v;) to which T.(v;) have been assigned are shown below each
subtree. The processor of L(v;) which has been assigned v; is also shown. (b) The linear
array to which 7T.(u) is assigned.

Consider a subtree T.(u) of T, that is rooted at a supernode u. If T.(u) has only one
supernode, namely supernode u, then assign v to a linear array L(u) with one processor.
Otherwise, if T.(u) has more than one supernodes, do the following. Let v, vs,...,v; be the
(direct) predecessors of u left—to-right in decreasing order of their ¢(v;) value. This ordering is
needed to ensure that there will be no link congestion. Let Ly be the linear array that results
from the juxtaposition, of the linear arrays L(vy), ¢ = 1,2,...,|j/2], reversed as necessary
in order for the closest—end processor of L(vs;) to be on the right. Let L; be the linear array
that results from the juxtaposition, of the linear arrays L(vqiq1), 7= [(7 —1)/2],...,2,1,0,
reversed as necessary to ensure that the closest—end processor of L(vg;41) is on the left. Let
L(u) be a linear array with |Lo| + |L1| + 1 = |T.(u)| processors. Identify the |Lo| leftmost
processors of L(u) with those of Lg, assign the supernode u to the |Lo|+ 1 leftmost processor
of L(u), and identify the |L;| rightmost processors of L(u) with those of L;. See Fig 3 for an
example. Requiring that the closest-end processors of the L(v;)’s are towards the processor
assigned u is necessary in order to keep the delays due to distances traveled small.

Task execution and routing regime. Consider a processor p and a task v that has been
assigned to p. If task v is neither on a basic path nor the root of subtree represented by

18

a supernode of 7., then processor p executes task v in a greedy manner, i.e. it executes
that task as soon as it becomes ready (break ties arbitrarily). Otherwise, processor p starts
executing task v at time ¢(v) — 1. In both cases, task v is executed by time ¢(v). The routing
of the value of a task v from a processor p to a processor p’ is done over the unique path in
the linear array from p to p'.

In the remainder of this proof, we show that the task execution and routing regime
provide us with a valid schedule for T'.

First, we show that there is no link congestion. Observe that the only values that
ever need to be routed are the values of tasks that are roots of subtrees corresponding to
supernodes in T.. Let v;,v; be two tasks whose values need to be routed and such that
the paths used to route the values of these tasks have at least one link in common. Let
u1, uz be the supernodes that correspond to vy, vy, respectively. Let ug be the least common
ancestor supernode of uy,uy in 7T,. Let p; be the processor that has been assigned supernode
u;, t = 0,1,2. Suppose, without loss of generality, that p; is farthest from py than p; is, i.e.
that py is between p; and pg. Then, it follows from the task assignment method that u; is a
(direct) predecessor of ug. Let u), be the (direct) predecessor of ug that is also an ancestor
of uy (uhy = ug if uy is a direct predecessor of ug). From the task assignment method, since
p2 1s between p; and pg, and since the predecessors of ug are sorted in decreasing order of
their ¢ values, it follows that ¢(uy) > t(u)) > t(uz). Hence, t(v1) > t(vz). Consequently, the
values of tasks v; and vy can not compete for using the same link at the same time. Thus,
there is no link congestion.

Second, we prove that the task execution and routing regime provide us with a valid
schedule for T'. All the tasks of T', that are neither roots of the subtrees represented by
supernodes of 7. nor on basic paths of the path—centroid decomposition of T', are executed
by time [n/B]. The remaining tasks of 7" induce a subtree 7" of T' rooted at the root
of T'. Note that each processor can have at most one ready task after time [n/B|. We
prove, by induction on h(v), that each task v in 7" can indeed be executed by time t(v) =

[n/B| +1(v)+ h(v) + L.
Basis: The claim is trivially true for each task v in 7" of height h(v) = 0.

Inductive hypothesis: Suppose that each task v of T with height h(v) < k is executed
by time t(v), for any integer k > 1.

