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Wireless ad hoc networks of battery-powered microsensors (WSNs) are proliferating rapidly and transforming how information is
gathered and processed, and how we affect our environment. The limited energy of those sensors poses the challenge of using such sys-
tems in an energy efficient manner to perform various activities. A common activity of many applications of WSNs is that of data gath-
ering: for each time step, gather the measurement from each sensor to a base station. Often there is redundancy and/or dependency
among the sensor measurements. How to identify the data redundancy/dependency and utilize them on improving energy efficiency
of data gathering has been one of the attractive topics.

We propose using measurement co-occurrence to identify data redundancy and a novel collaborative data gathering approach utiliz-
ing co-occurrence that offers a trade-off between the communication cost of data gathering versus errors at estimating the sensor mea-
surements at the base station. A key tenant of our approach is to have sensors with co-occurring measurements alternate in transmitting
such co-occurring measurements to the base station, and having the base station make inferences about the sensor measurements utiliz-
ing only the data transmitted to it. We present two effective in-network methods for detecting co-occurrence of measurements, as well as
a simple and efficient protocol for scheduling the transmission of the sensor measurements to the base station.

We provide experimental results on synthetic and real datasets showing that the proposed system offers substantial (up to 65%) reduc-
tion of the communication costs of data gathering with a small number of measurement inference errors (<6%) at the base station.
� 2008 Published by Elsevier B.V.
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O1. Introduction

Recent advances in hardware developments have led to
the creation of wireless sensor networks (WSNs). Such net-
works are envisioned to consist of low-cost sensor nodes
operating in unattended mode, each with some limited
computational power and low range wireless communica-
tion ability, and generally being battery powered. Because
of its unattended operation mode and easy deployment,
WSNs become attractive to many applications such as
wildlife tracking, environmental and habitat monitoring,
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battlefield intelligence, and etc. However, the limited
energy of their sensors poses the challenge of using such
systems in an energy efficient manner (see Fig. 1).

We consider the problem of energy efficient data gather-
ing, which is a basic activity of many WSN applications.
We focus on applications in which each sensor continu-
ously monitors a field of interest, and the base station is
interested in getting every measurement from all the sen-
sors, in order to determine the status of the observing field
and make appropriate decisions. Example of such applica-
tions can be found in environmental monitoring, quality
control in manufacturing assembly lines, agriculture, etc.
A simple method for gathering the measurements is to have
each sensor transmit its every measurement to the base sta-
tion. However, this method is energy inefficient since often
ve data gathering in wireless sensor networks ..., Comput. Com-
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1 Our main focus in this paper is the number rather than the magnitude
of inference errors.

Fig. 1. The algorithm used by the base station to estimate sensor
measurements m̂i;t.

2 K. Kalpakis, S. Tang / Computer Communications xxx (2008) xxx–xxx

COMCOM 3556 No. of Pages 14, Model 5+

24 January 2008 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

there is redundancy and/or dependency among the sensor
measurements.

Identifying data redundancies/dependencies and utiliz-
ing them in order to provide energy efficient data gathering
has been considered by many researchers [10,13,8,6,18]. In
this paper, we propose a new idea of using measurements
(data) co-occurrence to identify data redundancy together
with two methods to estimate it and a novel collaborative
data gathering approach utilizing the measurements co-
occurrence. Our proposed approach offers a trade-off
between communication costs of the data gathering versus
number of estimation errors of the sensor measurements at
the base station. Intuitively, two measurements co-occur if
the set of times at which they are measured are similar. We
utilize co-occurrence as follows. Sensors identify co-occur-
ring measurements by using the in-network method we
present, which relies on estimating the approximate resem-
blance of the measurement occurrence sets. Then, sensors
with co-occurring measurements collaborate, by informing
the base station and then taking turns in communicating
those measurements to the base station. In addition, each
sensor may choose a default measurement, which it does
not transmit upon informing the base station of its choice.
Being informed of the measurement co-occurrence rela-
tionship and the sensor defaults, the base station infers
the measurements of the non-transmitting sensors utilizing
only the transmitted measurements.

Data co-occurrence is different from data correlation,
which is normally expected in densely deployed sensor net-
works. Data correlation has been exploited to reduce the
communication costs for gathering measurements to the
base station [13,8,6,18], or for in-network processing of
aggregation queries [10,13,19,12,16]. Intuitively, correla-
tion attempts to capture monotonicity trends (e.g. linear
dependencies) between sequences. Co-occurrence does not
provide information about such monotonicity trends;
Please cite this article in press as: K. Kalpakis, S. Tang, Collaborati
mun. (2008), doi:10.1016/j.comcom.2008.01.001
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instead, it attempts to quantify the trend that two values
tend to occur simultaneously (e.g. non-linear dependen-
cies), and is capable of handling discrete enumerated data.
We can find sequences with co-occurring values of high fre-
quency, and with arbitrary correlation coefficient, which
implies that correlation is not an indicator of co-occur-
rence. Further, data co-occurrence can appear in both den-
sely and sparsely deployed sensor networks.

We present two in-network methods, namely positional
min-wise and random projection, for sensors to detect mea-
surement co-occurrence. Both methods compute small-size
signatures of measurement occurrence sets, and then use
these signatures to estimate the resemblance of the mea-
surement occurrence sets. Computing the signatures and
estimating the resemblance are both simple, which makes
our methods mindful of the limited energy and computa-
tion resources of the sensors. As shown in our experiments,
while the random projection method performs better, both
methods are effective, in terms of signature size and accu-
racy of resemblance estimation.

