On the Power of the Linear Array Architecture for
Performing Tree-Structured Computations

Konstantinos Kalpakis! and Yaacov Yeshal??

!Computer Science Department, University of Maryland Baltimore County, 5401 Wilkens Avenue,
Baltimore, MD 21228-5398.

2Also, University of Maryland at College Park, Institute for Advanced Computer Studies.

3Supported in part by the National Science Foundation under grant number CCR-9106062.

Please send all correspondence to:

Dr. Yaacov Yesha

Computer Science Department

University of Maryland Baltimore County
5401 Wilkens Avenue

Baltimore, MD 21228-5398.

Phone: (410) 455-2669 Department Office: (410) 455-3000
Fax: (410) 455-3969

E-mail: yayesha@cs.umbc.edu

Abstract

We consider the problem of scheduling the execution of programs on the linear array
architecture. A program is represented by a directed acyclic graph (dag), whose nodes
represent tasks, and whose edges represent both precedence constraints and functional
dependencies among tasks.

We prove that, for binary tree dags with unit execution time tasks, the linear
array can simulate with constant slowdown the architecture independent model of
Papadimitriou and Yannakakis [10] when the message-to-instruction ratio is assumed
to be equal to the diameter of the linear array. (This is the interpretation implied
in [10].) Furthermore, we prove that for binary tree dags with unit execution time
tasks the linear array is strictly more powerful than the above interpretation of the
model of [10].

Using our simulation result, we give polynomial time algorithms to find schedules
for binary tree dags with n tasks and height A on linear arrays, when & > n'/2logn
(achieving makespan O(h)), and when h < n'/?2=¢ for any fixed ¢ > 0 (achieving
makespan O(nl/Q), where the constant inside the Big Oh depends on €). The makespan
achieved by our schedules is within a constant factor of optimal. The time—processors
product achieved is within a constant factor of optimal when h < nl/2-¢
an O(logn) factor of optimal when A > n1/21log n. These schedules improve upon the
makespan of the schedules in Ghosal et al [3] by an O(logn) factor for those ranges
of h, and at the same time also improve upon the time—processors product in [3] by
an O(logn) factor (for b < n'/27¢), or maintain the same time-processors product as
in [3] up to a constant (for & > n'/?logn). Further, for k < n'/?/log?n, we provide
a polynomial time computable schedule on a linear array, that achieves makespan
O(n'/?) using O(n'/?) processors (i.e. both optimal up to a constant), this time under
an assumption that links have unlimited bandwidth. Using straightforward arguments
(see Ghosal et al [4]), we extend some of our polynomial time scheduling algorithms
to deal with the more general case, where the trees have bounded degree d, and the

, and within

architecture is a k-dimensional mesh.

Keywords: multiprocessing, parallel computation, communication delay, scheduling,
tree dags, linear array, tree decomposition.

1 Introduction

An important consideration in mapping the computational structure of an algorithm onto
a multiprocessor system is to keep a good balance between communication overhead and
computation time. Moreover, in most multiprocessor systems not every two processors are
connected directly by a communication link. An algorithm is represented by a directed
acyclic graph (dag), whose nodes represent tasks, and whose edges represent both precedence
constraints and functional dependencies among tasks. Given the precedence graph of an
algorithm and the architecture of a multiprocessor system, the problem of finding an efficient
mapping which minimizes the computation and communication time is, in general, a difficult
computational problem and has been the target of extensive research in recent years.

The problem considered in this paper is the problem of finding efficient mappings of
tree structured algorithms onto linear arrays of processors. Trees are the computational
structure of many important classes of algorithms such as divide-and-conquer. The linear
array of processors architecture is an important regular bounded-degree architecture suitable
for VLSI and Wafer Scale Integration multiprocessor systems [7, 8]. Further, its simplicity has
some practical implementation-related advantages compared to more complex architectures.
However, the communication overhead in a linear array grows linearly with the number of
processors it has. This makes the task of designing efficient algorithms for linear arrays a
challenging and a non-trivial one.

Papadimitriou and Ullman [9] prove non-trivial lower bounds on the communication ¢,
the communication delay d, and the computation time ¢ required to evaluate an n x n
diamond dag. They show that the following two conditions must hold: (¢ + n)t = Q(n?)
and (d+1)t = Q(n?). Depending on the parallel machine architecture one of these conditions
is more significant.

Papadimitriou and Yannakakis [10] study the problem of evaluating the performance of
an algorithm, rendered as a dag, on an abstract parallel machine. Their model, that we
call the PY model, consists of a dag, an unlimited number of processors, and a parameter 7
capturing the interprocessor communication delay in a parallel machine. It is implied in [10]
that 7 is equal to the diameter of an actual parallel machine. Their objective is, given a
dag and parameter 7, to find a schedule for that dag which takes the minimum time to
execute it. They prove that the problem of finding such a schedule is NP-complete and they
provide an efficient approximation algorithm for this problem with performance ratio of 2.
This approximation algorithm, which we call the PY method, is based on a simple function e
evaluated at all nodes of the input dag.

The linear array model is different from the PY model, because there is no notion of
limited bandwidth in the PY model, and because in the linear array the interprocessor
communication delay is not the same for all pairs of communicating processors.

Jung, Kirousis, and Spirakis [5] give an exact dynamic programming algorithm, running

in O(r™*!) time, to find an optimal schedule for a dag with n tasks on the PY model with
parameter 7.

Ghosal, Mukherjee, Thurimella, and Yesha [3] consider the problem of scheduling a tree
dag 7' with n unit-time tasks and height h on a linear array. They give a polynomial
time algorithm to find a schedule for such a dag on a linear array with O(n/max{\/n,h})
processors. The makespan of their schedules is O(max{+/n, h}logn). *

Aggarwal, Chandra, and Snir [1] consider the Local-memory PRAM model (LPRAM) to
capture communication and computation requirements of algorithms on parallel machines.
The LPRAM model is a CREW PRAM ° with each processor having its own local memory,
where the shared memory has latency [. They prove that for any binary tree dag 7', where
each node has 0 or 2 children, with n nodes and height A, the number of computation
steps required to compute 7" by a LPRAM with p processors is ©(n/p + k), while the
number of communication steps is Q((n/p) + logn + vk) N O((n/p) + min{\/n,h}). To
apply this model to the linear array, one will take [= ©(p). Then, the total time to
schedule that tree will be ©(n/p+ k) +1Q((n/p) +logn +VE) N O((n/p) + min{\/n, h}) =
Q(n+plogn+pvh)NO(n+p min{y/n, h}). That is, the time is Q(n). The major difference
between the LPRAM model and the models in this paper is that the LPRAM model does
not allow pipelining. Further, similar to the PY model, all communication steps take the
same time /.