Inductive step: Consider a task v of 7" of height h(v) = k. Let p, be the processor that
has been assigned task v. Let u be a predecessor of v in 7" and let p, be the processor
that has been assigned task u. We show that the value of task u is available to processor
py by time t(v) — 1. If task w is not in 7" then p, = p, and task u has been executed by
processor p, by time [n/B]. If v is in 7" and p, = p,, then by the inductive hypothesis
task u is executed by time t(u) = [n/B] + h(u) + l[(u) + 1. Hence, in both these cases,
since h(v) > h(u) + 1, the value of task u is available to processor p, by time t(v) — I.
Otherwise, task u is in 7" and p, # p,. By the inductive hypothesis, task v is executed

19

by processor p, at time t(u) = [n/B] 4 [(u) + h(u) 4+ 1. Since there is no link contention,
the value of task u is available to processor p, at time t(u) + d(u,v), where d(u,v) is the
distance between processors p, and p,. Since the closest-end processor of the linear array
used to schedule the subtree of T' rooted at u is towards processor p,, we conclude that
[(v) > l(u) + d(u,v). Therefore, the value of task u is available to processor p, by time
[n/B|+1(v)+h(u)+1 < t(v) — 1. Therefore, task v becomes ready by time ¢(v) — 1, which

implies that task v finishes execution by processor p, at time t(v).

Thus, the root r of 1" is executed by time [n/B|+(r)+h+1. Further, since I(r)+s(r) <
m, the value of the root r is available to an end processor of the linear array by time

[n/Bl+m+h+1. |

In order to utilize Lemma 2 above, we need to have a bound on the number m of subtrees
in a path—centroid decomposition of 7" with parameter [rn/B]. Since m is at most twice the
number of subtrees m’ in a decomposition of T' that is constructed using the edge—centroid
method recursively and the same parameter [n/B]|, we find an upper bound on m'.

Lemma 3 Let T' be a tree with n nodes and degree d, and let x be a positive integer < n.
Then, using the edge—centroid decomposition method recursively, we can decompose T into
< [dn/x]| subtrees each with < x nodes.

Proof: Assume, without loss of generality, that d > 2.

Consider a decomposition D of T' into subtrees each with < z nodes using the edge-
centroid method recursively. To this decomposition of T, there corresponds a node—weighted
partition tree T, as follows. If 7" has < z nodes then 7, has only one node whose weight
is equal to the number of nodes in 1. If T" has more than = nodes, then let 17,73 be the
two trees into which T is partitioned by the edge-centroid decomposition method. Then, 7,
has as a root a new node, whose weight is equal to the number of nodes of 7', and with left
and right children the partition trees that correspond to decompositions of T} and T into
subtrees of size < z using the edge-centroid method recursively. Hence, for each subtree in
D, there is a corresponding leaf of T, which has node weight equal to the number of nodes
in that subtree. Let w(u) denote the weight of a node v of T,,. Note that for any two nodes
u,v of T, such that u is the parent of v we have that 1/(d 4+ 1) < w(v)/w(u) < d/(d+1).

Since the number of subtrees D is equal to the number of leaf nodes of 7)), we proceed
to find an upper bound on the number of leaves of T),.

Let A be the set of nodes v of T}, such that v has a child that is a leaf but none of the
children of the parent of v in T}, is a leaf. For each v € A we have that + < w(v) < (d+ 1)z.
Moreover, for each leaf u of T}, there exists a unique node v in A such that u is in the subtree
of T}, rooted at v. Thus, to count the leaves of T}, we count the leaves of the subtrees of 7,

rooted at nodes in A. Partition the nodes of A into m = [log(d + 1)/(log(d 4+ 1) — log d)]

20

sets Ay, Ag, ..., A,, based on their weight such that
Ai={ve A ((d+1)/d)™ <w(v)/z < ((d+1)/d)}, fori=1,2,...,m. (24)

Next, we prove, by induction on z, that the number of leaves in any subtree of 7}, that

is rooted at a node in A; is <i:+ 1, forz=1,2,...,m.

Basis: Consider a node v € A;. The weight w(v) of v is such that 1 < w(v)/x < (d+1)/d.
Then, both children of v in 7, have weight < z, which implies that both are leaves of T,.

Inductive hypothesis: Suppose that, for any integer 2 < k < m, any subtree of T, rooted
at a node in A; has at most ¢ 4+ 1 leaves, for any positive integer ¢ < k.

