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Abstract— The rapid advances in processor, memory, and
radio technology have enabled the development of distributed
networks of small, inexpensive nodes that are capable of sensing,
computation, and wireless communication. Sensor networks of
the future are envisioned to revolutionize the paradigm of
collecting and processing information in diverse environments.
However, the severe energy constraints and limited computing
resources of the sensors, present major challenges for such a
vision to become a reality.

We consider a network of energy–constrained sensors that
are deployed over a region. Each sensor periodically produces
information as it monitors its vicinity. The basic operation in
such a network is the systematic gathering and transmission
of sensed data to a base station for further processing. During
data gathering, sensors have the ability to perform in–network
aggregation (fusion) of data packets enroute to the base station.
The lifetime of such a sensor system is the time during which we
can gather information from all the sensors to the base station.
A key challenge in data gathering is to maximize the system
lifetime, given the energy constraints.

Given the location of sensors and the base station and the
available energy at each sensor, we are interested in finding an
efficient manner in which the data should be collected from
all the sensors and transmitted to the base station, such that
the system lifetime is maximized. This is the maximum lifetime
data gathering problem. We present an efficient clustering–based
heuristic to solve the data gathering problem. Our experimental
results demonstrate that the proposed algorithms significantly
outperform previous methods, in terms of system lifetime.

I. INTRODUCTION

The recent advances in micro–sensor technology and low–
power analog/digital electronics, have led to the development
of distributed, wireless networks of sensor devices ([9], [17],
[18]). Sensor networks of the future are envisioned to consist
of hundreds of inexpensive nodes, that can be readily deployed
in physical environments to collect useful information (e.g.
seismic, acoustic, medical and surveillance data) in a robust
and autonomous manner. However, there are several obstacles
that need to be overcome before this vision becomes a reality
[7]. Such obstacles arise from the limited energy, computing
capabilities and communication resources available to the
sensors.

We consider a system of sensor nodes that are homogeneous
and highly energy–constrained. Further, replenishing energy
via replacing batteries on hundreds of nodes (in possibly
harsh terrains) is infeasible. The basic operation in such
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a system is the systematic gathering of sensed data to be
eventually transmitted to a base station for processing. The
key challenge in such data gathering is conserving the sensor
energies, so as to maximize their lifetime. To this end, there
are several power–aware routing protocols for wireless ad hoc
networks discussed in the literature ([12], [19]). In the context
of sensor networks, LEACH [6] proposes a clustering–based
protocol for transmitting data to the base station. The main fea-
tures include local co–ordination for cluster formation among
sensors, randomized rotation of cluster heads for improved
energy utilization, and local data compression to reduce global
communication. Chang and Tassiulas ([2], [3]) describe data
routing algorithms that maximize the time until the energies of
the sensors drain out. In related work, Bhardwaj et al [1] derive
upper bounds on the lifetime of a sensor network that collects
data from a specified region using some energy–constrained
nodes.

Data fusion or aggregation has emerged as a basic tenet
in sensor networks. The key idea is to combine data from
different sensors to eliminate redundant transmissions, and
provide a rich, multi–dimensional view of the environment
being monitored. Krishnamachari et al [11] argue that this
paradigm shifts the focus from address–centric approaches
(finding routes between pairs of end nodes) to a more data–
centric approach (finding routes from multiple sources to
a destination that allows in–network consolidation of data).
Madden et al [16] describe the TinyOS operating system that
can be used by an ad-hoc network of sensors to locate each
other and route data. The authors discuss the implementation
of five basic database aggregates, i.e. COUNT, MIN, MAX,
SUM, and AVERAGE, based on the TinyOS platform and
demonstrate that such a generic approach for aggregation
leads to significant power (energy) savings. The focus of the
work in [16] is on a class of aggregation predicates that
is particularly well suited to the in-network regime. Such
aggregates can be expressed as an aggregate function f over
the sets a and b, such that f(a ∪ b) = g(f(a), f(b)). Other
previous works ([8], [7], [13], [14]) in the related area aim
at reducing the energy expended by the sensors during the
process of data gathering. Directed diffusion [8] is based on a
network of nodes that can co–ordinate to perform distributed
sensing of an environmental phenomenon. Such an approach
achieves significant energy savings when intermediate nodes
aggregate responses to queries. The SPIN protocol [7] uses
meta–data negotiations between sensors to eliminate redundant
data transmissions through the network. In PEGASIS [13],
sensors form chains so that each node transmits and receives
from a nearby neighbor. Gathered data moves from node to



