IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH , 199X 1

On a Unified Framework for the Evaluation of
Distributed Quorum Attainment Protocols

Daniel A. Menascé, Yelena Yesha, and Konstantinos Kalpakis

Abstract— Quorum attainment protocols are an impor-
tant part of many mutual exclusion algorithms. Assessing
the performance of such protocols in terms of number of
messages, as is usually done, may be less significant than
being able to compute the delay in attaining the quorum.
Some protocols achieve higher reliability at the expense of
increased message cost or delay. A unified analytical model
which takes into account the network delay and its effect
on the time needed to obtain a quorum is presented. A
combined performability metric, which takes into account
both availability and delay, is defined in this paper, and ex-
pressions to calculate its value are derived for two different
reliable quorum attainment protocols: Agrawal and E1 Ab-
badi’s and Majority Consensus algorithms. Expressions for
the Primary Site approach are also given as upper bound on
performability and lower bound on delay. A parallel version
of the Agrawal and El Abbadi protocol is introduced and
evaluated. This new algorithm is shown to exhibit lower
delay at the expense of a negligible increase in the number
of messages exchanged. Numerical results derived from the
model are discussed

Keywords— Mutual exclusion, performability, performance
analysis, fault-tolerance, distributed systems, delay analysis,
majority consensus, tree-based mutual exclusion protocols,
primary site protocol.

I. INTRODUCTION

One of the most fundamental problems in the area of dis-
tributed systems is the mutual exclusion problem, which
consists of ensuring that no more than one process can
access the same shared object simultaneously. Many dis-
tributed mutual exclusion algorithms have been proposed
in the past few years [2], [3], [4], [5], [10], [12], [13], [15],
[16], [17], [19], [20]. Some of them are resilient to node and
network failures [5], [10], [20]. In some cases, the quorum is
statically defined [10], [11], while in some other algorithms
a quorum attainment protocol has to be executed prior to
mutual exclusion achievement [1]. In all cases, the perfor-
mance of the protocols is measured in terms of the number
of messages needed to get the quorum. Some studies also
show, as an independent metric, the availability of the pro-
tocol, defined as the probability that a quorum is obtained,
even in the presence of failures. We argue that these two
measures are not the only relevant ones. In fact, counting
the number of messages is less important than assessing
the time it takes to establish the quorum, called hereafter
quorum attainment delay. A certain protocol P; may send

D. A. Menascé is with the Department of Computer Sci-
ence, George Mason University, Fairfax, VA 22030-4444. FE-mail:
menasce@cne.gmu.edu .

Y. Yesha is with the Computer Science Department, Univer-
sity of Maryland Baltimore County, MD 21228-5398. E-mail:
yeyesha@cs.umbc.edu

K. Kalpakis is with the Computer Science Department, University
of Maryland Baltimore County, Baltimore, MD 21228-5398. E-mail:
kalpakis@cs.umbc.edu .

more messages than protocol P, but may be able to paral-
lelize the exchange of messages in a more effective fashion
than Ps, resulting in a smaller quorum attainment delay.
Some protocols may achieve higher availability at the ex-
pense of larger number of messages or quorum attainment
delay times. So, in order to define a single measure of per-
formance, one should take into account at the same time
delay and availability, to make a fair comparison of all ex-
isting mutual exclusion protocols. In this paper we present
a novel metric to assess the performance of quorum at-
tainment protocols which combines delay and availability
simultaneously. This metric, a performability [18] type of
measure for quorum attainment protocols, is denoted by P
and is defined as

A

P=_
Dy

(1)

where A is the availability of the algorithm and Db is the
average normalized quorum attainment delay, i.e. the aver-
age quorum attainment delay divided by the node to node
communications time under zero network load. So, the
higher the availability and the lower the delay, the better
the performability of the quorum attainment protocol.

A general framework for the evaluation of quorum at-
tainment protocols is developed in the form of a unified
analytic model. This model allows one to compute several
performance metrics, such as quorum attainment delay,
performability, availability, and average number of mes-
sages, for distributed quorum attainment protocols. The
unified model has two submodels: a network submodel
and a protocol submodel. The network submodel computes
the average end-to-end delay experienced by a message in
the underlying network connecting all nodes. The protocol
submodel computes the relevant performance metrics for a
specific quorum attainment protocol. An iterative proce-
dure is used to solve the fixed-point equation which results
from the unified model. A proof of existence of a unique
solution for this procedure is provided in the paper. Per-
formability values are derived for two reliable protocols:
Agrawal and El Abbadi’s [1] and Majority [5], [20]. Re-
sults are also derived for the Primary Site [2] protocol as a
lower bound on delay and an upper bound on performabil-
ity. The unified model was used to study the performance
of both the Agrawal and El Abbadi and the Majority Con-
sensus quorum attainment protocols. A parallel version
of the Agrawal and El Abbadi protocol is proposed and
compared with the other protocols. The parallel version is
shown to exhibit a higher performability and lower quorum
attainment delay than other protocols at the expense of a
negligible increase in the number of messages exchanged,

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH , 199X

protocol p .t nAAgHbg VT

Zj

Protocol N Network
S
Submodel A Submodel
D ns
]
Unified Model

PDQ Ng A

Fig. 1. Graphical View of the Unified Model

while maintaining the same availability of the original pro-
tocol.

The rest of the paper is organized as follows. In Section
II, we present the unified model. A proof that the itera-
tive procedure to solve the unified model has exactly one
solution is given in the Appendix. The network submodel
is presented in Section III. Sections IV, V, and VI con-
tain the equations for the submodels for the Agrawal and
El Abbadi, Majority Consensus, and Primary Site quorum
attainment protocols, respectively. The parallel version of
the Agrawal and El Abbadi protocol is discussed in Section
VII. Section VIII presents the results of several numerical
studies carried out with the use of the analytic model. Fi-
nally, Section IX presents concluding remarks.

II. A UNIFIED EVALUATION MODEL

We define here a unified model for the evaluation of quo-
rum attainment protocols. This model can be better un-
derstood with the help of Fig. 1. The unified model is
composed of two submodels: the network submodel and
the protocol submodel. The network submodel computes
the average end-to-end delay expected by a message in the
underlying network connecting all nodes. The protocol
submodel computes the relevant performance metrics for
a specific quorum attainment protocol. Among these per-
formance metrics are: availability, performability, average
delay, and average number of messages to obtain a quorum.
The following input parameters are considered by the
unified model:
o p: probability that a node fails. We assume that all
nodes fail independently with the same probability. *
A node is said to have failed if it does not reply to
messages within a specified timeout. It is also assumed

INote that p can be written as MTTR/(MTTF + MTTR) where
MTTF and MTTR are the mean time to failure and mean time to
repair, respectively.

that when a node fails it will have to go through a
recovery procedure in order to be considered up again.

o T,.:: time interval after which a node is declared to
be down.

o n: number of network nodes involved in the mutual
exclusion algorithm.

o A,: average arrival rate of normal traffic messages gen-
erated per node, i.e., messages not related to a quorum
request.

. i: average time interval elapsed since a node obtains
a reply (successful or not) to a previous request to ob-
tain the quorum and the next request issued by the
same node. We assume that all nodes issue new re-
quests at the same rate.

o 1/pq: average size of messages generated by the quo-
rum attainment protocol (in bits).

o 1/py,: average size of normal traffic messages (in bits).

o ¥*: network saturation traffic (in bps), i.e., the traffic
above which the network delay goes to infinity.

o Ty: network zero load delay, i.e., the message delay
when the network traffic tends to zero.

The performance metrics computed by the unified model
are given below. They all come from the protocol sub-
model.

o P: performability of the protocol.

o A: availability of the protocol, i.e., the probability that
a quorum is attained.

o Dg: average time needed to successfully obtain a quo-
rum.

¢ Ng: average number of messages needed by the quo-
rum attainment protocol in order to obtain the quo-
rum.

The network submodel generates the following metric:

o T: average end-to-end delay of messages in the under-
lying network.

The protocol submodel generates the following metrics
needed as input parameters by the network submodel:

o D*: average time needed to execute the quorum at-
tainment protocol given that the quorum is success-
fully obtained.

o D"°: average time needed to execute the quorum at-
tainment protocol given that the protocol fails in ob-
taining the quorum.

o NJ: average number of messages needed by the quo-
rum attainment protocol each time it is executed,
given that the quorum is successfully obtained.

o N?: average number of messages needed by the quo-
rum attainment protocol each time it is executed,
given that the quorum is not successfully obtained.

The performance metrics of the unified model may be
computed as follows. We assume that if a requesting site
fails in its attempt to obtain a quorum, the site resub-
mits its request until it finally succeeds. The probability,
Pr [i failures before success], that exactly 7 failures occur
before a successful quorum is obtained is

Pr [i failures before success] = (1 — A)" A (2)

MENASCE, YESHA, AND KALPAKIS

Each time a failure occurs, the average delay is equal to
D"*. Each node waits a time interval equal to 1/A, be-
fore submitting a new request. Finally, when a success is
achieved, the delay is D*. So, the average delay Dg is
given by

DQ = D+
Zi (D™ + 1/X,) Pr [i failures before success]
i=0
= D +> i(D™+1/)) (1-A) A
i=0
D4+ 1/A,)(1—-A

Using the same kind of reasoning one can find the average
number of messages needed in order to attain a quorum:

+ Zz N]* Pr [i failures before success]
i=0

Ng =

= NL+ D> iNE(1-A)Y A
i=0

N7 (1— A)
- N¢ _m N "/ 4
s+ 2l 0

Finally, the performability is defined as

A
P = Do/To (5)

As it can be seen from Fig. 1, there is a dependency
between the network and the protocol submodels. For in-
stance, the protocol submodel needs as an input parameter
the value of t computed by the network submodel. But the
network submodel needs the values of A, D* D™* NJ and
NJ¥, computed by the protocol submodel, as input param-
eters. This dependency is solved by using a fixed-point
equation approach by the following iterative algorithm.