Inductive step: Consider a subtree of 7}, that is rooted at a node v € Aj. Let vy, vy be the
two children of v in T),. Since v € A, at least one of its children, say vy, is a leat of T},. Since
w(vy)/w(v) < d/(d+1) and w(v)/z < ((d+1)/d)*, it follows that w(vy)/z < ((d+1)/d)*=1).
Hence, vy € A; for some positive integer ¢+ < k — 1. By the inductive hypothesis, the number
of leaves in the subtree of T}, rooted at v, is <141 < k. Consequently, the number of leaves
in the subtree of 7, rooted at a node in Ay is < k4 1.

Finally, we bound the number of subtrees in D. The number of leaves in T, is <
S7 (i + 1)JA;|. Tt can be shown, by induction on iz, that i + 1 < d((d + 1)/d)'~* for
i > 1. Moreover, since each node in A; has weight greater than ((d + 1)/d)*"'z, and since
>vea w(v) = n, it follows that

i d+1 d
3+ Dl < a3 jad (5) <& (25)
=1 N

Consequently, the number of leaves in 7}, which is equal to |D|, is < [dn/z]. |

Combining Lemmas 2 and 3, we show the following.

Theorem 4 Let T be a bounded degree tree dag with n unit execution time tasks, height h,
and degree d. Let B be a positive integer < n. Then, we can find, in polynomial time, a
schedule for T in a linear array with at most 2dB processors and links of unit propagation
delay and unit bandwidth whose makespan is < [n/B| +2dB + h 4+ 1. Further, there is no

link contention in this schedule.

Proof: Consider a path—centroid decomposition of 7' with parameter [n/B]. This decom-
position is obtained by a decomposition of T" into subtrees each with < [n/B] nodes, that is
constructed using the edge—centroid method recursively. From Lemma 3 it follows that the
number of subtrees in this later decomposition is < [dn/[n/B|] < dB, which implies that
the number of subtrees in that path-centroid decomposition of 7" is < 2dB. The theorem
now follows from Lemma 2. u

21

Corollary 2 Let T be a binary tree dag with n unit execution time tasks and height h.
Then, we can find, in polynomial time, a schedule for T on a linear array, with < 2\/n + 4
processors and links of unit propagation delay, whose makespan is < 4\/n + h + 6, i.e.
optimal within 54 o(1). Further, given an integer m > 5, if m < 4[\/n/2] then we can find,
in polynomial time, a schedule for T' on a linear array with m processors whose makespan
is <4Anf(m —4)+m + h + 2. In addition, if h = w(y/n) then we can find, in polynomial
time, a schedule for T' on a linear array with < 4f(n)n/h +4 processors whose makespan is
<(L4+1/f(n))h+4f(n)n/h +6, i.e. optimal within 1 4 o(1) and processors optimal within
4f(n), where f(n) is a function in w(1)No(h/\/n). Moreover, there is no link contention in
any of these schedules.

Proof: Use Theorem 4. Take B = [\/n/2], B = |m/4|, and B = [f(n)n/h], in the first,

second, and third case respectively. |

Lemmas 2 and 3, Theorem 4, and Corollary 2 can be extended to the case where
tasks have arbitrary positive integer execution times and each link of the linear array has
propagation delay an arbitrary positive integer ro (the same for each link). They can also
be extended to forest dags (the idea is to pack small trees together, and execute large trees
using the schedules in this section).

7 Optimal within a factor of 1 + o(1) Schedules for

Trees on Linear Arrays with Unlimited Bandwidth
Links

We show how to find schedules for bounded degree d tree dags with n unit execution time
tasks and height h € o(n/?) U w(n'/?) on a linear array with < 2n'/? 4+ 2d processors
and links of unlimited bandwidth, so that the makespan Ty, of these schedules is T« =
(14 o(1))max{n'/?,h}, i.e. optimal within a factor of 1 4 o(1).

Lemma 4 Let T be a bounded degree tree dag T with n unit execution time tasks and height
h = o(n''?). Then, we can find, in polynomial time, a schedule for T on a linear array with
[2n/%] processors and links with unlimited bandwidth so that the makespan of that schedule
i$ Tmax = (1 + 0(1))n1/2.