node, gets aggregated and is eventually transmitted to the
base station. Nodes take turns to transmit so that the average
energy spent by each node gets reduced. Lindsey et al [14]
describe a hierarchical scheme based on PEGASIS that reduces
the average energy consumed and delay incurred in gathering
the sensed data.

In a recent paper [10], we proposed a polynomial–time
near–optimal Maximum Lifetime Data Aggregation (MLDA)
algorithm for data gathering in sensor networks. The proposed
method, while performing significantly better than existing
protocols in terms of system lifetime, is computationally
expensive for large sensor networks. In this paper, we present
a simple and efficient clustering–based heuristic for maximum
lifetime data aggregation (CMLDA) in large–scale sensor net-
works. Further, we provide experimental results to show that
(i) for smaller sensor networks the CMLDA heuristic achieves
system lifetimes that are within 10% of the optimal and 1.6 to
4.5 times better when compared to an existing data gathering
protocol, (ii) for larger networks, the CMLDA heuristic can
achieve as much as a factor of 5.8 increase in system lifetime
when compared to the same protocol.

The rest of the paper is organized as follows. We formulate
the data gathering problem in section II and briefly describe
the MLDA algorithm to solve the maximum lifetime data
aggregation problem in section III. Next, in section IV, we
propose a clustering–based heuristic to efficiently for large
sensor networks. In section V, we present experimental results
based on our algorithms. Finally, in section VI we conclude
the paper.

II. THE DATA GATHERING PROBLEM

A. System Model

Consider a network of n sensor nodes 1, 2, . . . , n and a
base station node t labeled n + 1 distributed over a region.
The locations of the sensors and the base station are fixed and
known apriori. Each sensor produces some information as it
monitors its vicinity. We assume that each sensor generates one
data packet per time unit to be transmitted to the base station.
For simplicity, we refer to each time unit as a round. We
assume that all data packets have size k bits. The information
from all the sensors needs to be gathered at each round and
sent to the base station for processing. We assume that each
sensor has the ability to transmit its packet to any other sensor
in the network or directly to the base station. Further, each
sensor i has a battery with finite, non-replenishable energy
Ei. Whenever a sensor transmits or receives a data packet, it
consumes some energy from its battery. The base station has
an unlimited amount of energy available to it.

Our energy model for the sensors is based on the first order
radio model described in [6]. A sensor consumes εelec =
50nJ/bit to run the transmitter or receiver circuitry and
εamp = 100pJ/bit/m2 for the transmitter amplifier. Thus,
the energy consumed by a sensor i in receiving a k-bit data
packet is given by,

RXi = εelec · k (1)

while the energy consumed in transmitting a data packet to
sensor j is given by,

T Xi,j = εelec · k + εamp · d
2
i,j · k (2)

where di,j is the distance between nodes i and j.

B. Problem Statement

We define the lifetime T of the system to be the number
of rounds until the first sensor is drained of its energy. A
data gathering schedule specifies, for each round, how the
data packets from all the sensors are collected and transmitted
to the base station. For brevity, we refer to a data gathering
schedule simply as a schedule. Observe that a schedule can
be thought of as a collection of T directed trees, each rooted
at the base station and spanning all the sensors i.e. a schedule
has one tree for each round. The lifetime of a schedule equals
the lifetime of the system under that schedule. Clearly, the
system lifetime is intrinsically connected to the data gathering
schedule. Our objective is to find a schedule that maximizes
the system lifetime T .

