
Collaborative Data Gathering in Wireless Sensor Networks
using Measurement Co-Occurrence

Konstantinos Kalpakis Shilang Tang
Department of Computer Science & Electrical Engineering

University of Maryland Baltimore County
Email: {kalpakis, stang2}@csee.umbc.edu

Abstract

Data gathering is a basic activity of many wireless sen-
sor network applications. We propose a novel collabora-
tive data gathering approach utilizing data co–occurrence,
which is different from data correlation. Our approach of-
fers a trade–off between communication costs of data gath-
ering versus errors at estimating the sensor measurements
at the base station, by having sensors with co–occurring
measurements alternate in transmitting such measurements
to the base station, and having the base station make infer-
ences about sensor measurements utilizing only the trans-
mitted data. We describe two effective methods for in-
network detecting measurements co-occurrence among sen-
sors, an efficient protocol for scheduling the transmission
of measurements, and a simple algorithm for measurement
inference. Our simulation results on synthetic and real
datasets show a substantial (up to 65%) reduction on the
communication costs of data gathering with few number of
inference errors (< 6%) at the base station.

1 Introduction
Recent advances in hardware development have led to

the creation of wireless ad hoc networks of battery–powered
microsensors (WSNs). Because of its unattended opera-
tion mode and easy deployment, WSN becomes attractive
to many applications such as wildlife tracking, environmen-
tal and habitat monitoring, battlefield intelligence, and etc.
However, the limited energy of those sensors poses the chal-
lenge of using such systems in an energy efficient manner.

We consider the problem of energy efficient data gath-
ering, which is a common activity of many WSN applica-
tions. We focus on applications in which each sensor con-
tinuously monitors the targets of interests in a field, and the
base station is interested in getting every (discrete enumer-
ated) measurement from all the sensors, in order to deter-
mine the status of the observing field and make appropriate

decisions. Example of such applications can be found in
environmental monitoring, quality control in manufacturing
assembly lines, agriculture, etc. A simple but energy ineffi-
cient method for gathering the measurements is to have each
sensor transmitting its every measurements to base station,
since often there is redundancy and/or dependency among
the sensor measurements.

We propose a new exploitation on data redundancy by
a novel collaborative data gathering approach utilizing co–
occurrence of measurements, offering a trade-off between
communication costs of data gathering versus errors at es-
timating the sensor measurements at the base station. In-
tuitively, two sensors have measurements co–occurring if
the occurrence sets of the measurements — the set of times
at which they are measured — are similar. It is utilized
as follows. Using the in-network method we present, sen-
sors discover measurement co-occurrence. Then, sensors
with co–occurring measurements collaborate, by informing
the base station and taking turns in communicating those
measurements to the base station. In addition, each sen-
sor may choose a default measurement, which it will not
be transmitting to the base station, upon informing the base
station of its choice. Being informed of the measurement
co-occurrence relationship and the defaults, the base station
infers the measurements of the non-transmitting sensors uti-
lizing only the transmitted measurements.

Let us note that data co-occurrence is different from
data correlation. Intuitively, correlation attempts to capture
monotonicity trends between sequences (e.g. are both se-
quences increasing?, etc). Co-occurrence does not provide
information about such monotonicity trends; instead, it at-
tempts to quantify the trend that two values tend to occur
simultaneously, and is capable of handling discrete enumer-
ated data. It is not hard to find sequences with co–occurring
values of high frequency, but having correlation coefficient
anywhere in the range(−1, 1). This implies that corre-
lation is not an indicator of co–occurrence. Further, data
co–occurrence can appear in both densely and sparsely de-
ployed sensor networks, while data correlation is normally



expected in densely deployed sensor networks.
We present two effective methods, namely positional

min-wise and random projection, for sensors to in-network
detect measurement co-occurrence. Both methods com-
pute small–size signatures of the measurement occurrence
sets, and then use the signatures to estimate their resem-
blance. Computing the signatures and estimating the resem-
blance are both simple, which makes our methods mindful
of the limited energy and computation resources of the sen-
sors. As shown in our simulations, while random projection
method performs better, both methods are effective, in terms
of signature size and accuracy of resemblance estimation.

