Adaptive Resource Management for
Scalable Network-Attached Storage Systems

Konstantinos K alpakis!, Koustuv Dasgupta, and Shamit Patel
Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County
Baltimore, MD 21250, USA
{ kal pakis,dasgupta,spatel 22} @csee.umbc.edu

Keywords: resource management, replication, hashing,
load balancing, Network—Attached Storage

ABSTRACT

The growth in the commercial use of the Internet and
the proliferation of data-intensive network services, have
heightened the demand for large—scale storage systems.
Over the last few years, Network—Attached Storage has
emerged as a basic tenet for simplified storage manage-
ment and improved scalability, reliability and performance
of storage systems.

We propose a novel technique for efficient resource man-
agement in such systems, with the objective of minimiz-
ing response time while maximizing throughput. The two
salient features of our approach are: (a) intelligent replica-
tion of data objects across multiple disks based on client
access patterns, and (b) load balancing among the disks us-
ing hashing. Our approach is easy to implement in a de-
centralized manner. Further, we present simulation results
of the proposed scheme using synthetic workloads. Our ap-
proach is shown to significantly outperform various alter-
natives with respect to response time and throughput as the
load on the system increases, while creating only few repli-
cas. The resulting system is scalable and self—configurable,
and adapts to changes in the operating environment quickly.

INTRODUCTION

The rapid growth of the World Wide Web and the pro-
liferation of data-intensive network services have led to to-
day’s digital tsunami. Data sets stored online are growing
at a phenomenal rate, often reaching several terabytes and
doubling every year [3]. Popular examples include Inter-
net data centers, repositories of satellite and medical im-
ages, e-commerce companies and multimedia entertainment
content. Unfortunately, such applications impose stringent

1Supported in part by NSF under grant IRI-9729495, and by NASA
under Cooperative Agreement NCC5-315 and Contract NAS5-32337.

requirements that are difficult to meet using current stor-
age systems. They require high availability, performance
that enables servicing millions of clients with low latencies,
scalability that matches the growth of the user base and the
data they need to access, and minimal maintenance and ad-
ministration costs. Consequently, a number of recent re-
search efforts have been directed towards the investigation
of techniques for building scalable storage systems.

Commercial systems interconnect storage devices and
servers with dedicated Storage Area Networks (like Fibre
Channel), and enable incremental scaling of bandwidth and
capacity by adding more storage to the network. Advances
in LAN performance have created an opportunity to take a
similar approach using a general-purpose LAN as the stor-
age backbone. Such systems are built from disks that are
distributed throughout the network and attached to dedi-
cated servers, cooperating peers, or the network itself. As
pointed out in [4], they can be classified into two broad
groups. One group of scalable storage systems, e.g. Frangi-
pani/Petal [11], layers the file system functions above a
self-manageable network storage volume using a shared
disk model. Policies for data striping, redundancy, and stor-
age site selection are done on a volume basis; cluster nodes
coordinate their access to the shared storage blocks using
a locking protocol. The second group, widely known as
Network—Attached Storage system, is composed of intelli-
gent *plug and play’ [6] disks that connect directly to the
LAN. Specifically, the CMU system [9] adopts the sepa-
ration of file managers, e.g. the name service, from block
storage services to enable direct high—speed data transfer
between end clients and Network—Attached Disks (NADs
or simply disks). In related work, Seagate [2] argues for the
value of and requirements for Object Oriented Devices in
support of Network—Attached Storage.

The importance of large scale storage system perfor-
mance has further led to a plethora of manual and ad-hoc
techniques to ensure high availability and balanced load. In

demanding environments, adding more storage to the net-
work simply seems to be a temporary solution. An ideal
storage system should be driven by automated techniques
that aim to meet demand surges by efficient resource man-
agement, in terms of storage and processing capacity of
the disks. Specifically, we claim that the performance of
Network—Attached Storage systems depends critically on
(a) intelligent replication of data objects across multiple
disks, and (b) assignment of data objects to disks in or-
der to balance the load across them (or optimize a more
complex objective function). Moreover, any such assign-
ment is likely to change over time when either the work-
loads, i.e. client access patterns change, or when new disks
are added/removed from the system, or when existing disks
fail/recover.