Proof: Since h = o(n'/?), there exist positive real numbers ¢ and § such that ¢ < § < 1/2
and h < nf. Using the edge—centroid decomposition method, partition T into k subtrees
Ty, Ty, Ts,. .., Ty, such that each subtree has between | [n°]/3] and [n®] tasks. Observe that
[n1=%] < k < [dn'~®]. Let T" be the subtree of T' that consists of all those tasks of 7" that
are on a path from the root of 7; to the root of T', for each ¢ = 1,2,... k. Since h < n® and

22

€ < 8 < 1/2, it follows that T’ has at most [dr!=°]h = o(n) tasks. Further, note that 7’ has
at least n'=%/2 > n'/2/2 tasks.

Our schedule for T' consists of two phases. In the first phase we schedule and execute
all the tasks in 7'— T". In the second phase, using Theorem 4, we schedule and execute all
the tasks in 7".

Phase 1.

Our aim is to assign to each processor a number of tasks that decreases proportionally to
its distance from the middle of the linear array, while the middle processor gets about n'/?
tasks. Processors will execute the tasks assigned to them in a greedy manner, and they will

route the values of those tasks that have their successor in 7" to the middle processor.

Consider a linear array with [2n'/2] processors. Number its processors with consecutive
positive integers from left to right so that the leftmost processor is numbered 1. Processor
j is available if it has been assigned < [n'/?] —|[n'/?] — j| + 1 tasks.

For ¢ = 1,2,...,k, assign all the tasks in T; — T" to the leftmost available processor.
Let m be the rightmost processor that has been assigned at least one task. Fach processor
j < m gets between [n'/?] — |[n*/?] —j| + 1 and [n®] + [n'/?] — |[n*/?] — j| + 1 tasks. Note
that, since

[2n!/2]

S ([=12 =51+ 1) >, (26)

i=1

there are enough processors to assign all the tasks in 7" — T".

Processors execute the tasks in T'— 7" in greedy manner, i.e. a processor executes a
task that has been assigned to it as soon as that task becomes ready (break ties arbitrarily).
Whenever a processor j executes a task v that has been assigned to it and whose successor
task is in 77, processor j routes the value of task v to processor [n'/?] over the single path
that connects these two processors. Because links have unlimited bandwidth, there is no
link contention.

Consider processor 7, 1 < 7 < m. All the tasks that have been assigned to it have all
their ancestors also assigned to the same processor j. Because processor j has been assigned
<[] + [n/*] — |[n!/*] — j| + 1 tasks, processor j finishes executing all the tasks that have
been assigned to it by time [n®] + [n/?] — |[n'/*] — j| + 1. Moreover, since we assume links
of unlimited bandwidth, the values of all the tasks executed by processor j, which have their
successors in 17", become available to processor (nl/ﬂ by time [nq + (nl/zw +1 < n'24n43.

Phase II.
Using Theorem 4, and since 7" has o(n) tasks and height o(n'/?), we can schedule 7" on
a linear array with o(n'/?) processors in time o(n'/?). Note that, since we assume links of

23

unlimited bandwidth, the values of those tasks in T'— 7" that are needed to execute 7" can
be redistributed from the middle processor to the processors that need them in time o(n'/?).

Consequently, we conclude that the time to execute all the tasks of 7' is n'/? 4+ nf +
o(n'/?). Since § < 1/2, it follows that the makespan of our schedule for 7" is (1 + o(1))n'/?,
while it uses < [2n!/?] processors. |

Using Theorem 4 and Lemma 4 we have the following.

Theorem 5 Let T be a bounded degree tree dag T with n unit execution time tasks and
height b = o(n'/?) Uw(n'/?). Let d be the degree of T. Then, we can find, in polynomial
time, a schedule for T on a linear array with < 2n'/? +2d processors and links with unlimited
bandwidth so that the makespan of that schedule is Tmax = (1 4 o(1))max{n'/?,h}, i.e.
optimal within a factor of 1 4 o(1).