1. Set i « 0; & « Tp;

2. Compute D*, D™* N}, and N]® using the protocol

submodel for a specific quorum attainment protocol.

3. Compute ¢ using the network submodel.

4. If i =0 then ¢ — ¢4 1 and go to Step 2.

5. If the values of D* D™ Nj , and N]° obtained in
iteration ¢ are sufficiently close (within a specified tol-
erance) to the ones obtained in iteration i—1, generate
the final metrics for the unified model and stop.

6. 2 — i+ 1; Go to Step 2.

A proof of the existence of a unique fixed-point solution

for the unified model is given in Appendix A.

III. THE NETWORK SUBMODEL

We assume that the nodes are connected by an underlying
communication network. In a geographically distributed
network, the underlying network may be a packet switching
network. In a local network, we may have an Ethernet like
or token-ring network. In a massively parallel distributed
memory multiprocessor, the underlying network may be

a hypercube type of network. We assume that the time
to process a quorum request at the nodes is negligible if
compared with network transmission time.

The average end-to-end delay f is, in general, a function
of the network traffic, of the size of each type of message in-
jected in the network, and on several characteristics of the
network, such as link capacities and routing algorithms in
packet switched networks [8], or bus speeds and propaga-
tion delays in local networks [6]. In general, the average
end-to-end delay in the network can be easily obtained as
a function of the network traffic and other network charac-
teristics [6], [8]. As observed in [8], the delay versus traffic
curve has a typical shape as a function of the total traffic
injected in the network. For low and medium traffic val-
ues, the delay stays reasonably constant, and it rises quite
sharply when the traffic approaches the network saturation
point. This model, called the threshold model, is discussed
in detail in [8]. While this threshold model was first in-
troduced to depict the behavior of wide area networks, it
is also useful to represent the delay throughputs charac-
teristics of local area networks. In our evaluation of quo-
rum attainment protocols we use a function that captures
the threshold type of behavior of communication networks.
This function reflects the impact on the average end-to-end
delay caused by an increase in the network traffic.

We used curve fitting methods to ARPANET delay ver-
sus traffic curves [8] in order to obtain the following expres-
sion for £ as a function of the total traffic v injected in the
network, the network zero load delay 7Tg, and the network
saturation traffic value v*. Thus, our network submodel is
given by the following expression,

t="T,

1_1_1*+(1_1)2 (6)

In order to compute the total traffic v, some additional
definitions are in order:
o Yn: average total normal traffic injected in the under-
lying communication network due to normal messages,
i.e., not including quorum request messages (in bps).
¢ 74: average total traffic injected in the underlying com-
munication network due to messages generated by the
quorum attainment protocol (in bps).
Thus, the total network traffic can be written as

Y=+ (7)

The average total arrival rate 7y, of requests to obtain a
quorum can be found by observing that

1. Each process which does not have a pending request
generates a new request with rate A, given that it has
not failed.

2. A process that has requested a quorum will not sub-
mit a new request until it gets an answer from the
previous one. If the process obtains a quorum, then it
proceeds to obtain mutual exclusion.

3. As many requests as submitted may be simultane-
ously being processed.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH , 199X

This situation can be modeled as a queuing system with fi-
nite customer population (due to observation 2 above) with
infinite number of servers (due to observation 3 above). Let
k be the number of requests being processed. Then, the
arrival rate A (k) of requests to the system given that k
requests are being processed is equal to Ay - (1—p)-(n—k).
The average service time, T, of a request is equal to D* if
the process succeeds in obtaining the quorum (which oc-
curs with probability A4) and is equal to D™ otherwise.
Hence,

(8)

The service rate u (k) given that k requests are being
processed is equal to k / Z. So, using the results for
GI/GI/oo//n 7], we get that the probability, pg, of having

k requests being processed is given by,

n
kaPO'pk<k>

where pg is given by

T=A-D°+(1—A)-D*

(9)

(10)

1
Po= T~
(1+p)"

and p is defined by the following equation:
p=A(1-p)= (11)
So, the average total request rate is equal to the aver-

age arrival rate of requests to this GI/GI/oo//n queuing
system and is given by,

HZ;EA(/C)-J%
- pogAqu—p)(n—mk()

i
- poAq(l—p)i(”—k)Pk (A)

k=0

A =

= poA(1—p) LGj_ow’“ (Z)—kin:_okpk (Z)]
= o (L= [n (14 p)" —np(1+ "]

] (12)

If we substitute the value of py from equation 10 into
equation 12 we finally get

= poA(I=p)n(l+p"""

nAy (1-p)

Ar =
I+p

(13)
Finally, 7, can be written in terms of the average arrival
rate of requests to the shared resource, the average number,
Np,, of messages exchanged per request, as well as their
respective size. So,

1
»}/q:Ar.Nm._

Hq (4

where N, is given by

Ny =AN; +(1—-A) N (15)

Note that A, N, ,and N]2* are computed by the protocol
submodel.

The normal traffic injected in the network, v, , is equal to
the average number of up nodes multiplied by the average
traffic submitted per node. Thus,
Laye(y

n k
k=0

Ta =) (1—p)*p*

P

1
= —Xn(l-p) (16)
Hn
IV. SUBMODEL FOR THE AGRAWAL AND EL ABBADI
ProTOCOL

In [1], Agrawal and El Abbadi present an efficient and
fault-tolerant algorithm for generating quorums in order
to achieve distributed mutual exclusion. Their algorithm
assumes a logical tree organization of the network. A site
attempting to form a quorum sends a Request Quorum
(REQ) message to the root of the tree. If the root is up,
then it responds with an Acknowledgement (ACK) mes-
sage. If the root is up then the algorithm continues re-
cursively, trying to form a quorum, with the left or right
subtree. If it can obtain a quorum from either of the two
subtrees then it returns the quorum together with the root.
Otherwise, if the root is down, the algorithm recursively ob-
tains a quorum from both the left and the right subtrees,
and then returns their union as the quorum for the whole
tree. A pseudocode description of the protocol is given
in Fig. 2. A node that wants to form a quorum calls the
procedure GetQuorum with the root of the tree as param-
eter. Note that because of line 4 in the pseudocode the
protocol is non-deterministic. That is, the protocol may
compute the quorum for the left child first and the quorum
for the right child second, or vice versa. We assume that
the protocol chooses to compute either quorum first with
the same probability. Further, we assume that this choice
does not depend on other factors, such as previous infor-
mation about failures of nodes. The Agrawal and El Ab-
badi’s algorithm achieves fault-tolerance by ensuring that
a node requesting mutual exclusion has several alternative
quorums.

We derive the necessary expressions, which are needed
by our unified model, for the performance analysis of the
Agrawal and El Abbadi’s protocol. First, some definitions
are in order. The distance between any two nodes of a tree
is equal to the number of edges on the unique path in that
tree that connects these nodes. The level of a node of a
tree is equal to its distance from the root of that tree. The
hetght of a tree 1s equal to the maximum of the distances
of any leaf node of that tree from its root. The height of
a node of a tree is defined to be equal to the height of the
subtree of that tree that is rooted at that node.

Hereafter, we assume that a complete binary tree with
n nodes is given. This tree has height A = log(n + 1) — 1,

MENASCE, YESHA, AND KALPAKIS

Algorithm GetQuorum.
Input: The root r of a binary tree T'.
Output: A quorum consisting of nodes of T'.
Begin

(* Empty(T') evaluates to true iff 7' is empty. *)
* Up(v) evaluates to true iff node v agrees to¥)
* be in a quorum. *)
* Left(v) returns the left child of a node v *)
* Right(v) returns the right child of a node v *)
* Both Left(v) and Right(v) return {} if *)

v is a leaf. ¥)

*

P

1 If Empty(7T) Then
2 Return { }
3 Else If Up(r) Then
4 Return ({r} U GetQuorum(Left(r))) or
({r} U GetQuorum(Right(r)))
5 Else
6 Q1 — GetQuorum(Left(r))
7 Q2 — GetQuorum(Right(r))
8 If(Qi=0orQs=10) Then
9 Exit (*Failed to get a quorum¥*)
10 Else
11 Return (Q1 UQ2)
End

Fig. 2. Agrawal and El Abbadi’s Quorum attainment protocol.

has (n+1)/2 leaves, and each leaf has height 0 and level h.
The number of nodes of that tree at level j (or equivalently
at height h — j) is equal to 2/, for any 0 < j < h.

We say that a quorum attainment protocol succeeds if
and only if it returns a non-empty quorum. Otherwise, we
say that it fauls.

We use the following notation. Hereafter, ¢ is assumed
to be a non-negative integer less than or equal to h.

o 17 average time to complete the execution of the pro-
tocol, when it starts at a node of height i, given that
the protocol succeeds.

. Tif: average time to complete the execution of the pro-
tocol, when it starts at a node of height i, given that
the protocol fails.

o M;: average number of messages sent during the ex-
ecution of the protocol, when it starts at a node of
height ¢, given that the protocol succeeds.

. Mif: average number of messages sent during the ex-
ecution of the protocol, when it starts at a node of
height i, given that the protocol fails.

o A;: probability that the protocol, when it starts at
a node of height ¢, succeeds. Thus, A; denotes the
avatlability of the protocol, when it starts at a node of
height i.