In this paper, we first present novel algorithms to calcu-
late the number of replicas for each data object, so as to
minimize the average load on the existing disks. Replica-
tion decisions are based on the popularities of individual
objects, and designed to satisfy the total demand for all the
objects within the storage capacity constraint of the system.
Second, we employ hashing to place the replicas at different
disks and distribute the requests among the replicas, so as
to achieve judicious load balancing among the disks. Our
algorithms are lightweight, distributed, and dynamic in na-
ture. We further demonstrate how the proposed scheme can
adapt to changes in the operating environment (like addition
or removal of disks) with minimal overhead.

The rest of the paper is organized as follows. We first
give a brief overview of the system model and provide a
formulation of the problem as a constrained optimization
problem, along with detailed descriptions of our proposed
algorithms. Next, we present a comparative analysis of the
performance of the algorithms in a simulated Network-
Attached Storage system. Finally, we conclude the paper.

SYSTEM DESIGN

We model the Network—Attached Storage system as hav-
ing four fundamental components, namely (a) the network,
(b) the client, (c) the network-attached disks , and (d) an
object—oriented file system [2]. The network is a high-
speed any-to-any interconnect for client to disk or disk to
disk. Each disk has a processing capability which can be
exploited for uses other than data transfer [9]. Disks store
the data in form of objects and associated attributes. An
object—oriented file system allows operations on objects and
their attributes. The client has a unified view of the entire
file system and issues requests to the disks. We assume that
the following operations can occur in the system : create,
delete, get attributes, set attributes, read and write of an
object, as well as create and delete a replica of an object.
For read(get)/write(set) operations on objects we assume
that the read one—write all (operational) replicas strategy is

used. We next show how the system calculates the number
of replicas, decides on their placement, distributes the re-
quests among replicas, and adapts to changes in the number
of disks.

Replica Calculation

We are given n objects z1,z2,...,z,. Each object z;
has a size s;. Let the number of requests for z; be given by
A, and let k; be the total number of copies (replicas) for z;.
Let S = >, s; be the total size of all the objects. Sup-
pose that we are given m disks Dy, D, ..., D,, 1, with
each NAD having total size A and having R space avail-
able for replication. Furthermore, we associate a weight
w; with each request for object x;. The weights of the re-
quests can be chosen in a number of ways. We consider
three cases of weights for the requests: (a) the uniformly—
weighted case, where w; = 1 for each object z;, (b) the
size-weighted case, where w; = s; for each object x;, and
(c) the work—weighted case, where w; = 1 + as; for each
object z;, and « is some constant. The constant « can be
chosen to be equal to the ratio of the time to transfer 1 unit
(eg. KB) from/to a disk over the seek time.

We want to find the number of replicas for each ob-
ject so that the weighted average of the number of requests
each replica services is minimized. With an appropriate
placement of those replicas among the various disks, the
weighted average of the number of requests each disk ser-
vices will also be minimized. We can see that, (a) in the
uniformly-weighted case, the average number of requests
serviced by a disk is minimized, (b) in the size-weighted
case, the average amount of data transfered by a disk is min-
imized, and (c) in work—weighted case, the average amount
of work done by a disk is minimized. Note that (a) is appro-
priate when the seek time dominates the transfer time for all
the objects, (b) is appropriate when the seek time is negligi-
ble with respect to the transfer times, and (c) is appropriate
in the other cases.

Next, we describe algorithms for minimizing the average
weighted number of requests a disk services, which is given

by

n
Aiw;

. ®

1

mis
The total number of replicas k; each object z; has should be
at least one, since otherwise an object is lost from the sys-
tem, and should be no more than the number of disks, since
it is not beneficial for any single disk to have more than one
copy of any particular object. Thus, the total number of

replicas for each object z; should satisfy the constraint
1<k; <m. (2)

Moreover, the space needed to store all the replicas of all the
objects should be no more than the total space necessary for
a single copy of all the objects plus the total space available

for replication among all the disks

Zkisi <S+mR, (3)

i=1

where we assume, without loss of generality, that S +
mR < mA. Clearly, the problem then is to find integers
ki, i = 1,2,...,n, that minimize (1) subject to the con-
straints (2) and (3). We call this problem the Minimum Disk
Load Replication (MDLR) problem. It can be shown that
the MDLR problem is NP—complete (by showing that the
Knapsack problem, which is known to be NP—complete, is
a restriction of the MDLR problem; details omitted due to
space constraints).