We prove that, for binary tree dags with unit execution time tasks, the linear array can
simulate with constant slowdown the architecture independent model of Papadimitriou and
Yannakakis [10] when the message-to-instruction ratio is assumed to be equal to the diameter
of the linear array. This is the interpretation implied in [10]. This interpretation induces
a model that we call the LIN-PY model. Furthermore, we prove that for binary tree dags
with unit execution time tasks the linear array is strictly more powerful than the above
interpretation of the model of [10] even though the linear array has unit bandwidth links.

We apply the above simulation result to obtain polynomial time computable schedules
for trees on linear arrays, that achieve makespan within a constant factor of optimal, for the
following important ranges of the tree height h: h > \/nlogn and h < n'/?7¢ for any fixed
¢ > 0. The makespan achieved by the schedule for A > /nlogn is O(h), which is optimal
within a constant, and the number of processors used is O(nlog n/h), which is optimal within
a factor of logn. The schedule for h < n'/2=¢ has makespan O(y/n), where the constant inside
the Big Oh is proportional to 1/¢, and uses O(y/n) processors, both being optimal within
a constant factor when ¢ is fixed. These two results improve upon the makespan of the
schedules in Ghosal et al [3] for those ranges of h, and at the same time also improve upon
the time—processors product in [3] (for A < n'/27¢), or maintain the same time-processors
product as in [3] up to a constant (for A > y/nlogn). We also prove that, for h < \/n, our
schedules achieve makespan O(y/nlogn/log(y/n/h)) and use O(y/n) processors.

*Throughout this paper, log denotes the base 2 logarithm.
5PRAM stands for Parallel Random Access Machine. CREW means Concurrent Read Exclusive Write.

For the range h < \/n/log® n, we prove an additional result that sheds some light on the
makespan complexity of trees on linear arrays. For this range of h, we provide a polynomial
time computable schedule on a linear array, that achieves makespan O(y/n) using O(y/n)
processors (i.e. both optimal up to a constant), this time under an assumption that links
have unlimited bandwidth.

Using straightforward arguments (see Ghosal et al [4]), we extend some of our polynomial
time scheduling algorithms to deal with the more general case, where the trees have bounded
degree d and the architecture is a k-dimensional mesh.

The rest of the paper is organized as follows. In Section 2 we include the needed defi-
nitions. In Section 3 we prove that the linear array can simulate, for binary tree dags, the
LIN-PY model with constant slowdown. Then, in Section 4, we separate the linear array
and the LIN-PY model for binary tree dags by showing that for binary tree dags the linear
array 1is strictly more powerful than the LIN-PY model. In Section 5, we give polynomial
time computable, optimal within a constant, schedules for binary tree dags on the linear
array for h < n'/?=¢ and h > y/nlogn, and a polynomial time computable, optimal within a
constant, schedule when h < \/n/log® n, this time under an assumption of links of unlimited
bandwidth. In Section 6 we give conclusions, and extend some of our results to tree dags of
bounded degree, and k-dimensional meshes.

2 Preliminaries

A rooted directed binary tree (tree dag) of n nodes and height h is given. Nodes represent
computational tasks, and edges, which are directed towards the root, represent both prece-
dence constraints and functional dependencies among tasks. Given a tree dag 7' and two
tasks u,v in T we say that v is a child of u if there exists an edge from v to v in T', and we
say that v is an ancestor of u if there exists a (directed) path from v to w in T'. Throughout
this paper, unless we state otherwise, we assume that each task requires one time unit for
execution, and that the task tree is a binary tree.

A linear array is modeled by an undirected graph which is a chain. Nodes represent
identical processors and edges represent communication links. Each processor has its own
local memory and is capable of executing any task. Links have propagation delay and limited
bandwidth. Throughout this paper, unless we state otherwise, we assume that each link has
one time unit delay and unit bandwidth.

Tasks are assigned to processors for execution. A task may be assigned to more than
one processor, in which case we say that this processor holds a copy of that task. If there
is at least one task with more than one copy, then we say that we have recomputation. For
simplicity, we will be referring to a copy of a task simply as a task. For a given assignment
of tasks, the processors perform computation according to the following 8 rules:

(1) Computation is synchronized.

(2) Execution of tasks is non-preemptive.

(3) A non-leaf task can not be executed before it becomes ready. All leaf tasks are ready.
(4) Each processor can execute in one time unit a copy of a task u that is assigned to it.
(5) At each time unit at most one value can be sent over a link.

(6) A value sent over a link arrives at the other end of that link after a number of time
units equal to the propagation delay of that link.

(7) After a copy of a task is executed, its value is available to the processor to which it is
assigned.

8) If a value is transmitted by a link to a processor then it becomes available to that
P
processor.

The time of a schedule, called makespan and denoted Ty,.y, equals the number of time
units that pass until all copies of each task are executed. Given a dag and a machine, a
schedule is called optimal if its makespan Ti,.x 1s minimum among all possible schedules
for that dag on that machine. Given a dag, a machine, and a time ¢, a schedule is called
processors—optimal with respect to t if the number of processors used is minimum among all
schedules for that dag on that machine whose makespan is t.

Given a tree dag T" with n tasks and height %, our objective is to find a schedule for T
on a linear array with the following two properties:

(1) Its makespan T}, is optimal or close to optimal.

(i1) The number of processors used is close to the minimum number of processors required
to achieve time T} .

It is easy to see that any optimal schedule for T on a linear array has makespan Q(max{+/n, h})
and requires no recomputation [3]. Further, any processors—optimal schedule for 7" on a linear
array with respect to ¢ requires no less than [n/t] processors.

We now describe the architecture independent model introduced by Papadimitriou and
Yannakakis [10]. A dag D = (V, A), whose nodes represent unit execution-time tasks, and
whose edges represent both precedence constraints and functional dependencies, is given to-
gether with a positive integer 7. A schedule S of D is a finite set of 3-tuples S C V x N x N,
where N denotes the set of non-negative integers, (each 3-tuple (v, p,t) € S means that pro-
cessor p executes task v at time t) so that the following three conditions hold:

1. For each v € V there exist at least one 3-tuple (v,p,t) € S. (Intuitively, each task is
executed by some processor.)

2. There are no two 3-tuples (u,p,t),(v',p,t) € S with v # v'. (Intuitively, no processor
executes more than one task at the same time.)