Note that if we execute the Agrawal and El Abbadi’s
protocol on a binary tree of height A, then D* =1}, D"* =
T!, N3 = Mj, N = M and A = 4y,

We provide recursive equations for T, Tif, M7, and Mz-f,
for all0 < i < h. Agrawal and El Abbadi [1] give an expres-
sion for the availability of their protocol. This expression,

repeated in terms of our notation, is

201 —p)Ai_1+ (2p—1)AZ |, fori=1,2,...,h
for ¢ = 0.
(17)

Consider the execution of the protocol when it starts at a
node v of the tree that is at height :. Note that v is the root
of a subtree of height i. The average time to execute the
protocol and the average number of messages sent depends
on whether the root v of this subtree is up or down, on
whether the protocol succeeds or fails when it is started at
the children of v (if ¢ # 0), on the probability of failure
of the nodes, on the average end-to-end delay, and on the
time to detect that a node is down.

Theorem 1: Suppose the protocol starts at a node of
height ¢. Then, the average execution time 7}’ of the proto-
col and the average number of messages M, sent during the
execution of the protocol, given that the protocol succeeds,
are

[(2F+ 17)(1 — p)Aim1 + (Tou + 2171)pAZ 1+
(2477, + Tif_l)(l —p)Ai—1(1 = A1)/ A,
T8 = for i=1,...)h

2t for 1=0
(18)

and

(24 M7) (1 —p)Aioy + (1 4+ 2M_)pA7_ +
(2 + Mis—l + Mif—l)(l - p)AZ—l(l - Ai—l)]/Ai7
M} = fori=1,...,h

2, for i=0

(19)
respectively.

Proof: Let v be a node of height i. The protocol starts
executing at node v. If v is of height 0 then, since the pro-
tocol succeeds, the protocol sends two messages (one REQ
message plus one ACK message) and its average execution
time is 2¢. Hence, T§ = 2t and M§ = 2. Otherwise, v is of
height ¢« > 1. Let vy and vg be the left and right children
of v. Nodes vy and vg are of height ¢ — 1. We introduce
notation for the following events:

FEy : root v is up.

F : the protocol succeeds if it starts at vg.
FE. : the protocol succeeds if it starts at vg.
Eys : the protocol succeeds if it starts at v.

If £ is an event then E° denotes its complementary
event. For example, EY, denotes the event that node v
is down, while E denotes the event that the protocol fails
if 1t starts at node vr.

There are three cases to consider:

Case 1: node v is up and the protocol succeeds if it
starts at the child it chooses to try first. By sym-
metry and without loss of generality, we assume it will
start at node vr. Since we assume that the proto-
col succeeds at node v, the probability of this case is
Pr[Ew & Eg | Eps]. Further, in this case, the aver-
age execution time of the protocol, when it starts at

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH , 199X

v, is 2t + T} | and the average number of messages
exchanged is 2 + M} .

Case 2: node v is up and the protocol fails if it starts
at the first chosen child and it succeeds if it starts
at the other child. By symmetry and without loss
of generality, we assume that the protocol starts with
node vy, first, and then with node vg. Since we assume
that the protocol succeeds at node v, the probability of
this case is Pr[En, & E§ & Eo | Eps]. In addition, in
this case, the average execution time of the protocol,
when it starts at v, is 2t + Tif_1 + T} , and the average

number of messages sent is 2 + Mif_1 + M.

Case 3: node v is down. Given that the protocol suc-
ceeds when it starts at node v, the protocol must suc-
ceed when it starts at nodes vy, and vg. The probabil-
ity of this case is Pr[Ef, & Eq & Eg | Eps]. Further,
the average execution time of the protocol, when it
starts at v, is Toyur + 2777, and the average number of
messages sent is 1 + 2M; ;.

Therefore, the average execution time 77 of the protocol
and the average number of messages M; sent, when the
protocol starts at node v, are

TE o= QITE,) PrlBe & Fa | Byt
(2 + T2, + TL,) - PrlEny & B & Eur | B+
(Tout + 277) - Pr[EL, & Eq & Eo | Ep]
(20)
and
M = (24 M) PrlEw & Ba | Byt
(24 M2, + ML) - PrlBu & B3 & By | B+
(14+2M7) -Pr[EL & Eq & Ey | Eps)
(21)
respectively.

Next, we compute formulas for the probabilities that ap-
pear in the above two equations. We start with the com-

putation of a formula for Pr[E., & Eq | Eps]. Using Bayes’
theorem, it follows that
Pr[Eps | Erw & Eg)|Pr[ELy & Ey)

Pr[EBw & Eq | Eps] = b 22

r[& 1 | 1%] Pr[Eps] ()
Observe that Pr[ELs | Evy & Eq] = 1 and that Pr[Ey] =
A;. Since the events E}, and Fg are independent, we have
that Pr[Evy & Eg] = Pr[Ew] -Pr[Eq] = (1—p)Ai—1. There-
fore,

1—p)A;_
Pr[Ery & By | Eps] = (Z# (23)

The formula for Pr[E, & E & Eg | Eps] can be computed
similarly as follows. We have that

Pr[Ew & E§ & Eo | Eps] =
Pr[Eps | Evu & ES & Eg] - Pr[Ew & ES & Eg]
Pr[Ep]

Note that Pr[Eps | Ery & ES & Es] = 1 and that Pr[E] =

A;. Since Er, £, and g are independent, we have that
Pr[Ew & B & Esy | = Pr[Ew] - Pr[E3] - Pr[Eg]

= (1—p)Ai_1(1 — A;j_1). (25)

(24)

Hence, we get that

(1= p)Ai_a(1—
A;

Aiz1)

Pr[Er & ES & Eo | Eps] = . (26)

Finally, we compute a formulafor Pr[Ef, & Eq & Es; | Eps).
From Bayes’ Theorem, we have that

Pr[Ef, & Eq & Eo | Eps] =

Pr[Eps | B2, & By & Byl - PrlES, & Eg & By]
Pr[Eps]

(27)

Since E%,, Eg, and E,. are independent, we have that

ru’

Pr[E:, & Eqy & Es,] = Pr[EL] Pr[Ey] - Pr[Ey]
= pAis1Aia. (28)

Further, since Pr[Eps | ES, & Eq & Eg
A;, we have that

=1 and Pr[Ep] =

PAZZ—1

+ (29)

Pr[Ef, & Eq & Eq | Eps] =
Note that Pr[Ew, & Eg | Eps|+Pr[Ew & ES & B | Eps] +
Pr[Ef, & Eq & Eo | Eps] = 1.

Substituting the formulas for the corresponding proba-
bilities in equations (20) and (21), and using the fact that
T = 2t and M§ = 2, equations (18) and (19) follow. M

Theorem 2: Suppose the protocol starts at a node of
height ¢. Then, the average execution time Tif of the pro-
tocol and the average number of messages Mif sent during
the execution of the protocol, given that the protocol fails,
are

[(22 + 277)(1 = p)(L - Ai—1)?+
(Tout + j;f_l)p(l - Ai—1)+

7f =) (Tow + T + T3)pAii(1— Aim)]/(1— A))
! for i=1,...,h
Tout for 1=0
(30)
and
[(2+2ML)(1 - p)(L - A1)+
(L4 M)p(1— A1)+
mf =] L+ MI 4 M)pA (1= Aily)]/(1— Aj),
! fori=1,...,h
1 for i=0
(31)
respectively.

Proof: Let v be a node of height i. The protocol starts
executing at node v. If v is of height 0 then, since the
protocol fails, the protocol sends one message (one REQ
message) and its average execution time is Teyu;. Hence,
T({ = Tout and Mg = 1. Otherwise, v is of height ¢ > 1.
Let vy and vg be the left and right children of v. Nodes
vy and vp are of height ¢+ — 1. Recall the following events
(from Theorem 1):

MENASCE, YESHA, AND KALPAKIS

FE.y : root v is up.
Eg : the protocol succeeds if it starts at vg,.
FE. : the protocol succeeds if it starts at vg.
Eps : the protocol succeeds if it starts at v.
If £/ is an event then E° denotes its complementary event.

There are three cases to consider:

Case 1: node v is up and the protocol fails if it starts at
node vy, or vg. Since we assume that the protocol fails
when it starts at node v, the probability of this case

is Pr[Ew & B & Eg | EG]. Further, in this case, the
average execution time of the protocol, when it starts
at v, is 2+ QTZ-f_l and the average number of messages
exchanged is 2 + QMZ»f_l.

Case 2: node v is down and the protocol fails if it starts
at the child of v it chooses to try first. By symmetry
and without loss of generality, we assume it chooses
node vy, first. Since we assume that the protocol fails
when it starts at node v, the probability of this case
is Pr[Ey, & EY | E5]. In addition, in this case, the
average execution time of the protocol, when it starts
at v, is Tout—}—Tif_1 and the average number of messages
sent is 1+ Mif_l.

Case 3: node v is down, the protocol succeeds if its starts
at the node chosen first, and it fails if it starts at the
other child. By symmetry and without loss of general-
ity we assume it chooses node vy, first and node vy sec-
ond. Since the protocol fails when it starts at node v,
the probability of this case is Pr[EY, & Eg & B | E5].
Further, the average execution time of the protocol,
when it starts at v, is Tous + 137, + Tif_1 and the av-
erage number of messages sent is 1 + M7 | + Mif_l.

Therefore, the average execution time Tif of the protocol
and the average number of messages Mif sent, when the
protocol starts at node v, are

T/ = (2421 ,) Pr[Bw & B3 & L | BL]+
(Tout + j;f_l) : Pr[Er?u & Escl | Egs]—*—

(Tous + Ty + TL)) - Pr[Ef, & Ea & B | Ef]
(32)
and
M} = (2+2M]) Pi[E, & B4 & EZ. | B+
(1 + Mif—l) ' Pr[Er?u & Escl | E}is]—*—
(1 + Mis—l + Mif—l) : Pr[Eﬁu & Eq & Escr | Egs]
(33)
respectively.