Since the MDLR problem is NP—complete, we are inter-
ested in finding approximate solutions close to the optimal
of the MDLR. To this end, we consider the continuous re-
laxation of the MDLR problem, i.e. when the k; can take
continuous (real) values; we call this problem the c-MDLR
problem. Given an optimal or approximate solution to the
c-MDLR problem, we can construct a good approximate
solution to the MDLR problem.

The c—-MDLR problem is a convex optimization prob-
lem, since it has a convex objective function and concave
constraints. It is known that all local optima of a convex op-
timization problem are also global optima [8]. An (optimal)
solution for the c-MDLR problem can be obtained using
the active set method [8]. Finding the global minimum of
c-MDLR using the active set method is computationally ex-
pensive, and it is not easily done in a decentralized manner.

Thus, we consider the relaxation of the c-MDLR prob-
lem obtained by removing the constraint (2) (and, without
loss of generality, tightening (3)), i.e. minimize

- Z S (4)
miz ki

subject to the constraints l%i > (0 and
> kisi=S+mR. (5)
i=1

The global minimum of the relaxed c-MDLR can be easily
obtained using the Lagrange multipliers method [8], and is
given by

]Aﬂ' _ S + mR vV /\is,-w,-
' DY RVAVENT
We truncate the values for &; obtained by (6) so that they

are all in the range [1,m], and we call this solution the La-
grange approximate solution of the c-MDLR problem.

(6)

We also consider another approximation to the optimal
of c-MDLR, which we call the naive approximate solution
of the c-MDLR, which is given by

k; = min { max n)\iwi S+ mR’ 15,m (7
Y1 AW Si

fori = 1,2,...,n. The naive approximate solution of the
c-MDLR problem is clearly very simple to compute.

An optimal or approximate solution k; of the c-MDLR
problem needs to be converted into an integer solution that
satisfies the two constraints of the MDLR problem, and at
the same time provides a good approximation for MDLR.
To this end, we use the PACKING routine in Figure 1. The
PACKING routine works as follows. First it ensures that each
object has at least one replica. Second, for all the objects in
decreasing order of their k;, it assigns as many replicas to
each object (but no more than m) as long as there is avail-
able space for replication.

PACKING (List of Objectsz, Available Space A)
1 round &; to an integer with value 1 < &; < m
2 sort z; based on k;

3 foreach object z; do

4 while((A > s;) and (k; < m)) do

5 increment &;

6 A—=s;

7 foreach object z; do, k; =]A%

Figure 1. Packing empty space by increasing number
of replicas.

It is quite straightforward to implement the naive and La-
grange approximation algorithms for the MDLR problem
in a decentralized manner (details provided in the next sec-
tion). We compare the approximations to the optimal solu-
tion of the MDLR problem, obtained by the packing of the
Lagrange approximate and naive approximate solutions of
c-MDLR in the next section.

Replica Placement and Request Distribution

Consider an object z; that has a k; replicas. Let w(x;, k;)
be a sequence of k; disks that contain the replicas of z;,
which we call the replica probe sequence of z;. The prob-
lem then is to determine the replica probe sequence for each
object. Since the number of replicas of an object changes
dynamically, the replica probe sequence also changes. The
replica probe sequences affect the load imposed on the
disks.

To achieve load balancing among the disks for an ob-
ject x;, each disk in the replica probe sequence w(x;, k;)
should be servicing approximately the same number of re-
quests for z;. A simple way to do that would be, for those

disks, to serve the requests for z; in a round-robin manner.
Since all requests are seen by all the disks, this load dis-
tribution can be easily done, if each disk knows the replica
probe sequence for each object it stores and sees the disk
that serviced the last request for z;.

To ensure that all the disks service approximately the
same weighted number of requests, the replicas of the ob-
jects should be properly distributed among the disks. A
simple way to distribute the objects among the disks is to
use hashing. In fact, we would like to have a hash func-
tion H that given z; and k; returns a replica probe se-
quence 7 (z;, k;) of length k;. An open addressing hash
function, with a hash table of size m (where each bucket
of the hash table corresponds to a disk), can provide us
with such replica probe sequences. Double-hashing is a
preferred method since it alleviates primary and secondary
clustering among the disks (buckets) [7].

