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Abstract decisions. Example of such applications can be found in
environmental monitoring, quality control in manufachgi
Data gathering is a basic activity of many wireless sen- assembly lines, agriculture, etc. A simple but energy ineffi
sor network applications. We propose a novel collabora- cientmethod for gathering the measurementsiis to have each
tive data gathering approach utilizing data co—occurrence sensor transmitting its every measurements to base station
which is different from data correlation. Our approach of- since often there is redundancy and/or dependency among
fers a trade—off between communication costs of data gath-the sensor measurements.
ering versus errors at estimating the sensor measurements We propose a new exploitation on data redundancy by
at the base station, by having sensors with co—occurring a novel collaborative data gathering approach utilizing co
measurements alternate in transmitting such measurementeccurrence of measurements, offering a trade-off between
to the base station, and having the base station make infer-communication costs of data gathering versus errors at es-
ences about sensor measurements utilizing only the transtimating the sensor measurements at the base station. In-
mitted data. We describe two effective methods for in- tuitively, two sensors have measurements co—occurring if
network detecting measurements co-occurrence among serthe occurrence sets of the measurements — the set of times
sors, an efficient protocol for scheduling the transmission at which they are measured — are similar. It is utilized
of measurements, and a simple algorithm for measurements follows. Using the in-network method we present, sen-
inference. Our simulation results on synthetic and real sors discover measurement co-occurrence. Then, sensors
datasets show a substantial (up to 65%) reduction on the with co—occurring measurements collaborate, by informing
communication costs of data gathering with few number of the base station and taking turns in communicating those
inference errors £ 6%) at the base station. measurements to the base station. In addition, each sen-
sor may choose a default measurement, which it will not
be transmitting to the base station, upon informing the base
. station of its choice. Being informed of the measurement
1 Introduction co-occurrence relationship and the defaults, the baderstat
Recent advances in hardware development have led tdnfers the measurements of the non-transmitting sensiers ut
the creation of wireless ad hoc networks of battery—poweredlizing only the transmitted measurements.
microsensors (WSNs). Because of its unattended opera- Let us note that data co-occurrence is different from
tion mode and easy deployment, WSN becomes attractivedata correlation. Intuitively, correlation attempts tptae
to many applications such as wildlife tracking, environmen monotonicity trends between sequences (e.g. are both se-
tal and habitat monitoring, battlefield intelligence, atcl e  quences increasing?, etc). Co-occurrence does not provide
However, the limited energy of those sensors poses the chalinformation about such monotonicity trends; instead, -t at
lenge of using such systems in an energy efficient manner. tempts to quantify the trend that two values tend to occur
We consider the problem of energy efficient data gath- simultaneously, and is capable of handling discrete enumer
ering, which is a common activity of many WSN applica- ated data. Itis not hard to find sequences with co—occurring
tions. We focus on applications in which each sensor con-values of high frequency, but having correlation coeffitien
tinuously monitors the targets of interests in a field, ared th anywhere in the rangé—1,1). This implies that corre-
base station is interested in getting every (discrete enume lation is not an indicator of co—occurrence. Further, data
ated) measurement from all the sensors, in order to deterco—occurrence can appear in both densely and sparsely de-
mine the status of the observing field and make appropriateployed sensor networks, while data correlation is normally