Next, we compute formulas for the probabilities that ap-
pear in the above two equations. We start with the com-
putation of a formula for Pr[Ey, & Ef & Eg | Ef]. Using
Bayes’ Theorem, it follows that

Pr[Eru & Escl & ESCI“ | EES] =

Pr[Egs | i & E & EZ.] - Pr[Ew & Eg & E¢,]
Pr[ESS]

(34)

Since the events .y, £, and EZ, are independent, we have

that Pr[Ew, & ES & ES) = Pr[Ew]-Pr[ES] - Pr[ES) = (1—

p)(1—A;_1)*. Further, since Pr[Ef, | Ev, & EG & EG] =1
and Pr[Ef] = 1 — A;, we have that

—p)(1 = Ainy)?

Pr[Ew & ES & EC A

r

1 ee) = (35)

Similarly, we compute a formula for Pr[EL, & Ef | E5]
We have that

PT[ESS | Er?u & Escl] : Pr[Elfu & Escl]
Pr[EéS]

Pr[Eﬁu & Escl | E;s] =

(36)
Note that Pr[E{ | Ef, & Eg] = 1 and that PrEf] = 1-A4;.

Since the events E, and £ are independent, we have that

PrlEs, & E4] = Pr{ES) - Pr(BS] = p(1 — Aiy). (37)
Hence, we get that
c c c 1 _ p(l B Ai—l)
Pr[Eru & Esl | Eps] - 1— Az . (38)

Finally, we compute a formula for Pr[Ef, & Eg & Eg | E5]
From Bayes’ Theorem, we have that

PrEf, & By & B | E5] =

& By & B8] Pr[ES, & Ey & EE. |
Pr[Egs]

ru

PrES, | B

(39)

Since the events E7,, Eq, and E¢, are independent, we have
that

Pr[Er?u & Eq & Escr] = Pr[Er?u] : Pr[ESI] ' Pr[Escr]
= pAi—l(l_Ai—1)~ (40)

Further, since Pr[E{ | B, & Eg & Eg] = 1 and Pr[E7] =

1 — A;, we have that

pAi—1(1— A1)
1— A4 '

Pr[Esu & ES] & Escr | Egs] = (41)

Note that Pr[Ew, & E & %, | ES)+Pr[E, & Ef | ES]+
Pr[ES, & Eg & EZ | B = 1.

Substituting the formulas for the corresponding proba-
bilities into equations (32) and (33), and using the fact that
T = Tou and M{ = 1, equations (30) and (31) follow. M

V. SUBMODEL FOR THE MAJORITY CONSENSUS
ProToOCOL

The majority consensus protocol [5], [20] is a relatively sim-
ple protocol to achieve mutual exclusion in a distributed
system. To guarantee mutual exclusion, a node must re-
ceive permission from a majority of nodes in the network.
It is obvious, that there can be only one majority at any
instant, thus mutual exclusion is achieved. The majority
quorum protocol is resilient to both node and link failures.
It has been frequently used in replicated databases and as
a solution to the distributed commit problem. A brief de-
scription of the majority protocol is as follows (see also
Fig. 3). C = [(n+ 1)/2] messages are sent in parallel to

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH , 199X

Algorithm MajorityConsensus.
Input: A set L = {vy1,vs,...,v,} of n nodes.
Output: A quorum consisting of [(n + 1)/2] nodes
from L.
Begin
(* Sizeof (X) returns the cardinality of a set X. *)
(* ResetClock() sets the Clock to the T,y *)
(* Timeout(): true iff the Clock timeouts. *)
1 () — Empty set of nodes
2 While Sizeof(L) > [(n + 1)/2]— Sizeof(Q@) Do
3 S «— a subset with [(n + 1)/2]— Sizeof(Q)
nodes from L
4 Remove from L all the nodes which are in S
) Send, in parallel, a quorum request message
to each node in S

6 ResetClock()

7 While not Timeout() and Sizeof(S) > 0 Do

8 If a node v € S replies with an ACK
message Then

9 Add node v to @

10 Remove node v from S

11 End-While

12 End-While

13 If Sizeof(Q) < [(n + 1)/2] Then

14 Exit (* Failed to get a quorum *)

15 Else
16 Return (Q)
End

Fig. 3. Majority Consensus Quorum Attainment Protocol.

the C' nodes which constitute a majority, where n is the
total number of nodes. If all of them acknowledge, the
quorum is formed and the protocol stops successfully. If m
(m < n—C) nodes fail, m messages have to be sent to ad-
ditional nodes and the process repeats itself. If m > n—C
the majority cannot be reached and the protocol stops un-
successfully.
We use the following notation.

o 17;: average delay to execute a quorum request given
that 2 messages are sent, that j nodes have not received
any quorum request messages yet, and that the quo-
rum will be successfully obtained. Let M;'; denote the
average number of messages exchanged in this case.

. TZ{J»: average delay to execute a quorum request given
that ¢ messages are sent, that j nodes have not re-
ceived any quorum request messages yet, and that the
quorum will not be successfully obtained. Let Mz-fv-
denote the average number of messages exchanged in
this case.

o A; ;: probability that at least ¢ out of j nodes have not

failed.

Observe that the average delay and average number of
messages in executing the majority protocol, in the case
of successful quorum attainment, are given by 7%, _ . and
M¢ . _ o, respectively. Similarly, in case it does not suc-
ceed in obtaining a quorum, the average delay and average

number of messages are given by Té nc and Mé nec Te-
spectively. Further, the availability of the majority proto-
col is given by Ac ,. In what follows, we derive recursive

expressions for 77, M/, TZ-{J», T7;, and A; 5.
The probability A4;; that at least ¢ out of j nodes have

not failed is given by the following expression:

Aij = XJ: (;jf) (1—p)tp/ "

k=i

_ 7! o i-1 j—i
= (i—l)!(j—i)!/o 71 —z)y 'de. (42)
The right hand term of Equation 42 (see [14]) provides a
more efficient manner of computing A; ; for large number
of nodes. Note that if ¢ > j then A4;; = 0.

Theorem 3: Suppose that the protocol selects to send
messages to ¢ nodes, that there are still j nodes to which no
messages have been sent, and that the protocol successfully
obtains a quorum consisting of ¢ nodes. Then, the average

S

delay, 73;, and the average number of messages sent, M} ;,

are given by the following two equations:

[21(1 - p)' +

St (Tow + T)

? m i—m
)= A A

= m
if j >0
21, if j =0
(43)
and
[2i(1 - p)" +
ey 2 = m o My)
? m i—m
M, = ()P Al i
if j >0
2, if j =0
(44)

Proof: The protocol sends messages to i nodes. There
are two cases to consider, depending on whether any of
these ¢ nodes fail. First, let us introduce the following
events:

®; j m: m out of the ¢ nodes that were sent messages
have failed, while there are still j nodes to which no
messages have been sent yet.
Wy 1o at least & out of I nodes are up.
The two cases to consider are:

Case 1: None of the ¢ nodes have failed. The average
delay and the number of messages, in this case, are 2t
and 21, respectively. This case happens with probabil-
ity equal to Pr[®; ;0 | Wi itj]-

Case 2: Some of the ¢ nodes fail, say m, where 1 < m <
min{i,j}. Then, the average delay and number of

S y 8
messages are Tous + 177, ;_,, and 2e —m + M7, .,

MENASCE, YESHA, AND KALPAKIS

respectively. The probability of this happening is
Pr(®; j m | Wiigj]-
Note that when j7 = 0, and since the protocol successfully
obtains a quorum of size i, we have that T, = 2t and
M7, = 2i. Moreover, from the case analysis above, and
when j >0, we get

Ti; = 20-Pr[®ijo| Yiigs] +
min{i,j}
> (Tows + T) Pr[®i jm | Wiigg]
m=1
(45)
and
Mi; = 20-Pr[® 0| W] +
min{i,j}
S @i—m M) Pr[® o | W]
m=1
(46)
Next, we compute Pr[®;;, | ¥;;4;], for m =

0,...,min{é,j}. Using Bayes’s Theorem, we get that

Pr{Wiiyj | ®ijm] - Pr(®i;m]
PrW; 4]

Pr(®; jm | Wiigj] =

Since Pr{Wiij] = Ajitj, Pr[®;jm] = (,;) pr(l=p)",
and Pr[¥; i4; | @i jm] = Pr[¥,, ;] = Am j, we have that

i .

Aiitj

Pr[q)iyjym | \I’i,i+j] = (47)

Substituting Equation 47 into Equations 45 and 46, and
using the facts that 77, = 2t and M;, = 2i, and since
Aoj =1, we get Equations 43 and 44, respectively. ||

Theorem 4: Suppose that the protocol selects to send
messages to ¢ nodes, that there are still j nodes to which
no messages have been sent, and that the protocol fails to
obtain a quorum consisting of ¢ nodes. Then, the average
delay, I}{j, and the average number of messages sent, MZ»{]»,
are given by the following two equations:

min{i j}

1 1 ;
Tf - - M1 _ p)i—m
=t LY () ma-n
(1= A) (Toue + T2,) +
§Z (:)pm(l —p)'7" x
m
m=min{z,j}+1
(1—Am;)Tou] (48)
and

m+ ML)+

<T;) P (L= p) " x
(1= Apg)(2i—m)] (49)

(1= A)2

D

m=min{7,j}+1

respectively.

Proof: The protocol sends messages to ¢ nodes. Since
we are given that the protocol fails to obtain a quorum
consisting of ¢ nodes, it follows that at least one of this
nodes fails. First, let us introduce the following events:

®; ; m: m out of the 7 nodes that were sent messages
have failed, while there are still j nodes to which no
messages have been sent yet.

Vi less than k out of I nodes are up.

Let m be the number of the i nodes that fail, 1 < m <
t. There are two cases to consider, depending on whether
m > min{i, j} or not. First, we consider the case where
m > min{i,j}. Note that since m < i, m > j. In this
case, since the protocol fails to obtain a quorum of size 1,
and since there are less than m nodes to which no messages
have been sent (m > j), no additional messages will be sent
after detecting the failure of any of these m nodes. Note
that it must be the case that at least one of the ¢ nodes fails
since the protocol fails. Since failure of a node is detected
after time Ty, it follows that the average delay in this
case is equal to Tyy. The average number of messages is
2¢ — m since the protocol sends ¢ messages and receives
i — m acknowledgements back, min{i,j} < m < i. This
happens with probability Pr[®; ; m | ¥7,,.].