3. If (u,v) € A and (v,p,t) € S, then either there is another 3-tuple (u,p,t’) € S
with ¢ <t—1, or there is another 3-tuple (u,p’,t') € S with ¢’ <t—1—7. (Intuitively,
if task v depends on task u, then either u is executed by the same processor p as v at
least one time unit earlier, or u is executed by some other processor earlier enough so
that the value of u is available to p when p starts executing v.)

The makespan of S equals the largest time appearing in S. We call this model the PY model
with parameter 7. Papadimitriou and Yannakakis [10] consider the problem of finding, given
a dag and a 7, an optimal schedule for that dag on the PY model with parameter 7. They
prove that the problem of finding an optimal schedule for a dag on the PY model is a NP-
hard problem, and they provide a polynomial time approximation algorithm for this problem
whose performance ratio is 2. We call this algorithm the PY method. Their algorithm is
based on the function e : V' — N they introduce. For each task u in a dag D, they define e(u)
as given below. Let uy, uz, ..., u, be all the ancestors of v in D, e(uy) > e(uz) > ... > e(uy),
for some p. Then, e(u) is given by

(u) = 0, if u 1s a source
‘)= e(ug) + k, otherwise

where k = min{7 + 1, p}. Using this function e, they give a schedule for D on the PY model
with parameter 7, as described below, so that each task u is executed by time 2 e(u). For
each task u € D, u together with its 7 ancestors with the highest e value are assigned to
one processor. This processor executes no other tasks, and it gets all the values it needs by
communicating with other processors. Further, they prove that in any schedule for D on the
PY model with parameter 7, no node v € D can be scheduled before time e(u).

Let f: N — N be some function. Papadimitriou and Yannakakis [10] imply that, in their
model, 7 should be taken to be proportional to the diameter of the interconnection network
of the actual parallel machine. Motivated by this, we define the f-PY model as being the
PY model with 7 = f(m), where m is the number of processors used. When f is such that
f(m) =m — 1, the diameter of a linear array with m processors, for any positive integer m,
we call the f-PY model the LIN-PY model. Function f represents the architecture in the
following sense: it gives the dependency of the diameter on the number of processors. The
LIN-PY model is the interpretation of the PY model for linear arrays.

In this paper we use the edge—centroid tree decomposition method. It is well known that
a binary tree with n nodes has an edge whose removal partitions that tree into two subtrees
with no more than [2n/3] nodes each. This partition is called edge—centroid decomposition.

The edge—centroid decomposition can be used recursively to partition a binary tree with n
nodes into O(y/n) subtrees, each with size O(y/n) [2, 6]. To produce the desired partition
we can do the following. Remove an appropriate edge to produce two subtrees, each of size
no greater than [2n/3]. Repeating this procedure on each resulting subtree eventually we
will achieve the desired partition. Clearly this partition can be found in polynomial time. It
is obvious that the same technique can be used to partition the tree into O(n/u) subtrees,
each of size O(u), for any integer u between 1 and n. It is also obvious that the same kind
of partition can be obtained for trees of degree bounded by d, except that the constant in
the Big Oh notation is proportional to d in this case. Another well known polynomial time
computable decomposition, called node centroid decomposition, is given by a node of a tree
(this time not necessarily binary), whose removal partitions the n-node tree into subtrees,
each having no more than [n/2] nodes.

3 Simulating the LIN-PY Model for Tree Dags by a
Linear Array

We describe a slight modified version of the PY method for tree dags. Then, using that
modified PY method, we show how to construct a schedule for a tree dag T with n tasks
and root r on a linear array with m processors, [n/(27 + 1)] < m < [n/(7 + 1)], and with
makespan no more than 4e(r) + [n/(7 + 1)]. That is, the linear array can simulate the
LIN-PY model for tree dags with constant slowdown. We note that, because there is no
notion of limited bandwidth in the PY model, schedules for tree dags on the PY model with
parameter 7 can not be directly used as schedules of these tree dags on a linear array.

We start by describing our modification to the PY method for scheduling tree dags on
the PY model with parameter 7. Consider the PY method for the PY model with parameter
7. We show how tasks can be assigned to processors of the PY model with parameter 7,
so that there is no recomputation and the makespan is still within a factor of 2 of optimal.
Let T' be the subtree of T" which contains r and the 7 ancestor tasks of r with the highest
e values. Assign 7" to one processor. This processor will execute only the tasks in 7" and
it will receive all the other values it needs by communicating with other processors. Then,
recursively, using the same approach, assign each subtree in the forest 7' — T" to processors.
Each processor executes its tasks according to their e values. When a processor finishes
executing its subtree of tasks, it communicates the value of the root of its subtree to the
processor which has been assigned the successor of its root. The time needed to execute T,
using the assignment of tasks to processors above, is no more that 2e(r) as we prove in the
next lemma. We call this method, for constructing a schedule for 7" on the PY model with
parameter 7, the modified PY method. It is easy to see that the modified PY method runs
in polynomial time.

Lemma 1 Let T be a tree dag (not necessarily binary) with root r. Let S be the schedule
for T on the PY model with parameter 7, which is produced by the modified PY method.
Then, S has no recomputation, and each processor in S is assigned to evecute a subtree of
T. Further, the makespan of S is no more than 2e(r).

Proof: We prove this lemma by induction on the number of tasks n of T'.

Basis. The lemma is trivially true for all trees T" with < 7 + 1 tasks, because for these trees
T the schedule S uses only one processor which executes all the tasks.

Inductive hypothesis. Suppose the lemma is true for all trees 7' with < n tasks, n > 74 1.

Inductive step. We prove the lemma for any tree T' with n tasks. Let ug denote the root
of T. Let uy,ug,...,u,—1 be all the ancestors of ug so that e(ug) > e(u1) > e(uz) > ... >
e(un—1). Note that, by definition of e, e(ug) = e(u,41) + 7+ 1. Further, function e is strictly
monotonically increasing along any directed path of T'.

In the modified PY method all the tasks in {ug,uy,...,u,} are executed by one processor
and receive the values they need by communicating with other processors. Let T’ be the
subgraph of T' that is induced by the tasks in {ug, u1,...,u,}. Each tree in the forest T'—T"
is recursively scheduled using the modified PY method.