Proof: When h = o(n'/?), the theorem follows from Lemma 4. When h = w(n'/?), the
theorem follows from Theorem 4 by taking B = [n'/?/d]. u

8 An Improved Upper Bound on the Makespan of
Schedules for Tree dags on the PY Model

We compute an improved upper bound on the makespan of a schedule for a tree dag on the
PY model, provided that its height not too large. The PY model [14] is defined by having
the value of a task, whose execution is completed by a processor p at time ¢, available to
processor p at time ¢, and to any other processor at time ¢ + 7, while there is an unlimited
number of identical processors available. Upper bounds on the makespan of schedules of
tree dags on the PY model are used [10] in order to estimate the makespan of some of the
schedules for tree dags on parallel architectures given there. We show the following.

Lemma 5 Let T be a tree dag with n unit execution time tasks, degree d, and height h. Let
7 be a positive integer such that n > 7 > (d + 1)h. Then, we can find, in polynomial time,
a schedule for T on the PY model with parameter 7 whose makespan is

L (7 +1)log(n/7)
Tpy <(1+ Z) log (7/(cdh))

+47 + 2, (27)

using < [2en /7| processors, where ¢ is an arbitrary real number such that 1 < ¢ < 7/((d +

1)h).

24

Proof: We construct a sequence of trees D;, 1 > —1, using the edge—centroid decomposition
method. Each tree D; has n; tasks and height < h. Define Dy to be T'. For ¢ > 0, it D;
has more than 7 + 7/c tasks, construct a tree D;;; from D; as follows. Decompose D; into
< [edn;/7] subtrees T1,Ts,..., T}, ..., each with < [7/¢] tasks. Tree D;;; is the subtree of
D; induced by the tasks in D; lying on a path from the root of a tree 7} to the root of D;.
Clearly, D;11 has n;41 < [edn;/7|h tasks and height < h. Moreover, since ¢ < 7/((d + 1)h),

we can show, by induction on ¢, that

n; < (cdh/7)'n + hf(cdh/r)j < n(edh/7)" + h/(1 — cdh/T) < n(cdh/T) +1/c, (28)

=0

for each: =0,1,2,....

Let k be the smallest positive integer such that ny < 7 4 7/c. Such a k exists as long
as cdh/7 < 1. From (28) it follows that

P —o80/m) (29)
log (7/(cdh))

Using the sequence Dy, Dy,..., D we describe a schedule for 7'. Consider a tree D;,
0 <¢ < k—1. Consider an edge—centroid decomposition of D; into < [edn; /7] subtrees
T1,T5,...,T;,. .., each with < [7/c] tasks. For each subtree T, we schedule all the tasks in
T; — Dj41 on the same processor. All the tasks in 7; — D;4; can be executed in < [7/¢]| time,
and these tasks do not depend on tasks in D; that belong to a different subtree. However,
to ensure that the number of processors used to execute D; — D11 is < [2¢n; /7| we pack
subtrees to processors so that each processor is assigned between [7/(2¢)] and [7/c¢| tasks.
Unfortunately, because tasks in D;;; depend on tasks in D; — D11, we need to communicate
the values of these tasks in D); — D;1; to processors that need those values when executing
tasks in D;;,. Because in the PY model a processor can send an arbitrary number of values
to any other processor in time 7, we can communicate all those values in 7 time. Therefore,
we can execute all the tasks in D; — D; 41 on the PY model in [7/¢| 47 time using < [2en; /7]
processors. We assign all the tasks in Dy, to one processor. Since Dy has < 7+ 7/c¢ tasks,
all its tasks can be executed in time 7 4+ 7/c. (Note that processors are “re—used”.)

Consequently, we can schedule 7" in ([7/¢] 4+ 7)(k+ 1) time using < [2¢n/7]| processors.
The lemma follows from (29). u

The previous upper bound in [9] for Tpy was the one given in (27) with ¢ = 1 and d = 2.
If 3h < 7 < n then, by choosing ¢ in the range [1,7/3h) so that the right hand side of (27)
is minimized, we obtain a smaller upper bound on Tpy. Using the symbolic algebra package
Maple * version V, release 2, running on a Sun SPARC-10 workstation of the Computer

4Copyright by the University of Waterloo.