III. MLDA : MAXIMUM LIFETIME DATA GATHERING

WITH AGGREGATION

Data aggregation performs in-network fusion of data pack-
ets, coming from different sensors enroute to the base station,
in an attempt to minimize the number and size of data
transmissions and thus save sensor energies [8], [6], [11],
[13]. Such aggregation can be performed when the data from
different sensors are highly correlated. As in previous work
[8], [6], [11], [13], we make the simplistic assumption that an
intermediate sensor can aggregate multiple incoming packets
into a single outgoing packet.
Maximum Lifetime Data Aggregation (MLDA) problem:
Given a collection of sensors and a base station, together with
their locations and the energy of each sensor, find a data
gathering schedule with maximum lifetime, where sensors are
permitted to aggregate incoming data packets.
We proposed a polynomial–time algorithm to solve the MLDA

problem in [10]. For the sake of completeness, we next provide
a brief description of our algorithm.

Consider a schedule S with lifetime T rounds. Let fi,j be
the total number of packets that node i (a sensor) transmits to
node j (a sensor or base station) in S. Since any valid schedule
must respect the energy constraints at each sensor, it follows
that for each sensor i = 1, 2, . . . , n,

n+1∑

j=1

fi,j · T Xi,j +

n∑

j=1

fj,i · RXi ≤ Ei. (3)

Recall that each sensor, for each one of the T rounds, generates
one data packet that needs to be collected, possibly aggregated,
and eventually transmitted to the base station.
The schedule S induces a flow network G = (V, E). The flow
network G is a directed graph having as nodes all the sensors
and the base station, and having edges (i, j) with capacity fi,j

whenever fi,j > 0.



Objective :
maximize T (4)

Constraints :∑n+1
j=1 fi,j · T Xi,j +

∑n

j=1 fj,i · RXi ≤ Ei.(5)
∑n

j=1 π
(k)
j,i =

∑n+1
j=1 π

(k)
i,j , ∀i = 1, 2, . . . , n and i 6= k(6)

T +
∑n

j=1 π
(k)
j,k =

∑n+1
j=1 π

(k)
k,j (7)

0 ≤ π
(k)
i,j ≤ fi,j , ∀i = 1, 2, . . . , n and ∀j = 1, 2, . . . , n + 1(8)

∑n

i=1 π
(k)
i,n+1 = T (9)

where k = 1, 2, . . . , n and all variables T , fi,j , and π
(k)
i,j are required to be non-negative integers.

TABLE I

INTEGER PROGRAM FOR FINDING AN OPTIMAL ADMISSIBLE FLOW NETWORK FOR THE MLDA PROBLEM.

Theorem 1: Let S be a schedule with lifetime T , and let G
be the flow network induced by S. Then, for each sensor s,
the maximum flow from s to the base station t in G is ≥ T .

Proof: Each data packet transmitted from a sensor must
reach the base station. Observe that, the packets from s could
possibly be aggregated with one or more packets from other
sensors in the network. Intuitively, we need to guarantee that
each of the T values from s influences the final value(s)
received at the base station. In terms of network flows, this
implies that sensor s must have a maximum s− t flow of size
≥ T to the base station in the flow network G.

Thus, a necessary condition for a schedule to have lifetime
T is that each node in the induced flow network can push
flow T to the base station t. Stated otherwise, each sensor
s must have a minimum s − t cut of capacity (size) ≥ T
to the base station [4]. Next, we consider the problem of
finding a flow network G with maximum T , that allows each
sensor to push flow T to the base station, while respecting
the energy constraints in (5) at all the sensors. We call such a
flow network G an admissible flow network with lifetime T .
An admissible flow network with maximum lifetime is called
an optimal admissible flow network. Clearly, what needs to be
found are the capacities of the edges in G.

A. Finding a near–optimal admissible flow network

An optimal admissible flow network can be found using an
integer program with linear constraints. The integer program,
in addition to the variables for the lifetime T and the edge
capacities fi,j , uses the following variables: for each sensor
k = 1, 2, . . . , n, let π