Second, we consider the case 1 < m < min{i,j}. Since
the protocol will send m messages to the remaining j nodes,
the average delay is Tyt + TT{W»_m. The average number
of messages sent is 2¢ — m + ng’j_m. Therefore, since the
probability that m out of the ¢ nodes fail given that the
protocol fails to obtain a quorum of size i while there are
still 7 > 0 nodes to which no messages have been sent is
Pr[®; j,m | ¥7,;,;], it follows that the average delay and
number of messages are

min{4,j}
Ti{j = Z (Tout + T,{%]'_m) : Pr[q)i,j,m | \II;H_]»] +
m=1
Z Tout - Pr[®ijm | ¥4, (50)
m=min{z,j}+1
and
min{4,j}
o= S i) Pl i)
m=1
S @imm)Prl@ | W] ()
m=min{7,j}+1
respectively.

Next, we compute Pr[®;; , | Vi,], form = 1,... 4

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH , 199X

Using Bayes’s Theorem, we get that
Pf[‘l’f,iﬂ' | q)i,j,m] ‘Pf[q)i,j,m]

Pr[‘l’f,iﬂ']

Pr(®;jm | W5 ,15] =

Since Pr[¥i; ;] = 1 — Ajiqj, Pr[®jm] = <,Zn> (1 -
1

P)i_ma and Pr[q’f,iﬂ' | @ij,m] = Pr[‘l’fn,j] =1-An;, we
have that
i i—m
(1= 4ns) ()=o)
(52)
Substituting Equation 52 into Equations 50 and 51, we get
Equations 48 and 49. ||

VI. SUBMODEL FOR THE PRIMARY SITE PRoTOCOL

The delay results given for the Primary Site protocol should
be viewed as lower bounds on the actual results, since due
to its centralized nature, the primary site has the potential
of becoming a bottleneck. In this case, the assumption
that the quorum request processing time is negligible is
not necessarily true. The primary site copy approach [2] is
quite simple. A node — the primary site — is responsible
for mediating all requests. If it is up, a quorum is formed,
at the cost of 2 messages (one for the request and one for
the acknowledgement). Otherwise, a quorum is not formed
and only one message is sent.

The analysis for the primary site protocol is quite
straightforward. The average number of messages, average
delay, and availability expressions are as follows: N, = 2,
NS =1,D =2t D™ =Tyyy,and A =1—p.

VII. PARALLEL AGRAWAL AND EL ABBADI PRoOTOCOL

We describe here a modification to the basic Agrawal and
El Abbadi quorum attainment protocol. The objective is to
decrease the average delay at the expense of a small or no
increase in the number of messages while maintaining the
same availability. A description of the modified algorithm
is given in Figs. 4, 5, and 6.

Figure 4 shows the main body of the protocol while
Figs. 5 and 6 show the auxiliary functions SelectPaths and
QStatus, respectively. For line 20 of the code in Fig. 4,
we need the following definition. Given a tree 7' and two
nodes v and u of T, we say that v is an ancestor of u in
T if the path from the root of T' to u includes v. Note
that v is an ancestor of itself. In this protocol, we send
messages, in parallel, to all nodes on paths to leaves of the
tree. Further, because the QStatus function is based upon
the Agrawal and El Abbadi protocol, it is not difficult to
see that our modification returns a quorum as in Agrawal
and El Abbadi if one exists. A formal proof of correctness,
based on similar arguments, as in Agrawal and El Abbadi,
can be easily constructed. However, its presentation would
not shed any additional light to the material discussed here
and it is therefore omitted.

We give an example of the Parallel Agrawal and EI Ab-
badi (ParAgrAbb) protocol for a complete binary tree T'

Algorithm ParAgrAbb.
Input: A binary tree T" with n > 1 numbered nodes.
Output: A quorum consisting from nodes of T'.
Begin
(* ResetClock() sets the Clock to Tyye. *)
(* Timeout(): true iff the Clock timeouts. *)
1 UpNodes, DownNodes, WaitFor «—— Empty set
of nodes
2 RootSet — { the root r of T' }
3 TreeNodes «— The set of nodes of T’
4 While QStatus(7', r, TreeNodes — DownNodes)
Failure Do
5 WaitFor «— SelectPaths(T', RootSet, UpNodes
U DownNodes)
6 Send requests in parallel to all nodes in
WaitFor
7 ResetClock()
8 While not Timeout() and | WaitFor | > 0 Do
9 If a node v € WaitFor sends an ACK Then
10 Add node v to UpNodes
11 Remove node v from WaitFor
12 End-While
13 If QStatus(7', r, UpNodes) = Success Then
14 Return the quorum computed by
GetQuorum using UpNodes
(*Obtained a quorum*)
15 Add each node of WaitFor to DownNodes
16 If QStatus(T, r, TreeNodes - DownNodes) =
Failure Then
17 Exit (* Failed to obtain a quorum *)
18 RootSet «—— Empty set of nodes
19 For each node v € WaitFor Do
20 Find lowest ancestor v’ of v such that
QStatus(T, v', TreeNodes -
DownNodes) # Failure
21 Select a child v" s.t. v ¢& UpNodes and
v" ¢ DownNodes
22 Add v" to RootSet
23 End-For
24 End-While
25 Exit (* Failed to obtain a quorum *)
End

Fig. 4. Parallel Agrawal and El Abbadi’s Quorum attainment pro-
tocol.

with 7 nodes. We assume that the root of 71" is numbered
1, and for i = 1,2,3, the left and right children of node
¢ are numbered 2¢ and 2¢ + 1, respectively. Suppose that
nodes 1 and 2 of T" are down and that all other nodes of T’
are up.

First, consider the basic Agrawal and El Abbadi proto-
col. It sends a request to node 1 and after T,,; it finds
that node 1 is down. Then, it requests a quorum for the
subtree rooted at nodes 2 and 3. It sends a request to node
2 and after T,y it finds it is down. It obtains a quorum for
the subtree rooted at node 2 after 4f time while sending

MENASCE, YESHA, AND KALPAKIS

Function SelectPaths(T, R, E).
Input: A binary tree T of nodes and two subsets R
and E of nodes in T
Qutput: A subset of the nodes of T" that lie on paths
that start at nodes in R and end at leaves of T" while
they do not use any node in F.
Begin

1 Temp «—— Empty set of nodes

2 For each node v € R Do

3 Find a path in T from v to a leaf of T' that

does not use any nodes in E

4 Add all the nodes in that path to Temp

5 End-For

6 Return Temp
End

Fig. 5. The SelectPaths function for the Parallel Agrawal and El
Abbadi protocol.

Function QStatus(T, v, U).
Input: A binary tree T', a node v of T', and a subset
U of the nodes of T
QOutput: Success or Failure depending on whether a
quorum based on the Agrawal and El Abbadi proto-
col can be obtained for the subtree of T rooted at v
under the assumption that all nodes in (not in) U are
up (down).
Begin

(* Left(v) returns the left child of a node v *)

(* Right(v) returns the right child of a node v *)

1 If v is a leaf of T" Then

2 If v € U Then Return Success

3 Else Return Failure

4 If v € U Then

5 If QStatus(T, Left(v), U) or

QStatus(T, Right(v), U) = Success

6 Then Return Success

7 Else Return Failure

8 Else

9 If QStatus(7, Left(v), U) and

QStatus(T', Right(v), U) = Success

10 Then Return Success

11 Else Return Failure
End

Fig. 6. The QStatus function for the Parallel Agrawal and El Abbadi

protocol.

11

and receiving a total of 4 messages. Then, it continues to
obtain a quorum for the subtree rooted at node 3. It sends
a request to node 3, and after time 2¢, it finds it is up. At
this point, let us assume that it decides to send a message
to node 7, the right child of 3. After time 27 it finds that
node 7 is up. Hence, the basic Agrawal and El Abbadi pro-
tocol obtains a quorum after 27,,; + 8¢ time while sending
or receiving a total of 10 messages.

Consider now the ParAgrAbb protocol. Suppose that
the path selected at line 5 of the code in Fig. 4 consists
of the nodes 1, 2 and 4, which becomes the current Wait-
For set. The protocol sends requests, in parallel, to all
those nodes. Since only nodes 1 and 2 are assumed down,
after T,y time, the protocol continues with execution of
line 13 of the code. Since the set of UpNodes consists of
node 4, the protocol continues with line 15, where the set
of DownNodes is updated to include nodes 1 and 2. At
line 20, the protocol selects an ancestor for each node in
WaitFor for which it is not certain the protocol will fail to
obtain a quorum for the subtree rooted at that ancestor.
For node 1, the protocol selects node 1 and it adds node
3 to RootSet. For node 2, the protocol selects node 2 and
it adds node 5 to RootSet. Then, the protocol loops back
to line 4. Suppose that the paths selected at line 5 con-
sists of nodes 3, 5, 7. The set WaitFor consists of nodes
3,5, 7. The protocol sends requests, in parallel, to all nodes
in WaitFor, and after time 2¢, since all these nodes are up,
all these nodes acknowledge. Then, the protocol continues
with line 13. At this point the set of UpNodes consists of
nodes 3,4,5,7. Function QStatus at line 13 returns success
and the protocol successfully obtained a quorum consist-
ing of nodes 3,4,5,7. Note that the quorum is determined
in line 14 by invoking the same GetQuorum procedure de-
scribed in the original Agrawal and El Abbadi protocol
with the following modification. The Up(v) function de-
scribed in GetQuorum, evaluates true iff node v is up and
thus agrees to be in a quorum. In that case, this has to
be done by sending a message to v and waiting for a reply.
Here, the Up(v) returns true if v € UpNodes. Therefore,
no messages need to be exchanged at this point. The use
of the GetQuorum procedure guarantees that the quorum
obtained by ParAgrAbb conforms to a quorum that would
be obtained by AgrAbb. The time taken is T,y + 2¢ while
the total number of messages exchanged during the exe-
cution of the protocol is 10. It should be noted that line
14 is necessary since in the course of running the protocol,
there are nodes that are discovered to be up which how-
ever are not part of the Agrawal and El Abbadi quorum.
For example, consider a tree with 31 nodes and height 4.
Suppose that: i) all leaves except the rightmost are down,
ii) the left child of the root is also down, and iii) all other
nodes are up. Suppose that we explore the tree from left
to right; that is whenever we have a choice between left
and right child, we choose the left child first. The quorum
consists of the path from the root to the rightmost leaf. In
this example, the set of UpNodes in the protocol includes
many up nodes which are not in the quorum. A similar
situation appears in the AgrAbb protocol.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH , 199X