We claim that the subgraph 7" of T' is a subtree of 7. We prove this claim by contradic-
tion. Suppose that 17" is not a subtree of T'. Then, there must be a task u; € T" such that
the immediate successor u} of u; is not in 7". Since e(u’) > e(u;), from the definition of 7"
it follows that u’ must be in 7", This is a contradiction. Thus, 7" is subtree of T'.

Because each tree T; in the forest 7' — 1" has less than n tasks, from the inductive
hypothesis it follows that the schedule for T;, produced by the modified PY method, has no
recomputation, and that each processor is assigned a subtree of 7;. Further, since each T is
a subtree of T', the schedule for T'— T" has no recomputation, and each processor is assigned
a subtree of T'.

Let ry,ry,...,rg, be the roots of the subtrees in the forest 7' — 7. From the inductive
hypothesis it follows that each subtree rooted at r; is executed by time 2e(r;). Thus, T" will
be executed by time 7 + 2 max{e(r;) :e=1,...,k} + 7+ 1. Since e(r) = e(u,41) + 7+ 1
and e(u,41) > max{e(r;) :¢=1,...,k}, it follows that 7" will be executed by time 2e(r). B

Next, using the modified PY method we show the following.

Theorem 1 Let T' be a tree dag with n tasks and root r. Let e be the function in the PY
method for the PY model with parameter 7. Then, there exvists a schedule for T' on a linear
array with m processors with makespan Tnax < 4e(r) + [n/(7 + 1)|, where [n/(27 4+ 1)] <
m < [n/(7 +1)]. This schedule can be computed in polynomial time.

10

Proof: Consider the schedule S for T' produced by the modified PY method for the PY
model with parameter 7. From Lemma 1 we know that S has no recomputation, and that
each processor in the schedule S is assigned to execute a subtree of T" with < 7 + 1 tasks.

We construct a tree 7", which we call a compressed tree, with m, nodes vy, vs,..., 0y,
where m,, is the number of processors used by the schedule S. Each node v; of 7" represents
the subtree of tasks W, assigned to each processor of the schedule S. Let r,, be the root
task of W,,. There is an edge (v;,v;) in T" iff the successor of task r,, is in W,,. For each
node v in 7", let W, be the subtree of 1" rooted at r, and let n, be the number of tasks in
W,. Let u be a node of 7' and let uy, us,...,u; be the children of u in 7’. We order the
children of u, from left to right, so that 4e(ry,) + [ny, /(T + 1)] < 4de(ry,) + [y, /(T +1)] <
s de(ry) F [y /(T)], 5 <742

Consider a linear array with [n/(7 4 1)] processors. Number its processors with consec-
utive positive integers so that the leftmost processor is numbered 1. Let (); denote the :th
processor, ¢t = 1,2,...,[n/(7 + 1)]. The index of a processor Q); is equal to ¢.

We describe how the tasks of T are assigned to processors, and then we show how
processors execute the tasks which have been assigned to them.

We assign the tasks of T' to processors using a preorder traversal of 1" as follows. To
each processor we assign no more than 27 4 1 tasks as described below. A processor is called
available if it has been assigned less than 7+ 1 tasks. We perform a preorder traversal of 1",
and for each node v of T" we visit, we assign W, to the lowest indexed available processor
@), and we say that v is assigned to (). Since each W, has no more than 7 + 1 tasks, no
processor is assigned more than 27 + 1 tasks. Observe that, if the height of v in 77 is > 1
then W, has 7 + 1 tasks. Hence, no processor is assigned more than one node v of 7" whose
height in 77 is > 1.

Next, we prove that the above mapping has a “link-disjointness” property. (Preorder
traversal, “link-disjointness”, and level by level execution were used in [3] for a different
compressed tree. The proof of link-disjointness is essentially as in [3].) Let v1, vy be any two
nodes of 7" such that the subtrees T} , T} of T" rooted at vy, vy are node-disjoint, and such
that the preorder numbering of vy is less than that of vy. Recall that W, and W,, denote
the subtrees of T rooted at r,, and r,, respectively. Note that W,, and W,, are the union of
the subtrees of T which correspond to all the nodes of T, and T respectively. The subtree
W, is assigned to a contiguous sub-array of processors Q, = @;,,...,Q;,, and the subtree
W, is assigned to a contiguous sub-array of processors Q,, = @Q;,,...,Q;,, where j; < i,.
Intuitively, each subtree of T rooted at some task of T"is assigned to a contiguous sub-array
of processors of the linear array, and subtrees rooted at tasks of T' not on the same path in

T are mapped to link-disjoint sub-arrays of processors.

We describe how processors execute the tasks of 1" assigned to them. The description is
given in terms of the nodes v of 17, with the understanding that executing v by a processor
means executing all tasks in W, by that processor. Consider a processor (). Initially,

11

processor () executes all nodes uy, us, ..., assigned to it, which have height 0 in 7". When @)
finishes executing those nodes, it communicates the values of r,,,7y,,... to the processors
that need them. If processor () has been assigned no node of height > 0 in 7", then Q) will
finish executing all its nodes by time 27 + 1. However, if () has been assigned a node v of T"
whose height in 7" is > 0, then () will finish executing all its nodes of height 0 by time 7 4 1.
Then, @ has to execute its node v of height > 0 in 7”. Processor () starts executing v after
all the children of v have been executed, and () received the values of all those children. Let
t! be the time by which () receives the values corresponding to the children of v. At time ¢/,
processor () starts executing v. Since W, has 7 + 1 tasks, () finishes executing all its tasks
by time t/ + 7+ 1. That is, Q) follows a greedy strategy in executing the tasks assigned to it.

Next, we compute the time it takes to execute T' by a linear array under the assignment
and execution strategies just described. For each node v of T”, let %, be the time it takes for
Q, to execute W,. We claim the following:

Claim 1

I < 27 + 1, ifn, <741
Y= de(ry) + [no/(7+1)], otherwise

Proof: We prove this claim by induction on the height &£ of v € T" in T".

Basis. Let v € T' be a node of height 0 in 7”. Then, because W, has no more than 7 + 1
tasks, these tasks are executed by the processor to which they have been assigned by time
274 1. Consider now a node v of 7" with height 1 in 7". All the children of v will be executed
by time 27 + 1. Because v can have at most 7 + 2 children, we need to communicate at
most 7 4+ 2 values to the processor assigned v. Using pipelining, this can be done in time
no more than 7+ 1 + [n,/(7 + 1)]. Because v has 7 + 1 tasks, we can execute v by time
47 +3 4+ [n,/(7 4+ 1)|. Further, because e(r,) > 7+ 1, it follows that 7 will be executed by
a linear array with no more than [n,/(7 + 1)] processors by time 4e(r,) + [n,/(7 + 1)].