(k)
i,j be a flow variable indicating the flow

that k sends to the base station t over the edge (i, j).
The integer program computes the maximum system life-

time T subject to the energy constraint (5) and the additional
linear constraints (6)–(9) for each sensor, as shown in Table I.
For each sensor k = 1, 2, . . . , n, constraints (6) and (7) enforce
the flow conservation principle at the sensor; constraint (9)
ensures that T flow from sensor k reaches the base station; and
constraint (8) ensures that the capacity constraints on the edges
of the flow network are respected. Moreover, constraint (5) is
used to guarantee that the edge capacities of the flow network
respect the sensor’s available energy. Finally, for the integer

program, all variables are required to take non–negative integer
values. The linear relaxation of the above integer program, i.e.
when all the variables are allowed to take fractional values,
can be computed in polynomial–time. Then, we can obtain
a very good approximation for the optimal admissible flow
network by first fixing the edge capacities to the floor of their
values obtained from the linear relaxation so that the energy
constrains are all satisfied; and then solving the linear program
(4) subject to constraints (6)–(9) without requiring anymore
that the flows are integers (since a solution with integer flows
can always be found). 2

B. Constructing a schedule from an admissible flow network

Next, we discuss how to get a schedule from an admissible
flow network. Recall that a schedule is a collection of directed
trees rooted at the base station that span all the sensors, with
one such tree for each round. Each such tree specifies how
data packets are gathered and transmitted to the base station.
We call these trees aggregation trees. An aggregation tree may
be used for one or more rounds; we indicate the number of
rounds f , that an aggregation tree is used, by associating the
value f with each one of its edges; we call f to be the lifetime
of the aggregation tree.

Figure 1 provides an example of an admissible flow network
G with lifetime T = 100 and two aggregation trees A1 and
A2, with lifetimes 60 and 40 respectively. By looking at one
of these trees, say A1, we see that for each one of 60 rounds,
sensors 2 and 3 transmit one data packet to sensor 1, which in
turn aggregates the incoming packets with its own data packet,
and then sends one data packet to the base station. Similarly,
for each of the remaining 40 rounds (using A2), sensors 1 and
2 transmit one data packet to sensor 3, which in aggregates
the incoming packets with its own packet, and sends one data
packet to the base station. We next describe an algorithm to
construct aggregation trees from an admissible flow network
G with lifetime T .
Definition 1 : Given an admissible flow network G with
lifetime T and a directed tree A rooted at the base station
t with lifetime f , we define the (A, f)–reduction G′ of G to

2The reduction in the system lifetime achieved, w.r.t the fractional optimal
lifetime, is at most the maximum cardinality of any min s–t cut.
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Fig. 1. An admissible flow network G with lifetime 100 rounds, and two aggregation trees A1 and A2 with lifetimes 60 and 40 rounds respectively.

be the flow network that results from G after reducing by f ,
the capacities of all of its edges that are also in A. We call
G′ the (A, f)–reduced G.
Definition 2 : An (A, f)–reduction G′ of G is feasible if the
maximum flow from v to the base station t in G′ is ≥ T − f
for each vertex v in G′.

Note that A does not have to span all the vertices of G, and
thus it is not necessarily an aggregation tree. Moreover, if A
is an aggregation tree, with lifetime f , for an admissible flow
network G with lifetime T , and the (A, f)–reduction of G is
feasible, then the (A, f)–reduced flow network G′ of G is an
admissible flow network with lifetime T − f . Therefore, we
can devise a simple iterative procedure, to construct a schedule
for an admissible flow network G with lifetime T , provided
we can find such an aggregation tree A.

We use the GETTREE algorithm in Figure 2 to get an
aggregation tree A with lifetime f ≤ T from an admissible
flow network G with lifetime T . Throughout this algorithm,
we maintain the invariant that A is a tree rooted at t and the
(A, f)–reduction of G is feasible. Tree A is formed as follows.
Initially A contains just the base station. While A does not
span all the sensors, we find and add to A an edge e = (i, j),
where i 6∈ A and j ∈ A, provided that the (A′, f)–reduction
of G is feasible–here A′ is the tree A together with the edge e
and f is the minimum of the capacities of the edges in A′. The
running time of this algorithm is polynomial in the number of
sensors. Finally, we can compute a collection of aggregation
trees from an admissible flow network G with lifetime T by
repeatedly invoking the GETTREE algorithm, until all T data
packets from each of the sensors have been aggregated and
transmitted to the base station t. Given a flow network G and
base station t such that each sensor s has a minimum s− t cut
of size ≥ T (i.e. the maximum flow from s to t in G is ≥ T ),
we can prove that it is always possible to find a collection of
aggregation trees, via the GETTREE algorithm, which can be
used to aggregate T data packets from each of the sensors.
The proof of correctness is based on a powerful theorem in
graph theory (Edmonds[5], Lovász[15]) and is omitted due
to lack of space. We refer to the algorithm described in this
section, for finding a maximum lifetime schedule with data
aggregation, as the MLDA algorithm.