Note that, in this small example, both the original and
parallel Agrawal and El Abbadi protocols exchanged the
same number of messages, while the delay for the parallel
version of the protocol is substantially smaller than for the
original version. In general, we expect that the parallel
version will exchange more messages than the serial version
while the delay of the former will be much smaller than for
the later. In section VIII, we compare the performance
of both versions of the Agrawal and El Abbadi protocol.
Observe that both protocols have the same availability.

VIII. NUMERICAL RESULTS

We compare the performance of the various quorum at-
tainment protocols discussed in the previous sections. The
results for Agrawal and El Abbadi (AgrAbb), Majority
(Maj), and Primary Site (PS) are derived from the ana-
lytic models, while those for the parallel implementation of
Agrawal and El Abbadi (ParAgrAbb) were derived by dis-
crete event simulation. In all graphs shown in this section
we assume that the model parameters are the ones given
in Table I, unless otherwise specified.

TABLE I
MODEL PARAMETER VALUES

| Parameter Value |
1o 0.1 sec
Tout 1.0 sec
¥* 2 Mbps
Aq 0.2 request/sec
An 2.0 requests/sec
1/ pin 1024 bits
1/ 1, 256 bits

Figure 7 shows the variation of the average delay Dq as a
function of the probability of failure for the four protocols.
In all cases, the delay is equal to 27 when the probability
of failure is equal to zero. For the four protocols, the av-
erage delay tends to infinity when p tends to 1. However,
Maj tends to infinity faster than AgrAbb and ParAgrAbb,
which in turn go to infinity faster than PS. Note however,
that the PS curve should be interpreted as a lower bound
on delay due to the reasons previously discussed. In the
range 0 < p < 0.7, ParAgrAbb exhibits a smaller or com-
parable delay to all other protocols.

Figure 8 shows the variation of the availability of the
four protocols as a function of the probability of failure for
a network with 31 nodes. AgrAbb and ParAgrAbb have
the same availability for obvious reasons. The PS protocol
has the smallest availability for values of probability of fail-
ure smaller than 0.5. In this range, Maj is slightly better
than AgrAbb and ParAgrAbb. For values of p greater than
0.5, PS presents the best availability, followed by AgrAbb,
ParAgrAbb, and Maj. In practice, values of p are not ex-
pected to exceed 0.3. So, in the range p < 0.3, Maj exhibits
the best availability. A more detailed comparison between

the availability of AgrAbb and Maj can be found in [1].

31 Nodes
200 T T T T T T T T T T T T T T
—— AgrAbb |
— - Maj a
160 | PS b .
&--—0 ParAgrAbb

180 -

140 -
120
100 -
80 -

Average Delay

60 -

40 |

20 -

—a T V\N | | |
02 03 04 05 06 07 08 09 10
Probability of Failure

0
00 01

Fig. 7. Average delay vs. probability of failure for fixed n.

31 Nodes

1.0 peo—s

0.9 —— AgrAbb q
——- Maj
""""""" PS

&~ - —o ParAgrAbb

0.8
0.7
0.6
0.5 -

Availability

0.4
0.3
0.2
0.1
0.0 =

00 01 02 03 04 05 06 07 08 09
Probability of Failure

oy

1.0
Fig. 8. Availability vs. probability of failure for fixed n.

Figure 9 shows the performability of the four protocols
as a function of the probability of failure for a network with
31 nodes. As it can be seen, the performability tends to
zero for values of the probability of failure greater than 0.5.
This is due to the fact that the average delay for 31 nodes
increases very rapidly in this range and tends to infinity
as indicated in Fig. 7. In the range 0 < p < 0.5, Maj has
a higher availability (see Fig. 8) and lower average delay
(see Fig. 7) than AgrAbb. Hence, the performability of
Mayj is greater than that of AgrAbb in this range. On the
other hand, ParAgrAbb has the highest performability of
all protocols over the whole practical range of the proba-
bility of failure p, 0 < p < 0.3, since it exhibits a lower
delay than Maj and AgrAbb for any value of the proba-
bility of failure in this range. The PS curve in Fig. 9 is
accurate as long as the primary site does not become a
bottleneck. Otherwise, this curve should be viewed as an
upper bound on performability for PS. In the case where it
becomes a bottleneck, the assumption that processing time

MENASCE, YESHA, AND KALPAKIS

31 Nodes
0.50 ; : . I
0.45 | —— AgrAbb q
‘ ---- Maj
0.40 & ,,,,,,,,,,,, PS 7
0.35 |4 o--—0 ParAgrAbb |
z i
£ 0.30 p! 8
Q LY
[Vil
E 0251 .
(=] B
S 020 -9 1
o (R
0.15 B
0.10 i
0.05 B
0.00 L | i e S . & & &
0.0 O. 02 03 04 05 06 07 08 09 10

Probability of Failure

Fig. 9. Performability vs. probability of failure for fixed n.

can be neglected, compared with communication time, does
not necessarily hold. Note also, that the theoretical maxi-
mum for the performability is 0.5 for any protocol. This is
due to the fact that the maximum availability is 1 and the
minimum normalized delay is 2 Ty /Tp = 2.

The variation of the performability as a function of the
number of nodes for a fixed value of the probability of fail-
ure p (p = 0.01) is shown in Fig. 10. In general, the per-

Probability of Failure p = 0.010
050 T T T T T T T

—— AgrAb|

—— Maj
PS R
T O ;QA:’arAgrAbb

0.45
040 N Tl
035 o
0.30 | N]
0.25 ~~ 8

0.20 -

Performability

0.15 -
0.10 -

0.05 - b

0.00 ‘ : ‘
0 20 40 60 80

Number of Nodes

Fig. 10. Performability vs. number of nodes for fixed p.

formability decreases as the number of nodes increases for
Maj, AgrAbb, and ParAgrAbb because the average delay
increases faster than the availability increases. It should be
noted that Maj and ParAgrAbb are equivalent for n = 3.
For this reason, they have the same performability for this
number of nodes. For values of n greater than 3, ParA-
grAbb exhibits a better performability than Maj which in
turn is better than AgrAbb. For instance, for 63 nodes
and p = 0.01, ParAgrAbb has a performability 80% higher
than Maj, and Maj has a 170% higher performability than

13

AgrAbb. Thus, ParAgrAbb has a performability 386%
higher than AgrAbb for this set of parameters. This trend
is expected to continue as the number of nodes increases
evenfurther. The PS curve is pretty much insensitive to the
number of nodes as expected since the availability for PS
is not a function of the number of nodes nor is the average
delay per attempt to obtain a quorum. Again, we are not
considering the possible bottleneck effect of PS.

The performability, as defined in equation 1, does not
change if both the availability and the average normalized
quorum attainment delay are multiplied by the same fac-
tor. Obtaining even a few percent points of improvement
in the system availability may be more difficult than reduc-
ing the delay by the same factor. Thus, one might want
to use alternative performability metrics that give more
weight to availability. We propose a availability-weighted
performability metric defined as

_10g10(1 —A)

P = o7 (53)

where A, and D’Q are, as already defined, the availability of
the algorithm and the average normalized quorum attain-
ment delay, respectively. Figure 11 shows the variation of
P’ as a function of the probability of failure for 31 nodes.
Under this new metric and for 31 nodes, Maj has a higher
performability than any other protocol, followed by ParA-
grAbb, AgrAbb, and PS. If we fix the probability of failure

31 Nodes
T
|
6.00 i —— AgrAbb
z | o/
8 5.00 | e PS 8
g 1\‘\ o- - —o ParAgrAbb
S o0 |
g 4.00 *‘\ N b
8 : \\
S 3.00 R K .
[A\
= [N
4 W
£ 200) R
© N
B | \ N
Z 1.00 ! SRR ,
“ ~> e
B B
0.00 = e e
0.0 0.1 0.2 0.3 0.4
Probability of Failure
Fig. 11. Availability-weighted performability vs. probability of fail-

ure for fixed n.

and vary the number of nodes, as indicated in Fig. 12, we
observe that the performability for Maj and ParAgrAbb
increase initially with n due to the logarithmic effect of the
increase in availability as n increases. After some value of
n, the availability of both protocols increases very slightly
with n but the delay starts to increase significantly with n.
At this point, the performability starts to decrease. This
occurs first for Maj since its delay increases faster with n
than for ParAgrAbb as shown in Fig. 13 discussed next.
AgrAbb and PS have very low values of P’ if compared

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH , 199X

with Maj and ParAgrAbb. In the case of AgrAbb this is
due to its much higher delay (see Fig. 13). In the case of
PS, this is due to its lower availability (see Fig. 8).