However, since we would like to be able to add and re-
move disks dynamically, one needs to be careful so that the
replica probe sequences do not change drastically when a
disk is added or removed. Note that the size of the hash
table assumed by the hash function is equal to the number
of disks. Unfortunately, the probe sequences that one gets
from double hashing could change quite drastically when
the number of disks changes (especially for small number
of replicas). Thus, double—hashing alone is insufficient. It
seems that what is needed is a hash function that requires
few objects to be transferred among buckets, when the size
of its hash table changes by one. Linear hashing [10] has
the property that when a bucket is added only half of the ob-
jects in one of the existing buckets (called its sibling bucket)
need to be transferred to the newly added bucket . Simi-
larly, when the last bucket is removed, its objects need to
be transferred to its sibling bucket. However, linear hashing
does not provide us with probe sequences.

We propose a combination of double-hashing (or any
other open addressing hash function) with linear hashing
for constructing replica probe sequences that enable good
object placement and request distribution among the disks.
Let h be a double-hashing hash function with a hash ta-
ble whose size M is an upper bound on the number of
disks a system will have. Let h(z;) be the probe sequence,
of length M, for z; returned by h. It is important that i
gives probe sequences that utilize the whole space (which is
achievable with double hashing [7]). Thus, we can assume
without loss of generality, that the sequence h(zx;) has M
distinct entries.

Let ¢,,, be the linear hash function for a hash table of size
m. We use this functionto map aninteger0 <k < M -1
into an integer (bucket, disk) in0,1,2,...,m—1 as follows:

i ifk <m
m(k) =4 ¥ .
Pm (k) { k — 2Mesaml=1 " otherwise ®

where k = k mod 2/10g2m1,

Let ¢, (z;) be the sequence obtained by applying ¢, to
each element of h(z;). If M is much larger than m, then
¢m(z;) will have m unique entries with high probability,
since we are placing the M distinct entries of h(z;) into the
linear hash table of size m. We construct the replica probe
sequence m(x;, k;) for z; by choosing the first &; distinct
elements of the sequence ¢,,(x;). As stated above, ¢, (x;)
has m distinct elements if h(z;) contains all the integers
in [0,M — 1] and M > m. Thus, if Vz;, h(z;) contains
[0,M — 1] and M > m then the maximal replica probe
sequence m(z;, m) is always defined. Further, we denote
the first element of «(x;, k;) to be the primary disk for z;.
It is easy to see that, when k; = 1, the object z; is stored
at its corresponding primary disk. Figure 2 illustrates our
method for constructing replica probe sequences.

@) |o|21|11|1|14|4|17|7|20|10|

(b)|0|1|3|1|2|o|1|3|o|2|
o [T

Figure 2. (a) the first 10 elements of the probe se-
quence of length M for z1g9, using the hash func-
tion h(z;) =< 2o,%22,...,2m—1 >, Where z; =
((¢ mod M) + j(1 + i mod (M — 1))) mod M and
M = 23. (b) the first 10 elements of the sequence
¢m (z100), Which is obtained by applying ¢,, to each
element of h(z199) for m = 4. (c) the replica probe
sequence 7 (%100, k100) When k190 = m.

Handling Addition and Removal of Disks

In this subsection, we show how the proposed system can
adapt to addition and removal of disk(s). Assume that we
are initially given m disks Dg, Dy, ..., D 1. When the
number of disks change, each of the existing disks needs to
recompute the replica probe sequences for all the objects x;
it stores. Moreover, from the property of linear hashing, it
can be shown that the replica probe sequences of each z;,
before and after the change, differ by at most two elements.
We use this property to guarantee that each disk in the new
replica probe sequence of z;, has a replica of z;.
Adding a new disk D,,,. For each object z; it stores, D,,
does the following: (a) if x; is already available at another
disk then D,,, deletes its own replica of x;; else, (b) if D,,
has the unique copy of x; in the system, it transfers z; to the
single disk in the new replica probe sequence of z; (unless
that disk is D,,). Each other disk D; does the following for
each object «; it stores: D; transfers its copy of z; to D, if
the new replica probe sequence for x; contains m but not ;5.

Removing a disk D;. There are two cases to consider.