On utilizing measurement co-occurrence, we present an
efficient protocol for sensors to schedule the transmissionof
co-occurring measurements. For simplicity, we assume that
communication links are lossless. Using our protocol, sen-
sors will determine their measurement transmission sched-
ule dynamically, distributively, and near-immediately. Our
protocol is aggressive on reducing transmission of measure-
ments — normally just one of the sensors with co-occurring
measurements will transmit, and at the same time it ensures
that one of the co-occurring measurements will always be
communicated to the base station. In situations where data
co-occurrence persist, our simulation results show that our
approach can offer substantial communication savings, at
the price of few number of inference errors1 — for syn-
thetic datasets it provides up to65% savings on the com-
munication costs with no more than6% errors, and for a
real dataset it provides27% savings and1.53% inference
errors.

1.1 Related work

Broder [1] uses min–wise hashing for identifying near–
duplicate documents on the web by estimating their resem-
blance. Datar et al. [2] present min–wise based algorithms
for estimating rarity and similarity on data streams. Agar-
wal and Trachtenberg [3] use counting Bloom filters [4] for
estimating the number of differences between remote sets.
Resources in these works are not as limited as we have in
wireless sensor networks. Random projections is a powerful
dimensionality reduction technique with many applications,
since it approximately preserves vector norms under some
conditions, see for example [5, 6]. We utilize random pro-
jection together with features of 0-1 vectors, on estimating
the resemblance of two remote sets in resource constraint
sensor networks.

Chou et al. [7] exploit correlations for coding the sensor
measurements in order to reduce the total number of
bits transmitted during data gathering. Gupta et al. [8],
assuming that sensors know the data correlation structure,
construct connected correlation–dominating sets to reduce

1In this work we only consider the number of inference errors.We
defer consideration of controlling the magnitude of errorsto future work.

the communication cost of data gathering. Sharaf et
al. [9] utilize temporal coherence of sensor data to provide
approximate answer to aggregation queries with reduced
communication costs, while Yoon and Shahabi [10] utilize
spatial correlation of sensor data. Goel et al. [11] use
spatio–temporal correlation in sensor data for motion
detection, Deshpande et al. [12] incorporate time–varying
multivariate Gaussian models of sensor data to answer
queries, and transmit sensor data when those models do not
answer queries within desired accuracy. Our approach is
complementary to them and handles discrete enumerated
sensor data. Furthermore, the notion of measurement
co-occurrence we utilize is a time–varying non–parametric
statistical model of the sensor measurement field, which
does not require normality as [12] does.

The rest of the paper is organized as follows. We present
the technical details of our approach in section 2, the sim-
ulation results with synthetic and real datasets in section3,
and the concluding remarks in section 4.

2 Collaborative data gathering using mea-
surement co-occurrence

2.1 Co-occurrence of measurements

Consider a wireless sensor network with a base station
andn sensors, with each sensor having an unique identi-
fier (sid). We refer to the sensor with sidi as the sensor
i. The time at which measurements are made is assumed
to be a sequence of time intervals of equal length, e.g. the
measurement time is discrete. Each sensor has a synchro-
nized clock/counter that measures this discrete measure-
ment time. Hereafter, we refer to measurement time simply
as time. We assume that the base station needs to know all
the measurements sensors make at each time. Awindowis
a contiguous sequence ofw times, with thejth windowWj

being the interval of[j ∗w, (j +1) ∗w), for j = 0, 1, 2, . . ..
The relative time of a measurement made at timet in a win-
dow W = [t0, t1) is t̃ = t − t0. Let Ui be the discrete
universe (domain) of the measurements sensori makes. Let
mi,t ∈ Ui be the measurement sensori makes at timet. An
elemente is a tuple(i, v), wherev ∈ Ui andi is a sid; for
brevity, lete.value = v ande.sid = i. Given an element
e, we define its occurrence setχW (e) within a windowW
to be the set of relative times that sensore.sid makes mea-
suremente.value

χW (e) = { t̃ : me.sid,t = e.value andt ∈ W } (1)

Theresemblancer(S1, S2) of two setsS1, S2 is defined
asr(S1, S2) = |S1 ∩ S2|/|S1 ∪ S2|. The resemblance of
sets takes values between 0 and 1 and is a measure of set
similarity.

We say that two elementse1 and e2 co-occur in win-
dow W if the resemblancer(χW (e1), χW (e2)) is ≥ τ ,



where the co-occurrence thresholdτ is a constant system
parameter0 ≤ τ ≤ 1. We can show that the probability
Pr[e1|e2] ≥ τ(1 + 2τ)/(1 + τ)2.