Probability of Failure p = 0.010

480 | ‘ ‘ ‘ ; :]
2 430 | P N]
g / ~_
g / -~
£ 3.80 , .]
8) e
T 3.30 f ; e .]
a , - .
g 280+ / & 1
5 o —— AgrAbb
.% 2.30 loy - M%J 1
= //
e PS]
5 ¢ &~ - —0 ParAgrAbb
L 1.30]
©
>
< 0.80]
0.30 ‘ ‘ ‘
° 20 40 60 80
Number of Nodes
Fig. 12. Availability-weighted performability vs. number of nodes
for fixed p.

Figure 13 shows the variation of the average delay Dg
as a function of n for a fixed value of p (p = 0.01). The
average delay increases with the number of nodes for all
protocols except for PS. The delay for ParAgrAbb is always
less than that of Maj, which in turn is less than the one for
AgrAbb. For p = 0.01, the delay of AgrAbb ranges from
1.8 to 5 times the delay of ParAgrAbb. Also, the difference
between AgrAbb, Maj, and ParAgrAbb tends to increase
as n increases.

Probability of Failure p = 0.010
T T T T T T

15 r b

—— AgrAbb
——- Maj
13+ PS A

&--—0 ParAgrAbb

1.1 -

0.7

Average Delay

0.5

03 F = I S 4

0.1 I I I I I I I

Number of Nodes

Fig. 13. Average delay vs. number of nodes for fixed p.

Figure 14 shows the variation of the average number of
messages Ng for AgrAbb, ParAgrAbb, Maj, and PS as
a function of the probability of failure for 31 nodes. As
it can be seen, the number of messages for Maj is larger
than for any of the other protocols. For probability of fail-
ure in the range 0 < p < 0.3, the number of messages

31 Nodes
200 T T T T T T T T)’ T /‘ T |
|
180 | AdrAbb oy !
——- Maj | | |
g 160 - ----Ps Lo !
© &- - —o ParAgrAbb | |
g 140 g Fo .‘
|
-.E_ 120 I
o |
— I
2 100 !
g i
2 80 |
(] |
8 60 !
(] I
z 40 |
I
20 ! 8
0 == —k—r—f»—w—f‘rf—*T*—*?—*“\""\’/7/\7‘//\
00 01 02 03 04 05 06 07 08 O 1.0
Probability of Failure
Fig. 14. Average number of messages vs. probability of failure for
fixed n.

for AgrAbb and ParAgrAbb are very close (less than 5%
difference). On the other hand, the average delay for ParA-
grAbb is about half of that for AgrAbb in the same range
of p. The average number of messages for Maj in the same
range of p is roughly twice as the same number for AgrAbb
and ParAgrAbb. The average number of messages for Maj
tends to infinity before ParAgrAbb, which goes to infinity
before AgrAbb. All protocols saturate before PS. In fact,
for Maj, Ng starts to grow very fast for values of p close
to 0.5, while for AgrAbb and ParAgrAbb this happens for
p in the vicinity of 0.65. PS shows a very small number
of messages until p reaches 0.9. After this point, the aver-
age number of messages for PS starts to rise sharply. PS
exhibits the smallest number of messages among all three
protocols. As shown by the figure, for each protocol there
is a different value of p after which the protocol should not
be used since the number of messages would increase very
fast. The same observations may be derived by looking at
the delay curves.

Figure 15 shows the variation of the average number of
messages Ng as a function of the number of nodes for a
fixed value of p (p = 0.01). For such a low value of p,
AgrAbb and ParAgrAbb require an almost identical num-
ber of messages to attain a quorum. As it can be seen,
the difference in Ng between Maj and AgrAbb increases
sharply with n. For PS, Ng is not a function of the num-
ber of messages.

Figure 16 shows the impact of the rate, A;, at which
each node generates new requests on the average delay.
For this figure we kept the ratio A,/A, constant and equal
to 10. As it can be seen, AgrAbb is clearly more sensitive
than the other protocols to the quorum request workload
intensity. This is due to the fact that ¢ increases with },
and the coefficient of ¥ in the average quorum attainment
delay expression is greater for AgrAbb if compared with the
other protocols. Maj and ParAgrAbb are very close to one
another, but ParAgrAbb has a better performance than

MENASCE, YESHA, AND KALPAKIS

Probability of Failure p = 0.010
——

70 T T T T T T T T
e Agr'Abb P
60 ——- Mg P .
g | PS e
=4 o - —o ParAgrAbb -
@ 50 - s i
@ e
= v
S 40 - e A
g S
E 3ot . .
z s
) s
? 20 // il
10 e b
Ve
O L L L L L L L

0 10 20 30 40 50 60 70 80
Number of Nodes

Fig. 15.
p.

Average number of messages vs. number of nodes for fixed

Maj since it exchanges less messages per quorum request
than Maj, thus injecting less traffic into the network. For
larger number of nodes, the difference between Maj and
ParAgrAbb is expected to increase. Again the PS curve is
a lower bound on delay.

31 Nodes and Probability of Failure p = 0.010

9.00 L L O L E A AL |
8.00 - —— AgrAbb]
---- Maj
700 F PS]
&--—0 ParAgrAbb
s, 6.00 -]
©
8 500 []
(0]
(=)
S 4.00]
2
< 300 []
2.00 -]
1.00 | I]
IS c Sy
0.00 e ‘
0.0 1.0 2.0 3.0 4.0 5.0

Quorum requests per second per node

Fig. 16. Average delay vs. arrival rate of quorum requests.

IX. CoNCLUDING REMARKS

This paper presented a unified framework to evaluate the
performance of quorum attainment protocols. The unified
model consists of two submodels: one for the underlying
communication network and another for the protocol being
analyzed. An iterative procedure is given to solve the fixed-
point equation that results from the unified model. The
procedure is shown to have a unique solution under very
general assumptions. The performance metrics computed
from the model are: average delay to obtain a quorum,
availability, average number of messages needed to obtain
the quorum, and performability — a performance metric

15

introduced in this paper to evaluate quorum attainment
protocols.

Many mutual exclusion protocols have been proposed in
the past. In all cases, the performance of these protocols
has been basically assessed in terms of two metrics: num-
ber of messages needed to get the quorum and availabil-
ity of the protocol. Counting the number of messages is
less important than assessing the quorum attainment de-
lay. Some protocols may achieve higher availability at the
expense of larger number of messages or higher quorum
attainment delays. In this paper, we defined a performa-
bility metric which is the ratio between the availability and
the average normalized quorum attainment delay. So, the
higher the availability and the lower the delay, the bet-
ter the performability of the quorum attainment protocol.
The theoretical maximum for the performability for any
protocol is 0.5. An alternative definition of performability
which gives higher weight to availability than to quorum
attainment delay was also discussed.

Analytical expressions were derived to obtain the average
quorum attainment delay, average number of messages and
performability of the following three protocols: AgrAbb [1],
Maj [20], and PS [2]. A parallel implementation of AgrAbb,
called ParAgrAbb, was proposed and its performance met-
rics were obtained through simulation. ParAgrAbb was
shown to have a higher performability than all other pro-
tocols analyzed over the whole range of values of the prob-
ability p of node failure. Even though Maj has a higher
availability than ParAgrAbb in the range 0 < p < 0.5,
ParAgrAbb has a lower delay than Maj in the whole range
of values of p. Therefore, ParAgrAbb provides a better
tradeoff than Maj between availability and average quo-
rum attainment delay. The same kind of behavior can be
observed for all other values of the number of nodes eval-
uated. If the availability-weighted performability metric
is used, Maj exhibits a better performability than ParA-
grAbb for less than 63 nodes. After this point, ParAgrAbb
outperforms Maj since the delay for the latter increases
faster than for the former protocol.

For all protocols analyzed, the average delay tends to
infinity when p tends to 1. However, Maj tends to infinity
faster than AgrAbb, which in turn goes to infinity faster
than ParAgrAbb and PS. The number of messages for Maj
is larger than for any of the other protocols. For small
values of the probability of failure (0 < p < 0.3), the num-
ber of messages for AgrAbb and ParAgrAbb are very close
(less than 5% difference). On the other hand, the average
delay for ParAgrAbb is about half of that for AgrAbb in
the same range. The average number of messages for Maj
in the same range of p is roughly twice as the same number
for AgrAbb and ParAgrAbb. The average number of mes-
sages for Maj tends to infinity before ParAgrAbb, which
goes to infinity before AgrAbb.

The observations made in the previous paragraph show
that a delay analysis is a better method for evaluating pro-
tocols than simply counting messages, since the delay does
not grow linearly with the number of messages exchanged.
Finally, the framework presented here can be applied to

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. Y, MONTH , 199X

other distributed mutual exclusion and commit protocols
as well.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referees
for their careful review. In particular, they would like to
express their gratitude to one of the referees for pointing
out some flaws in the analytical models contained in an
earlier version of this paper.

APPENDIX

APPENDIX A: EXISTENCE OF A UNIQUE SOLUTION TO
THE UNIFIED MODEL

This appendix presents a proof that the unified model
has a unique fixed-point solution under the fairly general
assumptions given in the following theorem.

Theorem 5: The fixed point equation solved by the al-
gorithm given in Section II has exactly one solution under
the following conditions:

o the network is in equilibrium, i.e., vy < 7%,

o D* and D™ are strictly increasing functions of 1,

o the probability of a site failure is less than 1 (p < 1),

and

o the derivatives of D® and D™* with respect to f exist.

Proof: Let us rewrite here some of the equations
shown in Section II in a form suitable for the proof. Let
D?# and D™ be functions of as defined below.