IV. CMLDA : CLUSTERING–BASED MLDA HEURISTIC

Given the location of n sensors and a base station t, we
can find a (near–optimal) maximum lifetime data gathering

schedule using the MLDA algorithm. However, it involves
solving a linear program (in Table I) with O(n3) variables and
constraints. For large sensor networks, i.e. for large values of
n, this can be computationally expensive3. In order to solve
the data gathering problem efficiently for large networks, we
next describe a heuristic based on the MLDA algorithm.

Consider the set of n sensors 1, 2, . . . , n and a base station
t labeled as n + 1. Let the sensors be partitioned into m
clusters φ1, . . . , φm each consisting of at most c sensors, i.e.
|φi| ≤ c, for i = 1, 2, . . . , m and an appropriate constant c.
We refer to each cluster as a super–sensor. Such a partitioning
of the sensors can be achieved using a proximity–based
clustering algorithm. Our approach is to compute a maximum
lifetime schedule for the super–sensors φ1, . . . , φm with the
base station φm+1, and then use this schedule to construct
aggregation trees for the sensors. Figure 5 gives a high level
view of the cluster–based MLDA (CMLDA) heuristic. In the
first phase, we assign the initial energy of each super–sensor
φi (i = 1, 2, . . . , m) to be the sum of the initial energies
of the sensors within it, i.e. Eφi

= E · |φi|. The distance
between two super–sensors φi and φj is assigned to be the
maximum distance between any two nodes (sensor or base
station) u and v, such that u ∈ φi and v ∈ φj . Having set
up the initial energies and the distances between the super–
sensors, we can find a maximum lifetime schedule for the
super–sensors φ1, . . . , φm with the base station as φm+1, using
the MLDA algorithm. Recall that such a schedule consists of
a collection of directed trees T1, . . . , Tk, each rooted at φm+1

and spanning over all the super–sensors. To distinguish it from
an aggregation tree for the sensors, we refer to each such tree
as an aggregation super–tree (or simply an AS–tree). Next,
we use the BUILD–TREE procedure (in figure 4) to construct
an aggregation tree A for the sensors from an AS–tree Tk.
Observe that A is a directed tree rooted at t that is used to
aggregate one data packet from each sensor. We denote E r[i] to
be the residual energy at sensor i. Initially, Er[i] = E for each
sensor i in the network. Our objective is to construct (one or
more) aggregation trees such that the minimum residual energy
among the n sensors is maximized, thereby maximizing the
lifetime of the corresponding data gathering schedule.

Initially, aggregation tree A contains only the base station
t. We perform a (pre–order) traversal of the AS–tree Tk. For
each visited super–sensor φ, we add the sensors in φ to the

3For example, it takes approximately 60 seconds to solve a problem instance
with 20 sensors and up to 5 hours for 100 sensors.



GETTREE (Flow Network G, Lifetime T , Base Station t)
1 initialize f ← 1
2 let A = (Vo, Eo) where Vo = {t} and Eo = ∅
3 while A does not span all the nodes of G do
4 for each edge e = (i, j) ∈ G such that i 6∈ Vo and j ∈ Vo do
5 let A′ be A together with the edge e
6 // check if the (A′, 1)–reduction of G is feasible
7 let Gr be the (A′, 1)–reduction of G
8 if MAXFLOW(v, t, Gr) ≥ T − 1 for all nodes v of G
9 // replace A with A′

10 Vo ← Vo ∪ {i}, Eo ← Eo ∪ {e}
11 break
12 let cmin be the minimum capacity of the edges in A
13 let Gr be the (A, cmin)–reduction of G
14 if MAXFLOW(v, t, Gr) ≥ T − cmin for all nodes v of G
15 f ← cmin