expected in densely deployed sensor networks. the communication cost of data gathering. Sharaf et
We present two effective methods, namely positional al. [9] utilize temporal coherence of sensor data to provide
min-wise and random projection, for sensors to in-network approximate answer to aggregation queries with reduced
detect measurement co-occurrence. Both methods comeommunication costs, while Yoon and Shahabi [10] utilize
pute small-size signatures of the measurement occurrencspatial correlation of sensor data. Goel et al. [11] use
sets, and then use the signatures to estimate their resenspatio—temporal correlation in sensor data for motion
blance. Computing the signatures and estimating the resemdetection, Deshpande et al. [12] incorporate time—varying
blance are both simple, which makes our methods mindful multivariate Gaussian models of sensor data to answer
of the limited energy and computation resources of the sen-queries, and transmit sensor data when those models do not
sors. As shown in our simulations, while random projection answer queries within desired accuracy. Our approach is
method performs better, both methods are effective, inderm complementary to them and handles discrete enumerated
of signature size and accuracy of resemblance estimation. sensor data. Furthermore, the notion of measurement
On utilizing measurement co-occurrence, we present anco-occurrence we utilize is a time—varying non—parametric
efficient protocol for sensors to schedule the transmissfion  statistical model of the sensor measurement field, which
co-occurring measurements. For simplicity, we assume thatdoes not require normality as [12] does.
communication links are lossless. Using our protocol, sen-
sors will determine their measurement transmission sched- The rest of the paper is organized as follows. We present
ule dynamically, distributively, and near-immediatelyurO  the technical details of our approach in section 2, the sim-
protocol is aggressive on reducing transmission of measure ulation results with synthetic and real datasets in se@jon
ments — normally just one of the sensors with co-occurring and the concluding remarks in section 4.
measurements will transmit, and at the same time it ensures
that one of the co-occurring measurements will always be2  Collaborative data gathering using mea-
communicated to th_e base s_tatlon._ In situations where data surement co-occurrence
co-occurrence persist, our simulation results show that ou
approach can offer substantial communication savings, at
the price of few number of inference errors— for syn-
thetic datasets it provides up 65% savings on the com-
munication costs with no more thd¥ errors, and for a
real dataset it provide37% savings andl.53% inference
errors.

2.1 Co-occurrence of measurements
Consider a wireless sensor network with a base station
andn sensors, with each sensor having an unique identi-
fier (sid). We refer to the sensor with sidas the sensor
i. The time at which measurements are made is assumed
to be a sequence of time intervals of equal length, e.g. the
measurement time is discrete. Each sensor has a synchro-
nized clock/counter that measures this discrete measure-
1.1 Related work ment time. Hereafter, we refer to measurement time simply
Broder [1] uses min-wise hashing for identifying near— as time. We assume that the base station needs to know all
duplicate documents on the web by estimating their resem-the measurements sensors make at each timeindowis
blance. Datar et al. [2] present min—wise based algorithms, contiguous sequenceoftimes, with thejth window W
for estimating rarity and similarity on data streams. Agar- peing the interval ofj + w, (j + 1) xw), for j = 0,1,2, . . ..
wal and Trachtenberg [3] use counting Bloom filters [4] for The relative time of a measurement made at tirimea win-
estimating the number of differences between remote setSqow 117 = [to,t,) isf = ¢ — t,. LetU; be the discrete
Resources in these works are not as limited as we have inypjyerse (domain) of the measurements sensuakes. Let
wireless sensor networks. Random projections is a powerfulmm € U, be the measurement sensonakes at time. An
dimensionality reduction technique with many applicaion  glement is a tuple(i, v), wherev € U; andi is a sid; for
since it approximately preserves vector norms under SOMeprevity, lete.value = v ande.sid = i. Given an element
conditions, see for example [5, 6]. We utilize random pro- . we define its occurrence sefy (¢) within a window W

jection together with features of 0-1 vectors, on estin@atin g pe the set of relative times that sensosid makes mea-
the resemblance of two remote sets in resource constraing,rement.value

sensor networks. ~
Chou et al. [7] exploit correlations for coding the sensor ~ Xw(€) ={t : Mmesiae = e.valueandt € W}t (1)

measurements in order to reduce the total number of Theresemblance(S;, S) of two setsS,, S» is defined
bits transmitted during data gathering. Gupta et al. [8], asr(S1, Ss) = |S1 N Ss|/|S1 U Ss|. The resemblance of

assuming that sensors know the data correlation structuregais takes values between 0 and 1 and is a measure of set
construct connected correlation—dominating sets to reduc similarity.

LIn this work we only consider the number of inference errovde We say that two elements ande; co-occurin win-
defer consideration of controlling the magnitude of ertorfuture work. dow W if the resemblance (xw (e1), xw(ez2)) is > 7,




where the co-occurrence threshalds a constant system
parameted < 7 < 1. We can show that the probability
Prles|es] > 7(1 4+ 27)/(1 + 7)%.

Note that co-occurrence is not a transitive relation, there

fore additional care is needed to determine a set of co-

occurring element = {ej,ea,...,en}. We consider

two approaches. In the clique approach, we require that2.3 Exploiting

every pair of elements i has resemblance . In the

connected—components (CC) approach, we require that for

every pair of elements id there exists a chain of elements
in £, with adjacent elements having resemblakce. We
experimentally find that the CC approach offers a better
communication cost vs. error rate trade—off.