Note that co-occurrence is not a transitive relation, there-
fore additional care is needed to determine a set of co-
occurring elementsL = {e1, e2, . . . , em}. We consider
two approaches. In the clique approach, we require that
every pair of elements inL has resemblance≥ τ . In the
connected–components (CC) approach, we require that for
every pair of elements inL there exists a chain of elements
in L, with adjacent elements having resemblance≥ τ . We
experimentally find that the CC approach offers a better
communication cost vs. error rate trade–off.

2.2 Estimating co-occurrence of measure-
ments

Having sensors exchange measurement occurrence sets
to identify co-occurrence can be unnecessarily expensive.
We describe two in-network methods for sensors to detect
measurement occurrence at a much smaller communication
cost.

First, we present a method for estimating set resem-
blance that is based on min–wise hashing. Givenk random
min–wise independent hash functionshi : [0, w) → N , i =
1, 2, . . . , k, themin–wise hashof a setS ⊆ [0, w) is the set
α(S) = {αi(S)}, whereαi(S) = min({hi(z) | z ∈ S}).
We definepositional min–wise hashof setS to be the vector
(α1(S), α2(S), . . . , αk(S)). The estimated resemblance of
two setsS1, S2, using their positional min–wise hashes, is

r̂(S1, S2) = |{i : αi(S1) = αi(S2)}|/k (2)

Second, we consider a method for estimating set resem-
blance based on random projections. Givenk random vec-
torszi ∈ Rw, i = 1, 2, . . . , k, with entries that are N(0,1)
i.i.d. random variables, for any setS ⊆ [0, w), with indi-
cator vectors ∈ {0, 1}w, the random projection ofS is the
projectionŝ = (sT · z1, s

T · z2, . . . , s
T · zk) of s onto the

vectors{zi}. Since we can show that the resemblance of
two setsS1, S2 ⊆ [0, w) is

r(S1, S2) =
||s1||2 + ||s2||2 − ||s1 − s2||2

||s1||2 + ||s2||2 + ||s1 − s2||2
, (3)

we can estimater(S1, S2) by using the random projections
ŝ1, ŝ2 instead ofs1, s2 in the formula above.

We define the (positional min–wise or random projec-
tion) signatureof an elemente within windowW to be the
(positional min–wise hash or random projection) of its oc-
currence setχW (e). For brevity, whenever it is clear from
the context, we simply talk about the signature of an ele-
mente, and we denote it withσe. The size ofσe is equal to
k, the number of hash functions or projections used to com-
pute it. As shown in our simulation,k is small compared to

w. The computation cost of both methods isΘ(wk). Note
that the min-wise hashing can be computed on-line, and for
random projection we use the 0-1 indicator vectors, there-
fore both methods are mindful of the limited computation
resources of sensors.

2.3 Exploiting co-occurrence for data
gathering

We show a protocol that the sensors and the base station
can use to reduce the communication costs of data gathering
by exploiting co-occurrences of measurements. The pro-
tocol allows sensors to discover co-occurring elements, to
collaborate on sharing the load of communicating such co-
occurring elements, and it allows the base station to make
inferences about the sensor measurements. Here, we as-
sume that the co-occurrences between elements persist for
some period of time, much larger than the window sizew.

The base station maintains a co-occurrence (symmetric)
relationC : U × U → {0, 1}, U = ∪n

i=1
Ui, such that

C[e1, e2] = 1 iff it has been notified thate1 and e2 co–
occur, together with a list of the default valuesmdefault it
has been notified of2. At the end of the time periodt, the
base station inferŝmi,t for the measurementmi,t of sensor
i at t using the algorithm in Figure 1.

BaseStationEstimator()
// Base station computes measurement estimates
1 at each timet
2 foreach sensori do
3 m̂i,t ←− null

4 foreach received MeasurementMsg(e) do
5 m̂e.sid,t ←− e.value

6 foreach elemente′ that co-occurs withe, i.e. C[e′, e] = 1 do
7 if m̂

e′.sid,t
is null then

8 m̂
e′.sid,t

←− e′.value

9 foreach sensori do
10 if m̂i,t is null then
11 m̂i,t ←− mdefault(i)

ReceiveNewMsg(set S)
// Base station receives NewMsg
1 foreach (e1, e2) ∈ S × S do
2 C[e1, e2] ←− 1

ReceiveQuitMsg(element e)
// Base station receives QuitMsg
1 foreach elemente′ ∈ U do
2 C[e, e′] ←− 0

Figure 1. Algorithm used by base station to
compute m̂i,t.