Case1l: Dj = Dy,—1. Disk D, first “empties” all the
copies of objects z; it stores as follows. If there exists
a disk D, which is in the new replica probe sequence
of z; (obtained after the deletion of D;), but not in the
old one, then D,,, _ transfers its copy of x; to disk D,.
Otherwise, D,,, 1 deletes its copy of x; decreasing the
number of replicas of x; by one. Finally, disk D,,
is removed from the system.

Case2: Dj # Dy,—1. We do the following: (a) disk
D,,—1 isemptied as in case 1 above, (b) all the (copies
of) objects stored in D; are transfered to D,,_;, and
(c) disk Dy, —; is renamed as D;.

In both cases, disks may need to adjust their information

about which disk serviced the last request for an object z;:

specifically, if that disk was D,,, 1, then all other disks as-

sume that the disk that precedes D,,, 1 in the replica probe
sequence of x;, serviced the last request for ;.

Handling Disk Failures

We assume that a disk can be in one of these three states:
operational, failed, or recovering. We assume that for each
file/object, there is at least one operational disk in its replica
probe sequence. A create operation succeeds if the single
disk in the replica probe sequence of that object is opera-
tional. All other operations always succeed, since there is
always an operational disk in the replica probe sequence of
an object. Only operational disks can service requests. For
the remainder, we consider, w.l.0.g., object read operations.

Disk D; fails temporarily if it does not service a pend-
ing request for z; within a timeout period when all the other
operational disks in the replica probe sequence «(z;, k;) ex-
pect it to do so. Disk D; fails permanently if it does not
recover within a certain timeout period.

A temporary failure of D; is handled as follows. When
the operational disks in the replica probe sequence 7 (z;, k;)
of z;, detect the temporary failure of D, they assume that it
is the turn of the disk that follows D in «(z;, k;) to service
that pending request for z;. Further, a recovering disk D;
becomes operational (w.r.t to each object z; it stores) upon
completing the following recovery procedure. It issues a
read request for x;, and upon getting a response it either
updates its replica of z;, if it is still in w(z;, k;), or deletes
its own replica of x; otherwise.

A permanent failure of D; is handled as follows.
Remove D; as described above, but instead of transferring
objects z; from D;, we transfer them from one of the
operational disks in their replica probe sequences.

PERFORMANCE EVALUATION

We have developed a JAVA-based discrete event simu-
lator for a Network—Attached Storage system to implement
and evaluate our algorithms.

We consider a system of 16 disks that are connected to
a high-capacity network. We configure the network so that

it is not the bottleneck of the system and choose parameters
that are similar to a 1 Gb/s Ethernet. Our disk model in
Table 1 roughly matches the CMU—-NASD system [9].

Table 1. Disk Parameters

Seek mean 5.4 ms
Seek max 11.0 ms
Rotation mean 2.99ms
Rotation max 5.98 ms
Transfer Rate 200 Mbits/second
On-board Processor 133 MHz

Table 2. File Size Distribution

Percentage | File Size (KB)
33 1
21 2
13 4
10 8

8 16
5 32
4 64
3 128
2 256
1 1000

There is a single client that issues requests for the ob-
jects, according to a synthetic workload. For the current
experiments, we consider 10000 files/objects that are ini-
tially distributed among the disks. The size of the objects
vary according to the SPECsfs 3.0 benchmark [1] as shown
in Table 2. Further, the total disk space available for repli-
cation, as a fraction 3, of the total size of all the objects in
the system, is varied between 2.0 and 4.0. This implies that
if all objects were treated equally, we can potentially have
between 2 and 4 replicas for each object, respectively.

Clients request for one of the following operations on an
object : read, write, get attribute and set attribute. We as-
sume that the percentage of read, write, get attribute and set
attribute operations are 67.1, 20.8, 11.8 and 0.3% respec-
tively (loosely based on SPECsfs 3.0). Recent studies [5]
suggest that the reference probability for Web documents
requested by a client does not follow Zipf’s Law precisely,
but instead follows a Zipf-like distribution with the expo-
nent varying from trace to trace. Specifically, if documents
are ranked according to their access frequencies, then the
reference probability for a document with rank ¢ is propor-
tional to 1/i®. Note that for a = 1, the request distribu-
tion strictly follows Zipf’s law. However, as shown in [5],
the distribution of Web requests follows a Zipf-like distri-
bution, with 0.64 < o < 0.83. In our experiments, a client
requests objects according to a Zipf-like distribution, where
the object number corresponds to its rank, and the values of
a used are 0.64, 0.75, and 0.83 respectively.