2.2 Estimating co-occurrence of measure-
ments

w. The computation cost of both method€déwk). Note
that the min-wise hashing can be computed on-line, and for
random projection we use the 0-1 indicator vectothere-
fore both methods are mindful of the limited computation
resources of sensors.

co-occurrence for data

gathering

We show a protocol that the sensors and the base station
can use to reduce the communication costs of data gathering
by exploiting co-occurrences of measurements. The pro-
tocol allows sensors to discover co-occurring elements, to
collaborate on sharing the load of communicating such co-
occurring elements, and it allows the base station to make
inferences about the sensor measurements. Here, we as-
sume that the co-occurrences between elements persist for

HaVing sensors eXChange measurement occurrence Se%me period of time, much |arger than the window size

to identify co-occurrence can be unnecessarily expensive.

The base station maintains a co-occurrence (symmetric)

We describe two in-network methods for sensors to detectrejationC : U x U — {0,1}, U = U, U;, such that
measurement occurrence at a much smaller communicatioje, e,] = 1 iff it has been notified tl'l]g_tl ande, co—

cost.

First, we present a method for estimating set resem-

blance that is based on min—wise hashing. Giveandom
min—wise independent hash functidns: [0, w) — N, i =
1,2,..., k, themin—wise haslof a setS C [0, w) is the set
a(S) = {ai(S)}, wherew;(S) = min({h;(z) | z € S}).
We defingpositional min—wise hasbf setS to be the vector
(a1(9), az2(S), ..., ar(S)). The estimated resemblance of
two setsS1, So, using their positional min—wise hashes, is
)

7(S1,82) = [{i + ai(S1) = a;(S2)}/k

Second, we consider a method for estimating set resem-

blance based on random projections. Gikerandom vec-
torsz; € R, i = 1,2,...,k, with entries that are N(0,1)
i.i.d. random variables, for any sét C [0, w), with indi-
cator vectors € {0,1}*, the random projection & is the
projections = (s7 - 21,87 - 25,...,sT - z;) of s onto the
vectors{z;}. Since we can show that the resemblance of
two setsSy, Sa C [0,w) is

[[s1][* + [[s2][* — [Is1 — sa|?

r(S1,52) = ,
(S1,%) = [ allZ 131 = 52l

3)

we can estimate(S1, S2) by using the random projections
81, 89 instead ofsq, s5 in the formula above.

We define the (positional min—wise or random projec-
tion) signatureof an element within window 17 to be the
(positional min—wise hash or random projection) of its oc-
currence sekyw (e). For brevity, whenever it is clear from
the context, we simply talk about the signature of an ele-
mente, and we denote it witlr.. The size ob., is equal to

k, the number of hash functions or projections used to com-

pute it. As shown in our simulatioit,is small compared to

occur, together with a list of the default valuegiefaus it

has been notified of. At the end of the time periot] the
base station infers, , for the measurement, , of sensor
1 att using the algorithm in Figure 1.

BaseStationEstimator ()
I/l Base station computes measurement estimates
at each timet
foreach sensori do
g —— null
foreach received MeasurementMsg) do
e sid.t —— e.value
foreach elemente’ that co-occurs witte, i.e. Ce’, e] = 1 do
'fme’.sid,t is null 1h/en
mc/.sid,t —— e’ .value
foreach sensori do
if 712 ¢ is null then

Mt —— Mdefault (¢)

P RO ® N M WN R

P o

ReceiveNewM sg(set .S)

1/ Base station receives NewMsg

1 foreach (e1, ep) € S x S do
2 Cley, eg] — 1
ReceiveQuitM sg(element e)

/I Base station receives QuitMsg

1 foreach elemente’ € U do

2 Cle,e'] — 0

Figure 1. Algorithm used by base station to
compute 1 ¢.

Sensof maintains for each of its elements data struc-
ture ®[e] that consists of: a lis®[e].list of elements that
are discovered as co-occurring with?, sorted in increas-
ing order of their sids; a lisP[e].children of elements that

2Co-occurrence relatiof’ can be maintained using any standard data
structure for (sparse) undirected graphs. Each sensoraandnly one
default value.

3Note that sensarcannot have co-occurrence among its own elements.
If e is not co-occurring with other element, thdre].list = {e} and
Dle].state = normal.