Sensori maintains for each of its elementse a data struc-
ture Φ[e] that consists of: a listΦ[e].list of elements that
are discovered as co-occurring withe 3, sorted in increas-
ing order of their sids; a listΦ[e].children of elements that

2Co-occurrence relationC can be maintained using any standard data
structure for (sparse) undirected graphs. Each sensor can have only one
default value.

3Note that sensori cannot have co-occurrence among its own elements.
If e is not co-occurring with other element, thenΦ[e].list = {e} and
Φ[e].state = normal.



SensorMeasurementLoop()
1 foreach windowW do
2 χW (e) ←− ∅ for all e ∈ Ui
3 foreach timet within W do
4 take a measurementv and create elemente = (i, v)
5 append relative timẽt to χW (e)
6 if IsOnDuty(i, e, t̃) then
7 send MeasurementMsg(e) to base station
8 // end of window
9 if t̃ = w − 1 then
10 TSSi ←− ∅
11 foreach e ∈ Ui do
12 σe ←− signature ofχW (e)
13 append the tuple(e, σe) to T SSi
14 if Φ[e].state 6= waiting then
15 Φ[e].state ←− normal

IsOnDuty(sid i, element e, relative time t)
// Sensori computes its duty status for elemente at relative timet
1 if Φ[e].state is waiting or init then
2 return true

3 else
4 if e.value = mdefault(i) or Φ[e].state = updating then
5 return false

6 else
7 letj be the index of the elemente in Φ[e].list
8 split the window[0, w) into |Φ[e].list| intervalsI0, I1, . . .

9 if t is in intervalIj then
10 return true

11 else
12 return false

Figure 2. Algorithm used by sensors to
schedule element transmissions.

are determined to co–occur withe by sensori itself; and
an attributeΦ[e].state indicating the status ofΦ[e]. The
attributeΦ[e].state takes values (a)normal if Φ[e] is up–
to–date, (b)waiting if sensori initiated an update and is
waiting for acknowledgment messages, (c)init if sensori
had been the initiator of an update in the current window,
or (d)updating if sensori received an update message Up-
dateMsg in the current window.

At each timet, sensori decides whether to transmit to the
base station its measurement using the algorithm in Fig 2. In
this algorithm, the current window is partitioned into equi–
length sub-windows, calledduty–zones, with each sensor in
Φ[e].list taking charge of one duty–zone. This makes the
scheduling simple and distributive, and enables sensors to
join or leaveΦ[e].list quickly. There are different ways to
split a window into duty–zones, for example, using equi–
depth approach, the window can be split into duty–zones so
that each one has approximately the same number of oc-
currences of the co-occurring elements. The equi–depth
approach tries to distribute the burden of communicating
the co-occurring elements equally among the sensors in
Φ[e].list. Such an approach may lead to longer network life-
times, provided the overhead in computing equi–depth duty
zones is small. Also it may be attractive for sensors with
more residual energy inΦ[e].list to take charge of multiple
duty–zones. We defer these considerations to future work.

Sensori maintains a setTSSi with its elements and their
signatures in the previous window, which it updates at the
end of the current window.

Sensori may initiate the discovery of elements that may
co-occur with one of its elementse at any time, by request-

DiscoverCoOccurrences(threshold τ )
// Sensori discovers co-occuring elements at thresholdτ

1 foreach sensorj ∈ Adji do
2 requestT SSj from sensorj
3 foreach tuple(e, σe) ∈ T SSi do
4 foreach tuple(e′, σ

e′ ) ∈ T SSj do
5 if r(σe, σ

e′ ) ≥ τ then

6 appende′ toΦ[e].list and toΦ[e].children
7 markΦ[e] as changed
8 break
9 foreach e ∈ Ui do
10 if Φ[e] is marked as changedthen
11 send NewMsg(Φ[e].list) to the base station
12 Φ[e].state ←− waiting

13 foreach e′ ∈ Φ[e].list do
14 send UpdateMsg(i, Φ[e].list) to sensore′.sid

15 upon receiving AckMsg for every UpdateMsg sentdo
16 Φ[e].state←− init

ReceiveUpdateMsg(sid j, set S)
// Sensori receives UpdateMsg from sensorj

1 find the elemente ∈ Ui ∩ S

2 Φ[e].state ←− updating

3 append toΦ[e].list all the elements inS
4 foreach elemente′ ∈ Φ[e].children do
5 if e′ 6∈ S then
6 send UpdateMsg(i, Φ[e].list) to sensore′.sid

7 upon receiving AckMsg for every UpdateMsg sentdo
8 send AckMsg to sensorj

Figure 3. Algorithm used by sensors to dis-
cover co-occurrence elements.

ing the signatures of elements from neighboring sensors,
using the connected–components (see Fig. 3) or clique ap-
proach. Sensori requests the setTSSj of signatures of el-
ements from sensorsj ∈ Adji, and if it finds an element
e′ that co-occurs withe, it updatesΦ[e] by addinge′ to
Φ[e].list andΦ[e].children, and then updates the base sta-
tion and all the sensors with an element inΦ[e].list. When-
ever a sensor receives such an update, it further updates all
its children not already updated.