The inter-arrival time for client requests is assumed to
be exponentially distributed. We simulate different load
conditions on the system by varying the mean inter-arrival
time between 0.01 seconds and 0.0005 seconds, thereby
varying the client request rate between 100 and 2000 re-
quests/second).

As described in previously, the objective function is to
minimize the average weighted number of requests ser-
viced by a disk, without exceeding the total space avail-
able for replication at the disks. For the rest of the sec-
tion, we use the following terminology : OPT-A, OPT-B
and opT-C each refers to the packing of the optimal solu-
tion of the c-MDLR problem, where weight w; assigned
to each request for object x; is equal to (a) 1, (b) s;, and
(¢) 1 + as;, respectively. The Lagrange approximation al-
gorithms LAGRANGE-A, LAGRANGE-B and LAGRANGE-C;
and the naive approximation algorithms NAIVE-A, NAIVE-
B and NAIVE-C are defined similarly. We next compare
the performance of the approximation algorithms for the
MDLR problem with different workloads.

Some Offline Results

For this set of experiments, we generate 25 different
workloads for 10000 objects, each consisting of 10° re-
quests. The size of objects and the size of disks are based on
setup described above. For each workload, we fix 8 = 3.0
and obtain the approximate solutions of the MDLR prob-
lem from the packing of the optimal, naive and Lagrange
approximate solutions to the c-MDLR problem. Note that,
each solution instance gives the integral number of replicas
k; for each object x;. We use the k; values in equation (1)
(with w; = 1) to compute the average number of requests
serviced by each disk. Table 3 shows the results given by
each approximation algorithm, averaged over the 25 work-
loads.

Table 3. Average number of requests serviced by a
disk, given by the packing of the optimal, naive ap-
proximation and Lagrange approximation solutions.

Method Average Number of Requests
OPT-A 6602
OPT-B 6781
OPT-C 6493
NAIVE-A 8691
NAIVE-B 8710
NAIVE-C 8624
LAGRANGE-A 6606
LAGRANGE-B 6884
LAGRANGE-C 6552

Our results show that using weight w; = 1 + as;, gives
the minimum average number of disk requests, for each of
the approximation schemes. Moreover, the packing of the

Lagrange approximation to c-MDLR, yields a solution that
is always within 1% of that given by the packing of the op-
timal solution to c-MDLR. The optimal algorithm for the
c-MDLR is both computationally expensive and difficult to
implement in a decentralized manner. Thus, we focus on
the relative performance of the naive and Lagrange approx-
imations to MDLR, within the simulation framework.
Simulation Results

For a particular choice of an algorithm, the current im-
plementation specifies that each disk D computes the re-
quired number of replicas of each object x;, for which D is
the primary (as defined earlier). In order to make it adaptive
to changes in client access patterns, the replication algo-
rithm is run periodically (every 10000 requests) at the pri-
mary disks, thus adjusting the number of replicas for some
(or all) the objects. Subsequently, each disk can compute
the replica probe sequences to check whether it should add
or drop a replica of any object 2.

We now present our main results fora = 0.75and g =
3.0. Similar results were obtained for other settings of a
and 3 , and are omitted due to lack of space.

—&- No Replication
ol =+ NAIVE-A

- - NAIVE-B
—6— NAIVE-C
H —< LAGRANGE-A
—# LAGRANGE-B
= LAGRANGE-C

©

Average Response Time

7 ,*//
T~

! L
500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
Requests issued per second

Figure 3. Average response time with increasing
client request rates.