16 replace G with the (A, f)–reduction of G
17 return f , G, A

Fig. 2. Constructing aggregation tree A with lifetime f from an admissible flow network G with lifetime T .
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Fig. 3. Illustration of the BUILD–TREE procedure for an AS–tree Tk. Sensors 1, 2, . . . , 9 are partitioned among super–sensors Q1, Q2, and Q3. Super–sensor
Q4 contains the base station 10. The aggregation tree A is used for collecting one data packet from each sensor and transmitting to the base station.

current aggregation tree A. Let φ−A denote the set of sensors
in φ that are not included in A. We define the residual energy
of a pair (i, j) as min{Er[i] − T Xi,j, Er[j] − RXj}, where
i ∈ φ − A and j ∈ A. Intuitively, on adding a directed edge
(i, j) to A, the residual energy at sensor i is reduced by the
energy consumed in transmitting a data packet from i to j.
Moreover, if j is not the base station, its residual energy is
reduced by the energy consumed in receiving a data packet.
Among all pairs (i, j), such that i ∈ φ − A and j ∈ A,
the BUILD–TREE procedure chooses one with the maximum
residual energy and includes the edge (i, j) in A. The process
is repeated until all sensors in φ are included in A, upon
which it continues with the next super–sensor in Tk. Figure
4 gives an illustration of the BUILD-TREE procedure. The

running time of the procedure is O(n3), where n is the number
of sensors in the network. Finally, observe that a maximum
lifetime schedule for the super–sensors could possibly consist
of one or more AS-trees. In this case, we choose (in step 9 of
figure 5) the AS–trees in decreasing order of their respective
lifetimes; while constructing no more than fk aggregation trees
from a particular AS-tree Tk , where fk is the lifetime of Tk.

V. EXPERIMENTS

In this section, we compare the data gathering schedule
given by the CMLDA heuristic with that obtained from a
chain-based 3–level hierarchical protocol proposed by Lindsey,
Raghavendra and Sivalingam [14]. For brevity, we refer to this
protocol as the LRS protocol. We choose this protocol since



BUILD–TREE(AS–Tree Tk, Super–Sensor φ, Aggregation Tree A, Base Station t)
1 while A does not contain all the sensors in φ do
2 find a pair (i, j), where i ∈ φ−A and j ∈ A, with maximum residual energy
3 add the edge (i, j) to A
4 update the residual energy of sensor i as Er[i]← Er[i] − T Xi,j

5 if j 6= t then update the residual energy of j as Er[j]← Er[j] −RXj

6 foreach child φ′ of φ in Tk do
7 A← BUILD–TREE(Tk, φ

′, A, t)
8 return A

Fig. 4. Constructing an aggregation tree A for the sensors from an AS–tree T .

INPUT:
Location of n sensors 1, 2, . . . , n and a base station t.
Initial energy E in each sensor.

OUTPUT:
A data gathering schedule S , i.e. a collection of aggregation trees, with lifetime T .

ALGORITHM:
PHASE I:

1. partition the sensors into m super–sensors φ1, . . . , φm

2. let super–sensor φm+1 consist only of the base station t
3. let the energy of each super–sensor φi, i = 1, 2, . . . , m, be Eφi

← E · |φi|
4. let the distance between any two super–sensors φi and φj be

dφi,φj
← max{du,v : u ∈ φi, v ∈ φj}

5. find an admissible flow network G for the super–sensors φ1, . . . , φm with
base station φm+1, and compute a schedule T ← {Ti, . . . , Tk} from G

PHASE II:
6. initialize the schedule S ← ∅ and lifetime T ← 0
7. let the residual energy of each sensor i = 1, 2, . . . , n be Er[i] = E
8. while min{Er[i] : i = 1, 2, . . . , n} > 0 do
9. choose an AS–tree Tk from T

10. initialize A to contain only the base station t
11. compute an aggregation tree A← BUILD–TREE(Tk, φm+1, A, t)
12. update the schedule S ← S ∪A and lifetime T ← T + 1

Fig. 5. A high level description of the CMLDA heuristic.

it significantly outperforms other competitive protocols (e.g.
LEACH [6]) in terms of system lifetime.