Sensori may quit havinge in theΦ[e].list at any time4.
In such a case, sensori removese from Φ[e].list, chooses a
sensorj in Φ[e].list to act as a quit coordinator for updating
the remaining sensors with elements inΦ[e].list. The quit
coordinator sensorj “adopts” e’s children Φ[e].children,
and it tells all sensors with an element inΦ[e].list to remove
e from their co-occurrence lists. See Figure 4 for details.

Because the measurement co-occurrence is estimated ap-
proximately, the base station may makeinference errors
m̂i,t 6= mi,t when sensori is off-dutyat timet. Here we
briefly analyze when inference errors may happen, and our
focus in this paper is the number rather than the magni-
tude of inference errors. When sensori has default element
mdefault(i) but not any co-occurring element, or does not
havemdefault(i) but only one co-occurring element, base
station will always be able to infer̂mi,t correctly asmi,t,
i.e. it makes no inference error. When sensori has mul-
tiple co-occurring elements and is off-duty for more than

4For example, the base station may request sensori to quit or re-
establish havinge in theΦ[e].list when it suspects high number or costly
errors one. Furthermore, if sensori has an elemente with high frequency
but shortΦ[e].list, it may decide to quite from Φ[e].list and choosee as
its defaultmdefault(i).



Quit(element e)
// Sensori quits co-occurrences for its elemente

1 send QuitMsg(e) to base station
2 choose a sensorj as quit coordinator among the sensors with elements inΦ[e].list
3 send QuitCoordinateMsg(e,Φ[e].children) to sensorj
4 setΦ[e].list←− {e}, Φ[e].state ←− normal, andΦ[e].children←− null

ReceiveQuitCoordinateMsg(element e, set S)
// Sensori receives QuitCoordinateMsg
1 find elemente′Ui that co-occurs withe, e.g.e ∈ Φ[e′].list

2 removee from bothΦ[e′].list andΦ[e′].children

3 append toΦ[e′].children all the elements inS
4 Φ[e′].state ←− waiting

5 foreach e′′ ∈ Φ[e′].list do
6 send QuitMsg(i, e, Φ[e′].list) to sensore′′.sid

7 upon receiving AckMsg for each QuitMsg sentdo
8 Φ[e′].state ←− init

ReceiveQuitMsg(sid j, element e, set S)
// Sensori receives QuitMsg from sensorj

1 find the elemente′ ∈ Ui ∩ S

2 Φ[e′].state ←− updating

3 removee from bothΦ[e′].list andΦ[e′].children

4 foreach e′′ ∈ Φ[e′].children − S do
5 send QuitMsg(i, e, S) to sensore′′.sid

6 upon receiving AckMsg for every QuitMsg sentdo
7 send AckMsg to sensorj

Figure 4. Algorithm used by sensors to quit
element from co-occurences.

one of them at timet, even if no sensor hasmdefault, the
base station may erroneously inferm̂i,t 6= mi,t, because it
may have to guess which one of the off-duty co-occurring
elements was measured by sensori at time t. Similarly
when sensors havemdefault, even if sensori has just one
co-occurring elemente, the base station may make errors in
m̂i,t, as it may not correctly determine ife or mdefault(i)
was measured by sensori at timet.

3 Experimental evaluation
We use both synthetic datasets and real sensor measure-

ments in our experiments. For synthetic datasets, we used
a uniform distribution model for generating sensor mea-
surements. For the real sensor datasets, we downloaded
from [13] the temperature and humidity measurements of
sensors in James Reserve, CA.

To evaluate our co–occurrence detection methods, we
use the average resemblance estimation error, and the size
k of the signaturesσe. To evaluate the utilization of co–
occurrence on data gathering, we use the inference error rate
— number of inference errors over number of total mea-
surements — and the relative reduction of the communica-
tion costs for data gathering due to the proposed method.
Here we only consider the number of inference errors. We
are aware of the magnitude of the inference errors could be
arbitrarily high and hard to predict. We defer this part to fu-
ture work. The communication overhead of our approach,
due to the discovery and quit algorithms, is proportional to
the size of the signatures and the number of signatures ex-
changed. As long as co-occurrences persist for a few win-
dows, this overhead will be small compared to the savings
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Figure 5. Performance of positional min-wise
and random projection methods, k = log w.
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in the measurement communication costs.