Inductive hypothesis. Assume that the claim is true for all nodes v of 7' whose height in
T’ is less than k, where k > 1.

Inductive step. Let v be a node of T” whose height in 7" is k > 2. Let uy, uq, ..., uy be all
the children of v from left to right, A < 74 2. Note that the tasks in W, have been assigned
to the leftmost processor of the contiguous linear sub-array Q,, and the tasks represented by
the subtrees rooted at the children of v have been assigned to link-disjoint contiguous sub-
arrays of processors of Q,. Further, the tasks of W, have been assigned to the rightmost

part of Q,.

Because the height in 7" of each child of v is less than k, we can apply the inductive
hypothesis to them. Further, because 4e(ry,)+ [ny, /(T+1)] < 4de(ry,)+[ng/(74+1)] < ... <
4e(ryy)+ [nuy | /(7+1)], all children of v will be executed by time 4e(ry,)+ [na, /(T7+1)]. After

all children of v have been executed, we need to send the values of their roots, ry,, 74y, . . .5 Ty,

12

to processor ();,. Because W, has 7 + 1 tasks, there are no more than 7 4 2 values that
need to be communicated from various source processors to the processor assigned v. The
distance from any source to the destination processor is no more than Y27 [n,, /(7 + 1)].
Using pipelining, all the values from the children of v can be communicated to the processor
assigned v in time no more than 7 + 1 4+ Y25 [n,, /(7 + 1)].

The processor assigned v will start executing W, by time 4e(ruk)—|—r—|—1—}—2?:1 [, /(T+1)].
Because Y0, [n., /(7 +1)] < 7414 [n,/(1+1)], processor Q;, will start executing the tasks
in W, by time 4e(ry,)+ 274+ 2+ [n,/(7 +1)]. Moreover, because each processor is assigned
< 27 4 1 tasks and the processor assigned v finished executing all tasks except the tasks in
W, it will finish executing W, by time 4e(ry,) + 37 + 3 4 [n,/(7 + 1)]. From the definition
of function e and from the construction of 77, it follows that e(r,) > e(ry,,) + 7+ 1 for [=
1,2,..., A, which implies that 4e(ry,)+37+3+[n,/(7+1)] < 4e(r,)+[n,/(7+1)]|. Therefore,
all the tasks in the subtree of T rooted at r, are executed by time 4e(r,) + [n, /(7 +1)]. B

We conclude that 7' can be executed by a linear array with no more than [n/(7 4+ 1)]
processors and unit bandwidth links by time 4e(r)+ [n/(7+1)]. Further, since each processor
of the linear array is assigned at most 27 + 1 tasks, the linear array can have no less than
[n/(27 + 1)] processors. Because the modified PY method works in polynomial time, it
follows that we can find such a schedule for a tree dag on the linear array in polynomial
time. u

Further, since the makespan T, of an optimal schedule for a tree dag 1", with root
r, on the PY model is such that e(r) < Thax < 2e(r), we have the following corollary to
Theorem 1.

Corollary 1 Let T' be a tree dag with n tasks and height h. Let Tya be the makespan
of an optimal schedule for T on the PY model with parameter 7. Then, there exists a
polynomial time computable schedule for T on a linear array with ©(n/7) processors and

with O(Tmax + n/7) makespan.

Proof: Follows from Theorem 1 and the fact that e(r) < Thax < 2e(r), where r is the root
of T. [

Consider an optimal schedule S for a dag on the LIN-PY model, that uses m processors.
Then, S is also an optimal schedule for that dag on the PY model with parameter 7 = m — 1.
Using this fact, we have the following corollary to Theorem 1.

Corollary 2 Let T be a tree dag with n tasks and height h. Let Ty be the makespan of
an optimal schedule for T on the LIN-PY model, and let m be the number of processors
used. Then, there exists a polynomial time computable schedule for T on a linear array with
O(n/m) processors and with O(Tmax) makespan.

13

Proof: Follows from the facts that 7 = m — 1 and that n/m < Thax. |

Corollary 2 tells us that a linear array can simulate the LIN-PY model with constant
slowdown.

4 Separating the Linear Array and the LIN-PY Model
for Tree Dags

Since the linear array can simulate, for tree dags, the LIN-PY model with constant slowdown,
we ask the question: Can the LIN-PY model simulate, for tree dags, the linear array with
constant slowdown? Our investigation reveals that for binary tree dags with unit-time tasks
the linear array is strictly more powerful than the LIN-PY model. More precisely, there
exist infinitely many binary tree dags for which the LIN-PY model has optimal schedules
whose makespan is not within a constant of the optimal makespan for those trees on the
linear array. In other words, we show a separation theorem for the linear array and the

LIN-PY model for the case of tree dags.

The above result is particularly interesting since the LIN-PY model has no notion of
limited bandwidth. In 7 = m — 1 time units (where m is the number of processors), every
processor can communicate with any other processor. This is generally not true for the linear
array. For example, in a linear array with m processors, Q(m?) time units are needed to
complete the following communication: processor ¢ (when processors are numbered 1,2,...m
from left to right) sends one value to each one of the processors m—i, fori = 1,...[m/2]. (So
altogether, Q(m?) values are sent.) However, in the LIN-PY model, every communication
step requires 7 = m — 1 time units, while in the linear array, processor ¢ can send a value
to processor ¢ + 1 in one unit of time. Our results demonstrate that, for computing binary
tree dags, the unlimited bandwidth of the LIN-PY model does not compensate for the
over-estimation of communication delays.

Let Ty be a complete binary tree dag of height [logn/2] 4+ 2[loglogn]. Ty contains
O(y/nlog’ n) tasks. We construct another binary tree dag Ty from Ty by subdividing each
edge of Ty with [/n/log?n] nodes. Ty has ©(n) nodes and height A = O(y/n/(2logn) +
2v/nloglogn/log”n). We prove that there exists a schedule for T on a linear array with
O(y/n) processors whose makespan is O(y/n). Then, we show that the makespan of an
optimal schedule for Ty on the LIN-PY model is Q(y/nlogn/loglogn).

Lemma 2 There exists a schedule for Ty on a linear array with O(\/n) processors whose
makespan is O(\/n), i.e. optimal within a constant. This schedule can be found in polynomial
lime.