Sensor M easurementL oop() Discover CoOccurrences(threshold )

1 foreach window W do 1l Sensor: discovers co-occuring elements at threshold
2 xw (e) «—— Oforale € U; 1 foreach sensorj € Adj; do
3 foreach time ¢ within W do 2 reques!TSSj from sensorj
4 take a measqren)ellland create elemenrt = (i, v) 3 foreach tuple (e, o) € T'SS; do
5 append relative timé to x yy/ (e) 4 foreach tuple (e’ , o _,) € TSS; do
6 if IsOnDuty(i, e, t) then 5 itr(ce, o ) <  then
Zl I/l end ;exil’i‘lmjivasurememMngto base station 6 appende’ to ®@[e].list and to® [e].children
9 7 —w — 1 then 7 mark® [e] as changed
10 TSS; =0 g foreach e € ?Irvsil;o
11 foreache € U; do a e © Yy
12 oe «— signature ofy 7 (&) 10 if @ [e] is marked as changethen »
13 apepend the tuplée, o yt/o TSS., 11 send NewMsgP [e] .1ist) to the base station

» e Q - o
14 it ®[e].state # waiting then 12 Dle] state —— waiting
15 ®[e].state «—— normal 13 foreach e’ € ®[e].list do

14 send UpdateMsg( ®[e].list) to sensore’ . sid

1sOnDuty(sid 4, dlement e, relativetime ) 15 upon receiving AckMsg for every UpdateMsg sedb
/I Sensori computes its duty status for element relative timet 16 ®[e].state «—— init
1 if ®[e].stateiswaitingorinit then X o
2 return true ReceiveUpdateMsg(sid j, st S)
3 dse Il Sensor: receives UpdateMsg from senspr
4 if e.value = m i) or®[e].state = updating then 1 findtheelement € U; N S
5 return false defauls () [e] P g 2 Ple].state —— updating
6 dse 3 append taP[e] . list all the elements ir§'
7 let j be the index of the elementin ®[e].list 4 forsach/elememc’ € @[e].children do
8 split the window{0, w) into | ®[e].list| intervalsIg, I, . . . 5 ife’ ¢ S then
9 if tisin intervaIIj then 6 send UpdateMsg( @ [e].list) to sensore’ .sid
10 return true 7 upon receiving AckMsg for every UpdateMsg sedo
11 ese 8 send AckMsg to sensgr
12 return false

Figure 3. Algorithm used by sensors to dis-

Figure 2. Algorithm used by sensors to cover co-occurrence elements.

schedule element transmissions.

ing the signatures of elements from neighboring sensors,
using the connected—components (see Fig. 3) or clique ap-
proach. Sensarrequests the sétSS; of signatures of el-
ements from sensors € Adj;, and if it finds an element

e’ that co-occurs witte, it updates®[e] by addinge’ to

are determined to co—occur withby sensor: itself; and
an attribute®[e].state indicating the status ob[e]. The
attribute ®[e].state takes values (apormal if ®e] is up—
to—date, (b)waiting if sensori initiated an update and is

waiting for acknowledgment messages, {ejt if sensori ®[e].list and®|e].children, and then updates the base sta-
had been the initiator of an update in the current window, 4 and all the sensors with an elementif].list. When-

or (d)updating if sensori received an update message Up- oyer 4 sensor receives such an update, it further updates all
dateMsg in the current window. its children not already updated.

At each time, sensoi decides whether to transmit to the Sensor may quit having in the ®[e].list at any time?.
base station its measurement using the algorithmin Fig 2. In, sich a case, sensoremoves: from ®le] list, chooses a
this algorithm, the current window is partitioned into equi  sensorj in ®[e].list to act as a quit coordinator for updating
length sub-windows, calleduty-zoneswith each sensorin  he remaining sensors with elementsiife].list. The quit
®le] list taking charge of one duty—zone. This makes the .qodinator sensoj “adopts” e's children ®[e].children,
scheduling simple and distributive, and enables sensors oy it tells all sensors with an elementife] list to remove
join or leaved[e] list quickly. There are different ways to ¢, from their co-occurrence lists. See Figure 4 for details.
split a window into duty-zones, for example, using equi~  gecayse the measurement co-occurrence is estimated ap-

depth approach, the window can be split into duty—zones SOproximately, the base station may maikéerence errors

that each one has approximately the same number of oc-mm £ m,., when sensof is off-dutyat timet. Here we