3.1 Experimental results – synthetic
datasets

To evaluate the performance of our in-network data co-
occurrence detection methods, we varied the window size
w from 256 to 2048, and for eachw we generated 100 pairs
of occurrence sets with frequencyf = 0.3, i.e., each set
having size≈ f × w, as our datasets. The true resem-
blance between each pair of sets is≈ 0.95. Fig 5 shows the
performance of both resemblance estimation methods, with
k = log w. We see thatlog w works well for both, while the
random projection method gives more accurate resemblance
estimation than the positional min-wise method. Hereafter,
we use random projection method withk = log w.
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Figure 7. Base station inference error rate
using the connected–components and clique
approaches.

Next, in Fig 6, we examine the estimation behavior of
random projection method for sets with different true re-
semblance. As before, for each window sizew from 256 to
2048 we generated 100 pairs of sets withf = 0.3 as our
datasets. We see that the error in estimating resemblance
decreases as as the true resemblance increases. This is im-
portant because it allows us to effectively useτ for exploit-
ing the trade–off between number of inference errors and
communication costs.

We consider two approaches, the clique and the CC ap-
proach, for identifying sets ofn ≥ 2 co-occurring elements.
These two approaches affect both the number of inference
errors as well as the communication costs. For these ex-
periments, we consider sets ofn = 2, 3, . . . , 10 elements
with varying frequencyf , window sizew = 1024, true re-
semblance between pairs of elements0.95, signature size
k = log w, and frequency of the default element chosen by
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Figure 8. Reduction of communication
costs using the connected–components and
cliques approaches.

each sensor30%. We run both approaches for 100 consec-
utive windows, with the results given in Figs 7 and 8.

Fig 7 gives the base station inference error rate, while
Fig 8 shows the reduction of communication costs. We
clearly see that the error rate is very low, and the reduc-
tion of communication costs is substantial and increases as
n increases. Both approaches achieve comparable commu-
nication cost savings for the same number of sensors with
co-occurring elements. As expected, the inference error rate
with the clique approach is lower and increases slower with
n as compared with the CC approach. However, this ad-
vantage of the clique approach comes with higher commu-
nication and computation overheads, since the signatures
of every element inΦ[e].list needs to be examined before
an elemente′ can joinΦ[e].list. Moreover, the clique ap-
proach may result in smallerΦ[e].list, leading into smaller
reduction of communication costs. Consequently, the CC



approach should be preferred for most applications.

3.2 Experimental results – real dataset

To evaluate how our method might perform in real sen-
sor networks, we downloaded the temperature and humid-
ity measurements taken, every 5 minutes, by 12 sensors
deployed in James Reserve, CA during Aug. 9 and 10,
2005.5 We use window sizew = 512, random projection
method with the CC approach for identifying sets of co-
occurring elements, andτ = 0.90. We used the measure-
ments in the first window for co-occurrence detection and
found six groups of co-occurring elements among the tem-
perature measurements: one with 6 elements, one with 3 el-
ements, and four with 2 elements. Each sensor selects as its
default element the most frequent temperature measurement
that does not co–occur with any other element. It turns out,
that following our scheme, during the first window, there
were1663 fewer measurements out of6144(= 12 × 512)
transmitted to the base station, while the number of infer-
ence errors was94. In other words, our scheme provides a
27.1% reduction of the communication cost for data gather-
ing with an error rate of1.53%.

4 Conclusion
We describe a novel approach to the data gathering prob-

lem in wireless sensor networks that is based on the idea of
measurements co-occurrence. We present two in-network
methods for sensors to detect co-occurring data, a proto-
col for sensors to collaborate in transmitting co-occurring
measurements to a base station, and a measurement infer-
ence algorithm for the base station. Our approach provides
a new exploitation on data redundancy for communication
cost vs inference errors trade–off.

We experimentally evaluate the proposed approach, and
find that it offers substantial savings in the communication
costs for the price of few number of errors at the base sta-
tion. For synthetic datasets it provides up to65% savings
on the communication costs with no more than6% infer-
ence errors, and for a real dataset it provides27% savings
and1.53% inference errors.
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