25

Science Department at the University of Maryland Baltimore County, we found that the
right hand side of (27) is minimized when ¢ = W(7/(edh)), provided that 7 > e*dh, and
where W is the function in [4]. This function satisfies W(z)e"®) = z. For example, if
7 = 300e?In(n), h = 10In(n), and ¢ = W(15e) ~ 2.711 then for large enough n the upper
bound is improved by a factor of &~ 0.8684.

Appendix A

Kalpakis and Yesha [10] develop yet another way to decompose a tree into subtrees. The
resulting decomposition is called path—centroid decomposition. Let T be a binary degree tree
dag with n nodes and height h. Given a positive integer # < n, they find a decomposition
of T" into subtrees such that each subtree 7; in that decomposition will satisfy the following
two properties:

Property 1: T; has no more than 5 nodes.

Property 2: all the nodes of 7}, that have a predecessor in T that is not in 7, are on a
single path from a leaf of T} to the root of T;.

They also require that such a decomposition of T' satisfies the following property:
Property 3: there are at most 2[3n /3] subtrees in that decomposition of 7'

They find such a decomposition of T' by combining the edge—centroid decomposition and the
path decomposition methods. We call the resulting method the path—centroid decomposition
method.

Let 3 be a positive integer < n. Using the edge—centroid decomposition method recur-
sively, first decompose T into ©(n/3) subtrees Ry, Ry, ..., Ry, such that each subtree has
> |3/3] and < 3 nodes. Each subtree R; satisfies the first property above, but it may fail

to satisfy the second property.

Decompose each subtree R; that fails to satisfy the second property, into subtrees so
that properties 1 and 2 are both satisfied. Let R! be the subtree of R; that consists of all the
nodes of R; lying on a directed path from any node of R;, with a predecessor in T that is not
in R;, to the root of R;. Let m1,72,..., 7 be a path decomposition of R;. Observe that the
successor of the root of each subtree in the forest R; — R! is in a unique path in that path
decomposition of R.. Let R;; be the subtree of R; that consists of 7; and those subtrees in
the forest R; — R whose roots have their successors on 7;, j = 1,2,...,kl. Observe that,
for each subtree R;;, all the nodes of R;; that have a predecessor that is not in R;; are
lying on a single path (in R; ;) to the root of R; ;. Further, the subtrees R;;, 7 =1,2,... k!

Y Y

26

form a partition of R;. Consequently, each such subtree R;; satisfies both properties above.
Finally, for any R; that was not further decomposed, let R;; = R;. The path-centroid
decomposition 71,715, T5, ... of T consists of all the R; ;’s above. Clearly, this decomposition
can be computed in polynomial time.

Lemma 6 Let T' be a binary tree dag with n nodes and let 3 be a positive integer < n.
Then, using the path—centroid decomposition method, we can decompose T into no more
than 2[3n/3] subtrees Ty, Ty, Ts, ... so that each subtree T; has < 3 nodes and all nodes of
T; with a predecessor in another subtree are lying on a single path (in T;) to the root of T;.
Further, this decomposition is polynomial time computable.

Proof: Consider the method given above for finding a path—centroid decomposition of T'.
Since each subtree T} is a subtree R, ;, for some positive integers 7, 7, their properties follow
from the discussion above. We only need to find an upper bound on the number of subtrees in
that path—centroid decomposition of 7. Since we first decompose 71" using the edge—centroid
decomposition method, it follows that the number kg of subtrees R; in this decomposition
is [n/B] < ks < [3n/B]. In addition, if R; is further decomposed as above (because it
violates the second property), then the number k! of subtrees R, ; in that decomposition of
R; is no more than the number of subtrees R; that have the successor of their roots in R;.
Therefore, the total number of subtrees in this path—centroid decomposition of 1" is no more

than 2kg < 2[3n/3]. [

Suppose now that we are given a path—centroid decomposition Ty, 75, T5,... of T'. For
each subtree T} in that decomposition we define a path #; in T}, which we call the basic path
that corresponds to 7;. If 7; has a node whose predecessor(s) in 1" is not in 75, then x; is
the single path in 7; from that node to the root of T;. Otherwise, 7; consists of the root of
T; only.