currences of the co-occurring elements. The equi-depthyiefy analyze when inference errors may happen, and our
approach tries to distribute the burden of communicating ¢y.us in this paper is the number rather than the magni-
the co-occurring elements equally among the Sensors iny e of inference errors. When senstias default element
®[e].list. Such an approach may lead to longer network life- Maetauts(i) bUt NOt any co-occurring element, or does not
times, provided the overhead in computing equi—depth dUtyhaVemdcfau]t(i) but only one co-occurring element, base
zones is small. Also it may be attractive for sensors with ¢i-iion will always be able to infef; , correctly asm ;,
more residual energy iff[e].list to take charge of multiple ;o it makes no inference error. When sengbias mul-
duty—zones. We defer these considerations to future work. tiple co-occurring elements and is off-duty for more than
Sensor maintains a sef'S'S; with its elements and their

signatures in the previous window, which it updates at the  “For example, the base station may request sengorquit or re-
end of the current window. establish having in the ®[e].list when it suspects high number or costly

. L . errors ore. Furthermore, if sensarhas an element with high frequency

Sensor may initiate the discovery of elements that may ; shortae].list, it may decide to quit from ®[e].list and choose as

co-occur with one of its elementsat any time, by request-  its defaultmgeganie (4).




) Performance comparison, k = log(w)
Quit(element e) 0.07 ; ;

T

/I Sensori quits co-occurrences for its element

1 send QuitMsg¢) to base station ~©- positional min-wise ||
choose a sensgras quit coordinator among the sensors with elemen@|in] . list

2
3 send QuitCoordinateMsg( & [e].children) to sensorj
4 setd[e].list «—— {e}, ®[e].state «—— normal,and®[e].children «— null

ReceiveQuitCoordinateM sg(element e, set S)

1l Sensori receives QuitCoordinateMsg

1 find elemente’ U ; that co-occurs witle, e.g.e € ®[e’].list
removee from both&® [e”].list and® [e’].children £ oossh |
append tob[e’].children all the elements ir§

d and true

2

3

4 @[e'].state «—— waiting 004k 1
1" ’ N .

5 foreach e’ € ®[e’].list do

6 send QuitMsg{, e, ®[e’].list)to sensore’’ . sid
7 upon receiving AckMsg for each QuitMsg serto

8 dle’].state —— init

0.035 q

(error) between

ReceiveQuitMsg(sid j, element e, set S)
11 Sensori receives QuitMsg from sensgr g
1 find the element’ € U;ns

2 P[e'].state «—— updating
3 removee from holh@[c’].list and@[c’].childrcn 0.015 L L L L L L
4 foreach ¢’ € [e’].children — S do 256 512 768 11\)54d 1280 1536 1792 2048
5 send QuitMsg{, e, S) to sensole’’ . sid indow size (w)
6 upon receiving AckMsg for every QuitMsg serdo
7 send AckMsg to sensgr . . . .
Figure 5. Performance of positional min-wise
and random projection methods, & = logw.
F|gure 4. AlgOfIthm Used by SenSOfS tO CIUIt Convergency to true resemblance (r), k = log(w)
0.09 . : : T :
element from co-occurences. +reoes
0.08 & r=095 ]
- r=0.99

one of them at time&, even if no sensor ha&gefault, the
base station may erroneously infés ; # m; ., because it
may have to guess which one of the off-duty co-occurring
elements was measured by sensat timet. Similarly

when sensors haveget.uls, €ven if sensoi has just one

. . . 0.03 —
co-occurring elemeny, the base station may make errors in /\/\/\/’
M ¢, @s it may not correctly determine dfor mgesauit (7) 002} 1

was measured by sensoat timet. g

and true

(error) between

1 H 856 512 768 1024 12‘80 15‘36 1792 2048
3 Experimental evaluation Window se (v

We use both synthetic datasets and real sensor measure-
ments in our experiments. For synthetic datasets, we used Figure 6. Convergence of random projection
a uniform distribution model for generating sensor mea- ~ Method.
surements. For the real sensor datasets, we downloaded
from [13] the temperature and humidity measurements of
sensors in James Reserve, CA.