Proof: We decompose T into two levels. Level 1 consists of the subtree rooted at the root

14

of Ty which contains the highest ©(n/log® n) ancestors of the root of Tjy. This subtree, called
the level-1 tree, has height ©(\/n/logn). Level 2 consists of the subtrees of Ty which belong
to the forest formed when we remove the level-1 tree from T'y. We call all these trees level-2
trees. There are ©(\/n) level-2 trees and each level-2 tree has ©(22!°sl8", /i /log®n) =
O(y/n) tasks and height ©(\/nloglogn/log®n).

Since each level-2 tree has ©(y/n) tasks and there are ©(y/n) level-2 trees, we can execute
all of them in time ©(y/n) using a linear array with ©(y/n) processors.

Since the level-1 tree has ©(n/log® n) tasks and height ©(y/n/log n), using the scheduling
method by Ghosal et al [3], we can execute this tree on a linear array with O(y/n/logn)

processors in time O((y/n/logn)logn) = O(y/n).

However, before we start executing the level-1 tree we need to communicate all the values
of the roots of the level-2 trees to the processors which will execute the successors of these
roots in the level-1 tree. Because there are O(y/n) level-2 trees, and because the total
number of processors used is ©(y/n), using pipelining, we can communicate all these values
to the corresponding processors executing tasks of the level-1 tree in time ©(y/n). Therefore,
Ty can be executed in time O(y/n) by a linear array with O(y/n) processors. Obviously, this
schedule can be constructed in polynomial-time. |

Next, we find a lower bound for the makespan of an optimal schedule for Ty on the LIN-PY
model.

Lemma 3 An optimal schedule for To on the LIN-PY model has Q(y/nlogn/loglogn)

makespan.

Proof: Let S be an optimal schedule for Ty on the LIN-PY model and let 7 be the value
used as the interprocessor communication delay. By definition of a schedule for the LIN-PY
model, 7 is equal to the number of processors used in S minus 1. Further, the makespan
Tmax of S is no less than e(r), where r is the root of Ty, and e is the function in the PY
method for the PY model with parameter 7. We consider two cases for 7.

Case 1: 7 < [/n/\/logn]. Suppose that Thyax = o(yv/nlogn/loglogn). The num-
ber of processors used in S is m = Q(n/Tmax) = w(y/nloglogn/y/logn). Because 7 =

m — 1, we have that 7 = w(y/nloglogn/\/logn), which is a contradiction. Thus, Tiax =
Q(v/nlogn/loglogn).

Case 2: 7 > [y/n/\/logn]. Consider the function e in the PY method. We compute a
lower bound on e(r). Since e(r) > min{n, 7}, we assume, w.l.o.g, that 7 < [/nlogn]. Let
q = [(log 7 + log(log® n/\/n))\/n/ log® n]. We claim that for each task v of Ty of height ig,
e(v) > u7. This claim can be easily proved by induction on 7 using the definition of function e.
The key observation is that each task of height 1q has > 7 ancestors whose heights are between
(i—1)g and ig—1. Then, since the root r of Ty has some ancestor v of height Q(h/q), and since

15

e is strictly monotonically increasing along a directed path in Ty, it follows that e(r) > e(v) =
Q(rh/q). Further, since h = ©(y/n/(2logn) + 2y/nloglogn/log’n) and 7 < [\/nlogn], we
have that e(r) = Q(7logn/loglogn). Finally, since 7 > [v/n/y/logn]|, it follows that
e(r) = Q(v/nlogn/loglogn). Hence, the makespan of S is Q(y/nlogn/loglogn). u

We conclude that, even though we can find, in polynomial time, a schedule for Ty on a lin-
ear array with O(y/n) processors and makespan O(y/n), both optimal and processors—optimal
within a constant, the optimal makespan for Ty on the LIN-PY model is Q(y/nlog n/ log log n).
This means that by taking the cost of all the communication steps to be 7, where 7 equals
the number of processors used minus 1, we over-estimate the total communication delay by
more than a constant. In reality, there could be many communication steps which take o(7)
time. In addition, our result implies that, for tree dags, the unlimited communication band-
width of the LIN-PY model does not compensate for this over-estimation. Therefore, even
though the LIN-PY model, and consequently the PY model, are very usetul approximation
models for parallel machines, they do not always provide us with an accurate estimate of
the time needed to execute a dag on an actual parallel machine.

Moreover, combining Corollary 2 and Lemmas 2 and 3, we get the following separation
theorem between the LIN-PY model and the linear array for tree dags.

Theorem 2 Let Topy be the makespan of an optimal makespan for a binary tree dag on
a linear array, and let Ty be the makespan of an optimal schedule for that tree dag on
the LIN-PY model. Then, there exists a constant ¢ > 0 such that Topyr < ¢ Tpin for
any binary tree dag, and there exists no constant ¢’ > 0 such that, for all binary tree dags
Ty < ¢ Topr. In other words, for binary tree dags, the linear array is strictly more
powerful than the LIN-PY model.

Proof: Follows from Corollary 2 and Lemmas 2 and 3. u

5 Optimal within a Constant Schedules for Tree Dags
on Linear Arrays

Using Theorem 1 and certain upper bounds on the e value of the root of a tree dag, we obtain
polynomial time computable schedules for trees on linear arrays, that achieve makespan
within a constant factor of optimal, for the following important ranges of the tree height
h: h > y/nlogn and h < nt/2=¢ for any fixed ¢ > 0. The schedule for A > y/nlogn has
makespan O(h), which is optimal within a constant, and uses O(nlog n/h) processors, which
is optimal within a factor of logn. The schedule for h < n'/?=¢ has makespan O(/n), where
the constant inside the Big Oh is proportional to 1/e, and uses O(y/n) processors, both
being optimal within a constant factor when e is fixed. These two results improve upon

16

the makespan of the schedules in Ghosal et al. [3] for those ranges of h, and at the same
time also improve upon the time-processors product in [3] (for A < n'/?7), or maintain the
same time-processors product as in [3] up to a constant (for A > y/nlogn). We also prove
that, for & < y/n, our schedules achieve makespan O(y/nlogn/log(\/n/h)) and use O(y/n)
processors. For the range h < \/n/log* n, we provide a polynomial time computable schedule
on a linear array, that achieves makespan O(y/n) using O(y/n) processors (i.e. both optimal
up to a constant), this time under an assumption that links have unlimited bandwidth.

Using Theorem 1 and a result of Thurimella and Yesha [11], we provide optimal within
a constant schedules for any tree dag 7' with n tasks and height &~ > \/nlogn on a linear
array with O(nlogn/h) processors.