LRS protocol for constructing a data gathering schedule:
In this protocol, sensor nodes are initially grouped into clusters
based on their distances from the base station. A chain is
formed among the sensor nodes in a cluster at the lowest level
of the hierarchy. Gathered data, moves from node to node,
gets aggregated, and reaches a designated leader in the chain
i.e. the cluster head. At the next level of the hierarchy, the
leaders from the previous level are clustered into one or more
chains, and the data is collected and aggregated in each chain
in a similar manner. Thus, for gathering data in each round,
each sensor transmits to a close neighbor in a given level of
the hierarchy. This occurs at every level, the only difference
being that nodes that are receiving at each level are the only
nodes that rise to the next level in the hierarchy. Finally at the
top level, there is a single leader node transmitting to the base
station. To increase the lifetime of the system, the leader in
each chain is chosen in a round-robin manner in each round.

Observe that, the protocol naturally defines aggregation tree(s)
for each round of data gathering.

For the initial set of experimental results, we consider a
network of sensors randomly distributed in a 50m × 50m field.
The number of sensors in the network, i.e. the network size n,
is varied to be 40, 50, 60, 80 and 100 respectively. Each sensor
has an initial energy of 1J and the base station is located at
(25m, 150m). Each sensor generates packets of size 1000 bits.
The energy model for the sensors is based on the first order
radio model described in section II.

Each experiment corresponds to a random placement of the
sensors, for a particular network size. In each experiment, we
measure the lifetime T , i.e. the number of rounds before the
first sensor is drained of its energy, for the data gathering
schedule given by the LRS protocol. For the same placement
of sensors, we measure the lifetime of the data gathering
schedules obtained from MLDA and CMLDA. We define the
performance ratio R as the ratio of the system lifetime
achieved using CMLDA to the lifetime given by the LRS



protocol. Recall that, the (integral) solution given by MLDA is
an approximation of the optimal fractional solution. We denote
OPT to be the optimal system lifetime for any particular
experiment.

For a data gathering schedule S, we define the depth of a
sensor v to be its average number of hops from the base station
in the schedule, i.e. the average of its depths in each of the
aggregation trees in S. The depth of the schedule is defined
as max{depth(i)}, among all sensors i in the network. We
measure the depth D of a schedule constructed using each of
the MLDA, CMLDA and LRS algorithms. Note that, the depth of
a data gathering schedule is an interesting metric since it gives
an estimate of the (maximum) average delay that is incurred
in sending data packets from any sensor to the base station.

Finally, for the CMLDA heuristic, we denote c to be the
number of sensors in a cluster (super–sensor). Given the
location of the sensors and the base station, we employ a
greedy clustering algorithm similar to the the chain–forming
algorithm used by the LRS protocol [14] – pick a sensor i
farthest from the base station and form a cluster that includes
i and its c−1 nearest neighbors; continue the process with the
remaining sensors until all sensors have been included in some
cluster. For a particular network size, we assign the size of a
cluster in CMLDA to be identical to the size of a chain in the
LRS protocol. By clustering the sensors in the above manner,
we can efficiently compute a maximum lifetime schedule for
the super–sensors (via the MLDA algorithm) even for large
problem instances. Observe that, the MLDA algorithm and
the CMLDA heuristic presented in this paper are essentially
centralized in nature. This implies that the clustering of the
sensors need to be pre–computed at the base station. Similarly,
an appropriate data gathering schedule is pre–computed at the
base station (which is less likely to be resource–constrained)
and transmitted to the individual sensors. We take advantage
of the fact that the base–station is aware of the locations of the
sensors and have sufficient processing capabilities to compute
efficient data–gathering schedule(s) for the sensors.

Table II summarizes our main results. Note that the pre-
sented values for lifetime and depth are averaged across 20
different experiments for each network size. Further, the MIN

and MAX columns for R indicate the minimum and maximum
performance ratios observed from those experiments. We make
the following key observations:

• the lifetime of a schedule obtained using the MLDA

algorithm is always within 1% of the optimal fractional
solution.