D* =g, (1) (54)
D™ = gy (%) (55)
Since D® and D™ are assumed to be strictly increasing
functions of 7, ¢ () > 0 and ¢\" (I) > 0. Let r = 1 —
v/4*. Since we assume that the network is in equilibrium,

it follows that 0 < r < 1. So, according to equation 6, we
can write as a function g3 of r, as follows

t=gs3(r)="To [1 —1/r+ 1/7’2]

Function gs has the following properties which can be
easily derived from expression 56:
o lim,_q g3 () = 0.
¢ (3 (1) = To.
o g3 (r) is a monotonically decreasing function of r with
no saddle point. In fact,

(56)

(1) T 2
§ =512 67)
which is always negative since 0 < r < 1. Also,
(2) 2T [3
g3 (1) = 5 [; -1 (58)

which is always positive since 0 < r < 1.
If we combine equations 8, 11, 13, 14, 16, 54, and 55,
we can write r as a function g4 of 1.

—_ _)\nn(l—p)/yn

~ n A (1=p) Noo/(py 7*)
L+ X, (1—p)[Agr (1) + (1 - A) g2 (T)]

r =

(59)

For fixed values of the model parameters, we can rewrite
equation 59 as
Ky

)=1-K; — 7 i
ga (1) Y1 Ks g (D) + Ka g2 (D)

(60)

where K1, Ky, K3, and K4 are positive constants, since we
are assuming p < 1.

Function g4 has the following properties:

o g4 is a strictly increasing function of %.

(1)

first derivative, g,

In fact, its

(1), is given by
W gy _ Ko [Ks gt (0 + Ka g8 (D]
9, (1) = - I ¢ 1)]?
[1+ K3 g1 (8) + K4 g2 (7))

(61)

Since Ko, K3, K4,g§1) (f),ggl) (t) > 0, it follows that
o) >0

o Also, lim;____ g4 (f) = 1 — K3, since the delays tend to
oo when the network delay ? goes to infinity. Note also
that 1 — K7 < 1 since K; is simply the ratio between
normal traffic and the network saturation traffic.

o The minimum possible value for g4 (¢) occurs for ¢ =
Ty, since Ty is the minimum possible value for ¢ and
ga (1) is a strictly increasing function of ¢.

Since g4 is a strictly increasing function of #, there is an

inverse function g;* (r) such that

T=g;'(r)

The solution to the fixed point equation is given by
equating equations 56 and 62. Thus,

t=gs(r)=g;" (r)

Given the properties derived above for functions gs and
ga, it 1s easy to see that they may be plotted as shown in
Fig. 17. As it may be seen from the figure, the curves for
g3 (r) and g;* (r) intersect at exactly one point. [|

(62)

(63)

REFERENCES
[1] D. Agrawal and A. El Abbadi, “An Efficient and Fault-Tolerant

Solution for Distributed Mutual Exclusion,” ACM Transactions on
Computer Systems, Vol. 9, No. 1, pp. 1-20, February 1991.

[2] P. A. Alsberg and J. D. Day, “A Principle for Resilient Sharing
of Distributed Resources”, Proceedings of the Second International
Conference on Software Engineering, pp. 562-570, October 1976.

[3] J. M. Bernabéu-Auban and M. Ahamad, “Applying a Path-
Compression Technique to Obtain an Efficient Distributed Mu-
tual Exclusion Algorithm”, Proceedings of the Third International
Workshop on Distributed Algorithms, pp. 33-44, September 1989.

[4] H. Garcia-Molina and D. Barbara, “How to Assign Votes in Dis-
tributed Systems,”, Journal of the ACM, Vol. 32, No. 4, pp. 841-
860, October 1985.

[5] D. K. Gifford, “Weighted Voting for Replicated Data”, Proceed-
ings of the Seventh ACM Symposium on Operating Systems Prin-
ciples, pp. 150-162, December 1979.

[6] J. L. Hammond and P. J. P. O'Reilly, Performance Analysis of
Local Computer Networks, Addison Wesley, 1986.

[7] L. Kleinrock, Queueing Systems, Volume I: Theory, John Wiley
& Sons, 1975.

[8] L. Kleinrock, Queueing Systems, Volume II: Computer Applica-
tions, John Wiley & Sons, 1976.

[9] M. H. MacDougall, Simulating Computer Systems, Techniques
and Tools, MIT Press, Cambridge, 1987.

[10] M. Maeckawa, “A v/N Algorithm for Mutual Exclusion in Decen-
tralized Systems,” ACM Transactions on Computer Systems, Vol.
3, No. 2, pp. 145-159, May 1985.

MENASCE, YESHA, AND KALPAKIS

g3 (7)
-=- gt(n)

o~~|

1o

Fig. 17. g3 (r) and g4_1 (r)

[11] S. Rangarajan, S. Setia, and S. K. Tripathi, “Fault-Tolerant Al-
gorithms for Replicated Data Management”, Proceedings of the
8th International Conference on Data Engineering, pp. 230-237,
February 1992.

[12] K. Raymond, “A Tree-Based Algorithm for Distributed Mutual
Exclusion,” ACM Transactions on Computer Systems, Vol. 7, No.
1, February 1989, pp. 61-77, February 1989.

[13] G. Ricart and A.K. Agrawala, “An Optimal Algorithm for Mu-
tual Exclusion in Computer Networks,” Communications of the
ACM, Vol. 24, No. 1, pp. 9-17, January 1981.

[14] S. Ross, Introduction to Probability Models, 4th edition, Aca-
demic Press, New York, 1989.

[15] B. A. Sanders, “The Information Structure of Distributed Mu-
tual Exclusion Algorithms,” ACM Transactions on Computer Sys-
tems, Vol. 5, No. 3, 284-299, August 1987.

[16] M. Singhal, “A Heuristically-Aided Algorithm for Mutual Exclu-
sion in Distributed Systems,” IEEE Transactions on Computers,
Vol. 38, No. 5, pp. 651-662, May 1989.

[17] M. Singhal, “A Dynamic Information Structure Mutual Exclu-
sion Algorithm for Distributed Systems, ” IEEE Transactions on
Parallel and Distributed Systems, Vol. 3, No. 1, pp 121-125, Jan-
uary 1992.

[18] R. M. Smith, K. S. Trivedi, and A. V. Ramesh, “Peformabil-
ity Analysis: Measures, an Algorithm, and a Case Study,” IEEE
Transactions on Computers, Vol. 37, No. 4, pp. 406-417, April
1988.

[19] I. Suzuki, and T. Kasami, “A Distributed Mutual Exclusion Al-
gorithm,” ACM Transactions on Computer Systems, Vol. 3, No. 4,
November 1985, pp. 344-349, November 1985.

[20] R. H. Thomas, “A Majority Consensus Approach to Concur-
rency Control for Multiple Copy Databases,” ACM Transactions
on Database Systems, Vol. 4, No. 2, pp. 180-209, June 1979.

17

Daniel A. Menascé received a Ph.D. de-
gree in Computer Science from the Univer-
sity of California at Los Angeles (UCLA) in
1978, a M.Sc. degree in Computer Science,
and a B.S.E.E degree both from the Pontifical
Catholic University in Rio de Janeiro (PUC-
RIO), Brazil in 1975 and 1974, respectively.
Since 1992 he has been with the Department
of Computer Science at George Mason Univer-
sity where he is a Professor of Computer Sci-
ence and Associate Director of the Center for
the New Engineer. Dr. Menascé was a visiting faculty at the Insti-
tute for Advanced Computer Studies (UMIACS) of the University of
Maryland College Park from 1991 to 1992, a visiting faculty at the
University of Rome, Italy, in 1981, and a full time faculty at PUC-RIO
from 1978 to 1992 where he chaired the department of Computer Sci-
ence from 1981 to 1983. Professor Menascé was the president of the
Brazilian Computer Society from 1987 to 1989. His research interests
include the areas of performance modeling, distributed systems, and
high performance and parallel computing. Dr. Menascé is the author
of over 70 refereed articles and is the chief author of three books.
His research over the past years has been supported by ARPA, NSF,
Hughes Applied Information Systems, IBM Brasil, and the Brazilian
Telecommunications Agency.

Yelena Yesha received Ph.D. and M.Sc. de-
grees in Computer and Information Science
from The Ohio State University in 1989 and
1986, respectively, and a B.Sc. degree in Com-
puter Science from York University, Toronto,
Canada in 1984. Since 1989 she has been with
the Department of Computer Science at the
University of Maryland, where she is presently
an Associate Professor. Dr. Yesha was a pro-
gram chair and general chair of the Interna-
tional Conference on Information and Knowl-
edge Management and member of program committees of many pres-
tigious conferences. She was a guest editor of International Journal
on Intelligent and Cooperative Information Systems, Journal of Sys-
tems and Software and Journal of Computer and Software Engineer-
ing. Dr. Yesha was a consultant for Center for Excellence in Space
Data and Information Sciences, where she was one of the key people
in establishing the digital library program at NASA. Her research
interests are in the areas of distributed databases, distributed sys-
tems, and performance modeling. She has authored over 40 refereed
articles in these areas. Dr. Yesha is presently on leave from Univer-
sity of Maryland and working at the National Institute of Standards
and Technology, where she is leading research on digital libraries and
electronic commerce at the Information Systems Engineering Divi-
sion. Dr. Yesha is a senior member of the IEEE Computer Society,
member of New York Academy of Science and member of ACM.

Konstantinos Kalpakis received the Ph.D.
and the M.S. degrees in Computer Science from
the University of Maryland Graduate School,
Baltimore, in 1994 and 1992, respectively. He
also received the Diploma degree in Computer
Engineering and Informatics from the Univer-
sity of Patras, Greece, in 1989. He is currently
a Visiting Assistant Research Professor at the
Computer Science Department at the Univer-
sity of Maryland Baltimore County. His re-
search interests include parallel and distributed
computing, combinatorial optimization, analysis of algorithms, data
structures, and databases. Dr. Kalpakis is a member of the Associa-
tion of Computing Machinery (ACM) and the Society for Industrial
and Applied Mathematics (SIAM). He is also a member of Sigma Xi
and Upsilon Pi Epsilon.