Corollary 3 Let T be a tree dag with n tasks and height h > \/nlogn. Then, there exists
a polynomial time computable schedule for T on a linear array with O(nlogn/h) processors

and O(h) makespan.

Proof: We apply Theorem 1 with 7 = [h/logn]. Let S be the schedule for T" that we get by
applying Theorem 1, and let T},,x be the makespan of S. The number of processors m used
in S is such that [n/(27 + 1)] < m < [n/(7 + 1)], which implies that m = O(nlogn/h).
Further, using a result in [11], we have that e(r) < h 4 7[logn], where r is the root of 7.
Because Thax < 4de(r) + [n/(7 + 1)], it follows that Timax < 4h +47[logn] + [n/(7 + 1)].
Because 7 = [h/logn] and h > y/nlogn, we have that Ty = O(h). The makespan of S

is optimal within a constant, and the number of processors used in S is optimal within a

factor of O(logn). u

This result improves by an O(log n) factor upon the makespan of the schedules in Ghosal et
al [3] for this range of h, and at the same time maintains the same time-processors product
within a constant. We note that Ghosal et al [3] use decomposition of the tree dag into paths,
using node centroids recursively, in their schedule, while we follow a different approach.

For the case h < y/n, we first provide an upper bound for the e value of the root of a
tree dag. In particular, given a tree dag 7" with n tasks and height h, we show how to find
in polynomial time a schedule for 7" on the PY model with parameter 7, n > 7 > h, with
makespan O(7 log(n/7)/log(7/h)) that uses O(n/7) processors. ® To this end, we are using
the edge—centroid tree decomposition method.

Lemma 4 Let T be a tree dag with n tasks and height h. Let T be a positive integer such
that n > 7 > h. Then, we can find, in polynomial time, a schedule for T" on the PY model
with parameter T whose makespan is O(7log(n/7)/log(7/h)) and uses O(n/T) processors.

SNote that, if 7 > n then there exists a trivial optimal schedule for 7.

17

Proof: Consider the edge—centroid tree decomposition method. Using this method recur-
sively, we can find a decomposition of a tree T' with n nodes into O(n/7) subtrees, each
containing O(7) tasks [2, 6], where 7 > h is the parameter in the PY model.

We construct a sequence of trees using the aforementioned tree decomposition method.
We denote the trees in this sequence by D;. We define Dy to be T', and D_; =). Consider a
tree D;, for some integer ¢ > 0, which has n; tasks and height no more than h. Tree D;,; is
constructed from D; as follows. We decompose D; into O(n;/7) subtrees 11,1y, ..., To(,/r)
each with O(7) tasks. Let rq,rq,... ,TO(n;/7) De the root of each such subtree. Tree D;y; is the
subtree of D; induced by the tasks in D; lying on a path from some r;, j = 1,2,...,0(n;/7),
to the root of D; in D;. It follows that D;;1 has n;41 = O((n;/7)h) tasks and height h.
Moreover, we can prove by induction on 7 that n; = O(n(h/7)%). Since 7 > h, it follows that
there exists a non-negative integer ¢ such that n; = O(7). Let k be the smallest such integer.

Using the sequence Dy, Dq,..., Dy we describe a schedule for T'. Consider a tree D;
in this sequence with w(7) tasks. Consider the decomposition of D; into O(n;/7) subtrees
11,1y, ..., To(m;/r) each with O(7) tasks. For each subtree T;, j = 1,2,...,0(n;/7), we
schedule all the tasks in 7 — D;41 on one processor. Note that all the tasks in 7; — D;4; can
be executed in O(7) time, and that these tasks do not depend on tasks of D; that belong
to a different subtree. However, in order to keep the number of processors used O(n;/7)
we pack subtrees to processors so that each processor is assigned O(7) tasks. This way we
ensure that the number of processors used to execute D; — D11 is O(n; /7).

Unfortunately, because tasks in D; depend on tasks in D;_y — D;, we need to communicate
the values of these tasks in D;_; — D; executed earlier to processors that need those values.
Because in the PY model a processor can send an arbitrary number of values to any other
processor in time 7, we can communicate all those values in 7 time.

Therefore, we can execute all the tasks in D; — D;1; on the PY model with parameter 7
in O(7) time using O(n;/7) processors. Note that if D; has O(7) tasks, then we can schedule
D; in O(7) time using one processor.

Thus, we can schedule 7' in O(k7) time using O(n/7) processors. Because ny = O(n(h/7)¥)
and k is the smallest integer such that n, = O(7), we have that k = O(log(n/7)/log(7/h)).
Thus, we can schedule T' in O(7 log(n/7)/log(7/h)) time using O(n/7) processors. u

Next, we give an optimal within a constant schedule for a tree dag 7" with n tasks
and height h < n'/?7¢ for any fixed ¢ > 0, on a linear array with O(y/n) processors. The
makespan of this schedule is O(y/n). So both the makespan and the number of processors are
optimal within a constant factor. However, the constant inside the Big Oh for the makespan
is proportional to 1/¢. This schedule is constructed using the modified PY method and the
method in Theorem 1. Further, using Lemma 4, we find an upper bound for the makespan
and number of processors of this schedule.

Theorem 3 Let T be a binary tree dag with n tasks and height h, where h < n'/?=¢ for any

18

fizred € > 0. Then, we can find, in polynomial time, a schedule for T on a linear array with

O(\/n) processors whose makespan is O(y/n).

Proof: Let 7 = [/n]. From Lemma 4, it follows that there exists a schedule for 7" on the PY
model with parameter 7, whose makespan is O(y/nlog(n)/log(y/n/h)). This schedule uses
O(\/n) processors. Further, because h < n'/?7¢ the makespan for this schedule is O(y/n).
Moreover, this schedule implies that ¢(r) = O(y/n), where r is the root of 7" and ¢ is the
function in the PY method.

Consider the schedule for 7' on the linear array produced by the method of Theorem 1,
when 7 = [y/n]. This schedule has makespan no more than 4e(r) + [n/([v/n] + 1)] and
uses O(y/n) processors. Since ¢(r) = O(y/n), the makespan of this schedule is O(y/n). For
a fixed € > 0, this schedule is both optimal and processor optimal. |

Note that, by extending Theorem 3, we can find, in polynomial time, a schedule for a
tree dag, with n tasks and height h < y/n, on a linear array with O(y/n) processors so that

its makespan is O(y/nlogn/log(\/n/h)).