• the lifetime of a schedule given by the CMLDA heuristic
is always within 10% of the optimal fractional solution.

• the CMLDA heuristic significantly outperforms the LRS

protocol in terms of system lifetime. In particular, the
CMLDA heuristic performs 1.6 to 4.5 times better than
LRS.

• the average depth of a data gathering schedule attained
by the CMLDA heuristic is slightly higher than that of
the LRS protocol. Note that the 3 level protocol in LRS

is specifically devised to reduce the average depth of
each sensor [14]. To this end, the CMLDA heuristic does
quite well in attaining comparable sensor depths, while

delivering significant improvements in system lifetime.
For our next set of experiments, we consider larger networks

of sensors randomly distributed in a 100m × 100m field. The
number of sensors in the network, i.e. the network size n, is
varied to be 100, 200, 300 and 400 respectively. Each sensor
has an initial energy of 1J and the base station is located at
(50m, 300m). Once again, the presented values for lifetime and
depth are averaged across 20 different experiments for each
network size. Due to the high complexity of the algorithm, we
do not include any results regarding the performance of MLDA

for the large–scale networks. The clustering in CMLDA (chain
formation in LRS) is done in the manner described above. We
summarize our results in Table III.

We make the following observations:
• the CMLDA heuristic significantly outperforms the LRS

protocol in terms of system lifetime. In particular, the
CMLDA heuristic delivers system lifetimes that are 2.1 to
5.8 times larger than LRS.

• the average depth of a data gathering schedule attained
by the CMLDA heuristic is only slightly higher than that
of the LRS protocol.

In conclusion, our experimental results demonstrate that the
CMLDA heuristic can achieve as much as a factor of 5.8 in-
crease in system lifetime when compared to the LRS protocol,
while incurring a small increase in the delay experienced by
individual sensors.

INPUT CMLDA LRS R

n c T D T D MIN MAX

100 10 2811 7.5 1228 6.9 2.1 3.9
200 10 4012 10.6 1412 9.6 2.4 4.2
300 15 6560 13.2 1356 12.1 3.0 4.9
400 20 9012 20.6 1621 19.6 3.6 5.8

TABLE III

EXPERIMENTAL RESULTS FOR A 100M × 100M SENSOR NETWORK.

VI. CONCLUSIONS

In this paper, we proposed a polynomial–time near–optimal
algorithm (MLDA) for solving the maximum lifetime data
gathering problem for sensor networks, when the sensors are
allowed to perform in–network aggregation of data pack-
ets. Given the complexity of the MLDA algorithm, we next
described efficient clustering–based heuristics to solve the
maximum lifetime data aggregation problem in large sensor
networks. Further, we presented experimental results demon-
strating that the proposed methods attain significant improve-
ments in system lifetime, when compared to existing protocols.

There are a number of important issues related to the
maximum lifetime data gathering problem that need to be
investigated in the future. In the work presented in this paper,
we make the simplistic assumption that a sensor can always
aggregate its own data packets with those of any other sensor
in the network. As part of our current research, we are
exploring a more complex scenario where a sensor is permitted
to aggregate its own packets with only certain sensors, while
acting as a router for other incoming packets. In the future,
we plan to investigate modifications to the MLDA algorithm



INPUT MLDA CMLDA LRS R

n c OPT T T D T D MIN MAX

40 5 6611.8 6610 6442 4.5 5592 4.4 1.10 1.52
50 5 6809.0 6808 6747 5.9 5466 5.1 1.20 1.60
60 5 7176.2 7174 7096 6.0 5872 5.2 1.15 2.05
80 10 7946.9 7945 7809 6.6 6008 6.1 1.21 2.24

100 10 8292.6 8290 8011 7.2 5526 6.6 1.38 2.64

TABLE II

EXPERIMENTAL RESULTS FOR A 50M × 50M SENSOR NETWORK.

that would allow sensors to be added to (removed from) the
network, without having to re–compute the entire schedule.
Further, we plan to study the data gathering problem with
depth (delay) constraints for individual sensors, in order to
attain desired tradeoffs between the delay experienced by the
sensors and the lifetime achieved by the system.
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