Figure 3 shows the average response time of the system,
as the load, i.e. client request rate, is increased from 100
requests/second to 1600 requests/second. We use the aver-
age response time as a metric for evaluating the maximum
load that the storage system can sustain. Our results show
that, under low to medium load conditions, both the naive
and Lagrange solutions perform well in terms of deliver-
ing low response time. However, the response time for the
naive schemes start increasing at 1000 requests/second, and
grow rapidly for load(s) in excess of 1200 requests/second.
At similar loads, we observe that the Lagrange schemes do
a good job in keeping the response time within acceptable

2with disk processing capabilities of 133 MHz, the double/linear hash
functions can be computed by utilizing minimal fraction (about 0.8% ac-
cording to[4]) of CPU time

values. Further, the average response time for the Lagrange
schemes start increasing at 1400 requests/second, and grow
rapidly for load(s) in excess of 1600 requests/second. Note
that, from a queuing theory perspective, the maximum sta-
ble load for the system is about 1800 requests/second (using
the M /M /16 model). We further note that LAGRANGE-
c performs the best among all the algorithms, while both
NAIVE-B and LAGRANGE-B perform worst in their respec-
tive categories.

Based on these observations, we can make a number of
inferences: (a) the Lagrange schemes make the best utiliza-
tion of the space available for replication and improve the
system performance by about 30% when compared to the
naive schemes, and by more than 100% when compared to
no replication, (b) when calculating the number of repli-
cas, it is a good idea to weigh each request for an object
by a function that incorporates the disk seek time and the
transfer time (rate) for the object, (c) it is not a good idea
to weigh each request for an object by its size only, as this
leads to more replicas being created for larger (but less pop-
ular) objects, thereby leading to poor utilization of the avail-
able storage.

For the rest of the section, we focus on the approximation
algorithms NAIVE-C and LAGRANGE-C. Specifically, we
look at the system throughput and performance of the disks
at loads of 1200 and 1400 requests/second, respectively.

Fig. 4(a) shows the average response time for NAIVE-C
and LAGRANGE-C as the simulation progresses. Observe
that, LAGRANGE-C adapts to the demand far more quickly
than NAIVE-C. Moreover, when both the schemes stabilize,
the response time of NAIVE-C is about 4 times that of its
Lagrange counterpart. From Fig. 4(b), we also observe that
the average system throughput for LAGRANGE-C is about
50% more than NAIVE-C.

Figures 4(c)—(d) provide a better explanation of this im-
provement. Fig. 4(c) shows the maximum requests issued
to any disk, as well as the median number of requests is-
sued to a disk 3. While NAIVE-C does a good job of min-
imizing the median number of requests issued to a disk, it
fails to eliminate all the hot spots. Consequently, some of
the disks continue to receive a large number of requests,
thereby increasing the response time and degrading the sys-
tem throughput. In contrast, LAGRANGE-C succeeds in
equalizing the requests issued across the disks. The im-
provement is more significant for the maximum and me-
dian MBytes requested from the disks, as shown in Fig.
4(d). In this case, both the maximum and median values
for NAIVE-C are well above the corresponding values for
LAGRANGE-C. In summary , the Lagrange approximation
scheme performs significantly better than the naive approx-
imation scheme, in terms of utilizing the available storage

SWe use the median since it is a more robust measure in cases of high
variability.

and minimizing the average number of requests (and bytes)
serviced by the disks.

Figures 5(a)—(d) show the same metrics when the load
is increased to 1400 requests/second. In this case, the aver-
age response time for NAIVE-C starts growing rapidly, while
the response time for LAGRANGE-C stabilizes at under 0.05
seconds. The system throughput of LAGRANGE-C is also
about 50% more than NAIVE-C. Once again, as shown in
Figs. 5(c)—(d), the Lagrange approximations does a far bet-
ter job in balancing the requests (bytes) among the disks,
when compared to the naive approach.

CONCLUSIONS

The design of an efficient and scalable storage system
is a critical aspect for the performance of current data—
intensive network services. In this paper, we propose a
simple and novel approach for data (object) replication and
request distribution in network—attached storage systems.
Replica calculations are based on an approximate solution
to the MDLR (Minimum Disk Load Replication) problem
using the Lagrange multipliers method. Further, we demon-
strate how the replication algorithm can be combined with
hashing to (a) balance load among the disks, and (b) adapt
to changes in the operating environment in an efficient man-
ner. Experiments with synthetic workloads show that, under
demanding conditions, our algorithm largely outperforms
naive alternatives in terms of response time and throughput.

References

[1] Standard Performance Evaluation Corp. SPECsfs97 V3.0.

[2] Seagate Technology Inc. Object Oriented Devices: Descrip-
tion of Requirements, 1998.