For the range h < \/n/log”n, we prove a result that sheds some light on the makespan
complexity of trees on linear arrays. For this range of h, we provide a polynomial time com-
putable schedule on a linear array, that achieves makespan O(y/n) using O(y/n) processors
(i.e. both optimal up to a constant), this time under an assumption that links have unlimited

bandwidth.

Theorem 4 Let T' be a tree dag with n tasks and height h < \/n/log*n. We can find, in
polynomial time, an optimal within a constant schedule for T' on a linear array with O(y/n)
processors under the assumption that links have unlimited bandwidth. The makespan of this

schedule is O(\/n).

Proof: Consider the decomposition of a tree into O(y/n) subtrees, each containing O(y/n)
tasks [2, 6]. Let T" be the compressed tree, which is constructed using this decomposition,
that corresponds to 1. Each node v of T” represents a subtree of tasks T, of 1" rooted at a
task r, of T'. This compressed tree T" has O(y/n) nodes. Further, for each node v of 77, the
subtree T, has O(y/n) tasks of T

Let vg, vy, v2,..., vk, k = O(y/n), be all the nodes of T', where vg is the root of T". Let
T" be the subtree of T' which consists of all tasks of 7" lying on the path from r,, to r,,, for
i=1,2,...,k. Since k = O(y/n), this subtree 7" has O(h+/n) tasks and height O(h).

We map the nodes of 7" to a linear array with O(y/n) processors using a mapping of
the nodes of 7" as in Theorem 1 so that each processor gets O(y/n) tasks. Because each
processor is assigned O(y/n) tasks of T', and because there are no dependencies among
the tasks in T — T" represented by different nodes of T’, we can execute all the tasks in

19

T —T" in time O(y/n). Then, using the scheduling method by Ghosal et al [3], we schedule
T" on the same linear array of O(y/n) processors. The makespan of this schedule for 7"

is O(max{h,\/h\/n}logy/hy/n) = O(\/n). However, because the tasks of 7" depend on
O(|T"|) values of T'— T", we must communicate all these values to the processors that need
them. Because we assume that the linear array has links of unlimited bandwidth, this can
be done, using pipelining, in O(y/n) time, since the diameter of the linear array is O(y/n).
Therefore, the time to execute T' by a linear array with O(y/n) processors, assuming links of
unlimited bandwidth, is O(y/n). Further, this schedule can be found in polynomial time. B

6 Conclusions

In this paper we give polynomial time algorithms to find schedules for binary tree dags on
linear arrays, with makespan within a constant of optimal, for a range of the height h that
excludes only the interval n'/2=¢ < h < n'/?logn (where ¢ can be chosen to be an arbitrarily
small positive real number.) These schedules use our simulation result for the linear array,

and the LIN-PY model.

Substantial effort is required to avoid link congestion in the schedules, since the linear
array has links of unit bandwidth. Under an assumption of links of unlimited bandwidth,
we provide an optimal within a constant factor schedule for the range h < \/n/log” n.

Using straightforward arguments (see [4]), some of our polynomial time scheduling al-
gorithms can be extended to deal with the more general case, where the trees have degree
bounded by some constant d, and the architecture is a k-dimensional mesh.

In the case of degree bounded by d, the lower bound on the makespan remains the same.
When h > \/nlogn, the upper bound on the makespan increases by a factor of d, due to the
fact that a processor containing, say, a tasks may need up to da values communicated to it.
When h < n'/?, there is an additional factor of d due to using centroid decomposition.

In the case of meshes of dimension k, a straightforward argument in [4] shows that
Q(max{h,n'/**11) is a lower bound on the makespan. Another straightforward argument
in [4] shows how to simulate a linear array of m processors by a k-dimensional mesh of m
processors, with a constant slowdown in communication. However, since the diameter of
the k-dimensional mesh is O(m'/*), the number of processors m can be increased to achieve
more parallelism. Using these ideas, and our scheduling algorithm for the linear array, we
obtain a polynomial time computable schedule on a k-dimensional mesh, for binary tree
dags with A > kn'/**+V]ogn. The schedule has makespan O(h) (i.e. within a constant of
optimal), and uses O(nlogn/h) processors. So the time—processors product is O(nlogn)
(i.e. within an O(logn) factor of optimal). This improves the makespan achieved in [4]
while the same time—processors product is maintained, up to a constant factor. Similarly,
when A < kn'/(+1) /1og® n, we can generalize our scheduling algorithm for the linear array

20

assuming links of unlimited bandwidth, to work for a k-dimensional mesh assuming links of
unlimited bandwidth, producing a schedule with makespan O(kn'/*+1) using O(n*/(+1)
processors. Both the makespan and number of processors are optimal up to a constant factor.

References

[1] A. Aggarwal, A. K. Chandra, and M. Snir. Communication complexity of PRAM:s.
Theoretical Computer Science, 71:3-28, 1990.

[2] G. Frederickson. Updating of minimum spanning trees, with applications. SIAM Journal
on Computing, 14(4):781-798, 1985.

[3] D. Ghosal, A. Mukherjee, R. Thurimella, and Y. Yesha. Mapping task trees onto a
linear array. Proceedings of the 1991 International Conference on Parallel Processing,

Vol. 1, pages 629-633, 1991.
[4] D. Ghosal, A. Mukherjee, R. Thurimella, and Y. Yesha. Scheduling task-trees onto a

linear array, Manuscript, 1992.

[5] H. Jung, L. Kirousis, and P. Spirakis. Lower bounds and efficient algorithms for multi-
processor scheduling of dags with communication delays. Information and Computation,

105, pages 94-104, 1993.

[6] S. R. Kosaraju. Parallel evaluation of division-free arithmetic expressions. Proceedings

of 18th Annual ACM Symposium on Theory of Computing, pages 231-239, 1986.
[7] H. T. Kung. Why systolic architectures. IEEE Computer, 15(1):37-46, January 1980.

[8] H. T. Kung. Systolic algorithms for the CMU WARP processor. Proceedings of Tth
International Conference on Pattern Recognition, pages 570-577, July 1984.

[9] C. H. Papadimitriou and J. D. Ullman. A communication-time tradeoff. SIAM Journal
on Computing, 16(4):639-646, 1987.

[10] C. H. Papadimitriou and M. Yannakakis. Towards an architecture-independent analysis

of parallel algorithms. SIAM Journal on Computing, 19(2):322-328, 1990.

[11] R. Thurimella and Y. Yesha. A scheduling principle for precedence graphs with commu-
nication delay. Proceedings of the 1992 International Conference on Parallel Processing,

Vol. 111, pages 229-236, 1992.

21