To evaluate our co—occurrence detection methods, we
use the average resemblance estimation error, and the siz
k of the signatures.. To evaluate the utilization of co—
occurrence on data gathering, we use the inference ereor rat
— number of inference errors over number of total mea-  To evaluate the performance of our in-network data co-
surements — and the relative reduction of the communica-occurrence detection methods, we varied the window size
tion costs for data gathering due to the proposed methodw from 256 to 2048, and for eaehwe generated 100 pairs
Here we only consider the number of inference errors. We of occurrence sets with frequengy= 0.3, i.e., each set
are aware of the magnitude of the inference errors could behaving size~ f x w, as our datasets. The true resem-
arbitrarily high and hard to predict. We defer this partte fu blance between each pair of sets-49.95. Fig 5 shows the
ture work. The communication overhead of our approach, performance of both resemblance estimation methods, with
due to the discovery and quit algorithms, is proportional to k£ = log w. We see thalog w works well for both, while the
the size of the signatures and the number of signatures exrandom projection method gives more accurate resemblance
changed. As long as co-occurrences persist for a few win-estimation than the positional min-wise method. Hereafter
dows, this overhead will be small compared to the savingswe use random projection method with= log w.

in the measurement communication costs.

§.1 Experimental results — synthetic
datasets
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Figure 7. Base station inference error rate
using the connected—components and clique
approaches.

Figure 8. Reduction of communication
costs using the connected—components and
cliques approaches.

Next, in Fig 6, we examine the estimation behavior of each sensa30%. We run both approaches for 100 consec-
random projection method for sets with different true re- utive windows, with the results given in Figs 7 and 8.
semblance. As before, for each window sizérom 256 to Fig 7 gives the base station inference error rate, while
2048 we generated 100 pairs of sets with= 0.3 as our  Fjg 8 shows the reduction of communication costs. We
datasets. We see that the error in estimating resemblancc§|ear|y see that the error rate is very low, and the reduc-
decreases as as the true resemblance increases. This is ifipn of communication costs is substantial and increases as
portant because it allows us to effectively uskr exploit-  ;, jncreases. Both approaches achieve comparable commu-
ing the trade—off between number of inference errors andpjcation cost savings for the same number of sensors with
communication costs. co-occurring elements. As expected, the inference erter ra

We consider two approaches, the clique and the CC ap-with the clique approach is lower and increases slower with
proach, for identifying sets of > 2 co-occurringelements. n as compared with the CC approach. However, this ad-
These two approaches affect both the number of inferencevantage of the clique approach comes with higher commu-
errors as well as the communication costs. For these ex-ication and computation overheads, since the signatures
periments, we consider sets of= 2,3,...,10 elements  of every element inb[e].list needs to be examined before
with varying frequencyf, window sizew = 1024, true re- an element’ can join®[e].list. Moreover, the clique ap-
semblance between pairs of elemedi$5, signature size  proach may result in smalld¥[e].list, leading into smaller
k = logw, and frequency of the default element chosen by reduction of communication costs. Consequently, the CC



approach should be preferred for most applications.

3.2 Experimental results — real dataset

To evaluate how our method might perform in real sen-
sor networks, we downloaded the temperature and humid-
ity measurements taken, every 5 minutes, by 12 sensors
deployed in James Reserve, CA during Aug. 9 and 10,

2005.5 We use window sizev = 512, random projection

method with the CC approach for identifying sets of co-
occurring elements, and = 0.90. We used the measure-
ments in the first window for co-occurrence detection and
found six groups of co-occurring elements among the tem-
perature measurements: one with 6 elements, one with 3 el-
ements, and four with 2 elements. Each sensor selects as its[6]
default element the most frequent temperature measurement
that does not co—occur with any other element. It turns out,
that following our scheme, during the first window, there

were 1663 fewer measurements out 6f44(= 12 x 512)

transmitted to the base station, while the number of infer-
ence errors was4. In other words, our scheme provides a
27.1% reduction of the communication cost for data gather-

ing with an error rate of .53%.

4 Conclusion

We describe a novel approach to the data gathering prob-
lem in wireless sensor networks that is based on the idea of
measurements co-occurrence. We present two in-network
methods for sensors to detect co-occurring data, a proto-
col for sensors to collaborate in transmitting co-occugrin
measurements to a base station, and a measurement infer-
ence algorithm for the base station. Our approach provides
a new exploitation on data redundancy for communication

cost vs inference errors trade—off.

We experimentally evaluate the proposed approach, and
find that it offers substantial savings in the communication
costs for the price of few number of errors at the base sta-

tion. For synthetic datasets it provides up6tifs savings
on the communication costs with no more théh infer-
ence errors, and for a real dataset it provide% savings
and1.53% inference errors.
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