[3] Amiri, K. S. Scalable and Manageable Storage Systems.
Ph.D. Dissertation, CMU-CS-00-178, 2000.

[4] Anderson, D., Chase, J., and Vahdat, A. Interposed Request
Routing for Scalable Network Storage. In Proceedings of
OSDI, 2000.

[5] Breslau, L., Cao, P., Fan, L., Philips, G., and Shenker, S.
Web Caching and Zipf-like Distributions: Evidence and Im-
plications. In Proceedings of |EEE Infocom, March 1999.

[6] Brown, A., Oppenheimer, D., Keeton, K., Thomas, R., Ku-
biatowicz, J., and Patterson, D. ISTORE: Introspective Stor-
age for Data-Intensive Network Services. In Proceedings of
HotOSVII, 1999.

[7] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introduc-
tion to Algorithms. The MIT Press and McGraw-Hill Book
Company, 1998.

[8] Fletcher, R. Practical Methods of Optimization, Second Edi-
tion. John Wiley and Sons Ltd., Reading, MA, USA, 1990.

[9] Gibson, G., Nagle, D., Nat, W., Paul, L., Marc, M.,
and Jim, U. NASD scalable storage systems. In Proceed-
ings of USENI X, 1999.

[10] Litwin, W. Linear hashing: A new tool for file and table
addressing. In Proceedings of VLDB, 1980.

[11] Thekkath, C. A., Mann, T., and Lee, E. K. Frangipani: A
Scalable Distributed File System. In Proceedings of Sympo-
sium on Operating Systems Principles, 1997.

— No Replication
—— NAIVE-C
- - LAGRANGE-C

08 osf — No Replication 8
—— NAI
- - LAGRANGE-C
07 07
o o
E E
£ £ 1
50 508
H H
Zo. Zos 8
& &
Zo. Foa .
g g
2 z
03 03 .
02 02 8
[o1 N S
1 2 s 5 6 7 8 o 10 11 12 1 2 s 4 s & 7 8 9 10 1 12
Number of Requests Satisfied Y10t Number of Requests Satisfied Y10t

(a)Average Response Time (seconds) (a)Average Response Time (seconds)

T T T T T T T
— No Replication] — No Replication
—— NAIVI —— NAIVI
- - LAGRANGE-C | - - LAGRANGE-C

2 : : : 4 251 . . B

Average Throughput
Average Throughput

4 5 6 7 8 3 4 5 6
Number of Requests Satisfied c10* Number of Requests Satisfied

(b)Average Throughput (MBytes/second) (b)Average Throughput (MBytes/second)

: : :
— Maximum Requests : NAIVE-C — Maximum Requests : NAIVE-C
140l = Maximum Requests : LAGRANGE-C] —% Maximum Requests : LAGRANGE-C
-~ Median Requests : NAIVE-C 1701-| = = Median Requests : NAIVE-C 8
—6- Median Requests : LAGRANGE-C —6~ Median Requests : LAGRANGE-C
1301 8
1601 .

Number of Requests Issued
g &
|
.
|
|
|
f
J
!
|
Number of Requests Issued
g

1010 1020 1030 1040 1050 1060 1070 1080 1010 1020 1030 50
Simulation Time in seconds Simulation Time in seconds

(c)Maximum/Median Requests issued to a disk (c)Maximum/Median Requests issued to a disk

1060 1070 1080

T T T T
— Maximum MBytes : NAIVE-C

— Maximum MBytes : NAIVE-C —— Maximum MBytes : LAGRANGE-C

— Maximum MBytes : LAGRANGE-C
T Modian MEy‘eys T NAVE-C 1aH - - Median MBytes : NAIVE-C 1
:] —6— Median MBytes : LAGRANGE-C

10 -6 Median MBytes : LAGRANGE-C

Number of MBytes Requested

Number of MBytes Requested

1060 1070 1080 1010 1020 1030 1060 1070 1080

1010 1020 1030 1050 50
Simulation Time in seconds Simulation Time in seconds

(d)Maximum/Median MBytes requested from a disk (d)Maximum/Median MBytes requested from a disk

Figure 4. Performance measures for request rate of Figure 5. Performance measures for request rate of
1200 requests/second. 1400 requests/second.