Moreover, given that path—centroid decomposition of T, we construct, by collapsing
each subtree into a single supernode, a compressed tree T, as follows. For each subtree T;
we have a supernode v in 7., i.e. each supernode represents a subtree in that decomposition
of T'. There is an edge in T, from u € T, to v € T, if the successor node of the root of the
subtree represented by u is in the subtree represented by v. We call T, the path—centroid
compressed tree of T associated with that path—centroid decomposition of 7T'.

References

[1] A. Aggarwal, A. K. Chandra, and M. Snir. Communication complexity of PRAM:s.
Theoretical Computer Science, 71, pp. 3-28, 1990.

[2] S. Bhatt, F. Chung, T. Leighton, and A. Rosenberg. Optimal Simulations of Tree
Machines. In Proc. of 27th Annual Symposium on Foundations of Computer Science,

pp- 274-282, 1986.
27

[3] G. Frederickson. Updating of minimum spanning trees, with applications. SIAM Journal

[4]

[5]

[6]

(7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

on Computing, 14(4), pp. 781-798, 1985.

F. N. Fritsch and R. E. Shafer and W. P. Crowley. Solution of the Transcendental
Equation we® = x[C5]. Communications of the ACM, 16(2), pp. 123124, 1973.

M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, San Fransisco, 1979.

D. Ghosal, A. Mukherjee, R. Thurimella, and Y. Yesha. Mapping task trees onto a
linear array. In Proc. of 1991 International Conference on Parallel Processing, Vol. 1,

pp. 629-633, 1991.
D. Ghosal, A. Mukherjee, R. Thurimella, and Y. Yesha. Scheduling task-trees onto a

linear array. manuscript, 1992.

H. Jung, L. Kirousis, and P. Spirakis. Lower bounds and efficient algorithms for multi-
processor scheduling of dags with communication delays. In Proc. of ACM Symposium
on Parallel Algorithms and Architectures, pp. 254264, 1989.

K. Kalpakis and Y. Yesha. On the Power of the Linear Array Architecture for Performing
Tree-Structured Computations. Journal of Computer and System Sciences, Vol. 50, No.
1, pp. 1-10, February 1995.

K. Kalpakis and Y. Yesha. Scheduling Tree dags on Parallel Architectures. To appear
in Algorithmica. Preliminary version available as UMIACS-TR-92-110.1 CS-TR-2974.1,
University of Maryland at College Park, Institute for Advanced Computer Studies,
October 1992.

K. Kalpakis and Y. Yesha. Optimal within a Constant Schedules for Forest Dags on
Parallel Architectures. In Proceedings of the IEEE Workshop on Advances in Parallel
and Distributed Systems, pp. 158-163, Princeton, New Jersey, October 1993.

S. R. Kosaraju. Parallel evaluation of division-free arithmetic expressions. In Proc. of

18th Annual ACM Symposium on Theory of Computing, pp. 231-239, 1986.

C. H. Papadimitriou and J. D. Ullman. A communication-time tradeoff. SIAM Journal
on Computing, 16(4), pp. 639-646, 1987.

C. H. Papadimitriou and M. Yannakakis. Towards an architecture-independent analysis
of parallel algorithms. SIAM Journal on Computing, 19(2), pp. 322-328, 1990.

R. Thurimella and Y. Yesha. A scheduling principle for precedence graphs with commu-
nication delay. In Proc. of 1992 International Conference on Parallel Processing, Vol.

111, pp. 229-236, 1992.

28

Contents

1 Introduction 2
2 Preliminaries 5
2.1 Tree Dags, Linear Arrays, and Schedules 5
2.2 Path—Centroid Decomposition of a Tree Dag 6

3 A Lower Bound on the Time-Processors Product of Schedules for Trees
on Linear Arrays 8

4 A (1+0(1))n'/* Makespan Schedule for Complete Binary Trees 9

5 A Gap between Upper and Lower Bounds on the Makespan of Schedules
of Trees on Linear Arrays 15

6 Optimal within a factor of 5+ o(1) Schedules for Binary Trees on Linear
Arrays 16

7 Optimal within a factor of 1 + o(1) Schedules for Trees on Linear Arrays
with Unlimited Bandwidth Links 22

8 An Improved Upper Bound on the Makespan of Schedules for Tree dags
on the PY Model 24

29