In order to utilize measurements co-occurrence, we pres-
ent an efficient protocol for sensors to coordinate the trans-
mission of co-occurring measurements. For simplicity, we
assume that communication links are lossless. Using our
protocol, sensors will determine their measurement trans-
mission schedule dynamically, distributively, and near-
immediately. Our protocol is aggressive on reducing trans-
mission of measurements – normally just one of the sensors
with co-occurring measurements will transmit, and at the
same time it ensures that one of the co-occurring measure-
ments will always be communicated to the base station.
Our experimental results show that our approach offers
substantial communication savings, at the price of a small
number of inference errors1 – for synthetic datasets it pro-
vides up to 65% savings on the communication costs with
no more than 6% inference errors, and for a real dataset
it provides 27% savings and 1.53% inference errors.

The rest of the paper is organized as follows. In Section
2 we discuss in details of measurement co-occurrence and
present our methods for estimating co-occurrence. In Sec-
tion 3 we describe our collaborative data gathering proto-
col exploiting measurement co-occurrence on reducing
data communication costs. In Section 4 we present the
results of our experimental evaluation with synthetic and
real data. Related work is discussed in Section 5, and con-
clusions are given in Section 6.
2. Estimating co-occurrence of sensor measurements

2.1. Measurement co-occurrence

Consider a wireless sensor network with a base station
and n sensors. Each sensor has a unique identifier (sid).
ve data gathering in wireless sensor networks ..., Comput. Com-
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We refer to the sensor with sid i as the sensor i. Sensors
take measurements of their environment at each time, while
the base station needs to know all the measurements sen-
sors make at each time. The time at which measurements
are taken is assumed to be discrete. Each sensor has a clock
indicating the measurement time. Sensor clocks are locally
synchronized (within the neighborhood Adji of each sensor
i). Hereafter, we refer to measurement time simply as time.
A window is a contiguous sequence of w times, with the jth
window being W j ¼ ½j � w; ðjþ 1Þ � wÞ, j P 0. The relative
time of a measurement made at time t within a window
W ¼ ½t0; t0 þ wÞ is ~t ¼ t � t0. Let Ui be the discrete universe
(domain) of the measurements sensor i makes. Let mi;t 2 Ui

be the measurement sensor i makes at time t. An element e
is a tuple ði; vÞ, where v 2 U i and i is a sid; for brevity, let
e:value ¼ v and e:sid ¼ i. The occurrence set vW ðeÞ of an
element e for a window W is the set of relative times that
sensor e:sid makes measurement e:value within the window
W,

vW ðeÞ ¼ f~t : me:sid;t ¼ e:value and t 2 W g: ð1Þ

The resemblance rðS1; S2Þ of any two sets S1; S2 is defined as

rðS1; S2Þ ¼
jS1 \ S2j
jS1 [ S2j

: ð2Þ

Set resemblance takes values between 0 and 1 and is a mea-
sure of set similarity, e.g. if S1 ¼ S2 then rðS1; S2Þ ¼ 1 and if
S1 \ S2 ¼ ; then rðS1; S2Þ ¼ 0.

We are interesting in determining the degree that ele-
ments tend to occur (be measured) at the same or almost
the same times. We say that two elements e1 and e2 co-occur

in a window W if the resemblance rðvW ðe1Þ; vW ðe2ÞÞ of their
occurrence sets is P s, where s is the co-occurrence thresh-
old, a system parameter between, 0 < s 6 1. Observe that
an element of a sensor i can co-occur with at most b1=sc
elements from sensor j 6¼ i. Moreover, note that co-occur-
rence is not a transitive relation, i.e. since rðS1; S2ÞP s and
rðS2; S3ÞP s does not always imply rðS1; S3ÞP s, for any
sets S1; S2; S3.2 Therefore, additional care is needed when
using the resemblance of occurrence sets to determine
whether a group of three or more elements co-occur.

We consider two different approaches on determining
co-occurrence for a set of elements L at a threshold s. In
the clique approach, each pair of elements in L is required
to co-occur at threshold s. In the connected-components
(CC) approach, we require that for every pair of elements
in L there exists a chain of elements in L, with adjacent ele-
ments co-occurring at threshold s. We experiment with
both approaches, and we find that the connected-compo-
nents approach presents a better trade-off between commu-
nication costs vs. error rate.

An element e can be thought of as the event of sensor
e:sid measuring value e:value. Consider two elements e1

and e2. Since the conditional probability of e2 given e1 is
240240

241

2 On the other hand, it can be shown that if j S1 j¼j S2 j¼j S3 j then
rðS1; S3ÞP rðS1; S2Þ þ rðS2; S3Þ � 1.
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Pr½e2je1� ¼ lim
jW j!1

jvW ðe1Þ \ vW ðe2Þj
jvW ðe1Þj

; ð3Þ

and the probability of e1 is

Pr½e1� ¼ lim
jW j!1

jvW ðe1Þj
jW j ; ð4Þ

using Lemma 1 in Appendix A, we find that a lower bound
s on the resemblance of the ocurrence sets of e1 and e2, in
the limit, implies a lower bound of sð1þ 2sÞ=ð1þ sÞ2 on
the conditional probabilities Pr½e2 j e1� and Pr½e1 j e2�.

Measurement correlation has been used as a way to
reduce communication costs in wireless sensor networks,
while, to the best of our knowledge, this is the first time
that co-occurrence is proposed for that purpose. Correla-
tion and co-occurrence are generally different concepts.
Intuitively, correlation attempts to capture monotonicity
trends (linear dependencies) between numerical sequences
(are both increasing/decreasing? is increasing and the other
decreasing? etc). Co-occurrence does not provide informa-
tion about such monotonicity trends; instead, it attempts to
quantify the trend that two values tend to occur simulta-
neously (non-linear dependencies). There are sequences
that contain co-occurring elements with large occurrence
sets, and which have arbitrary correlation coefficients (see
Appenidx B for such example sequences). Therefore, the
correlation coefficient is not an indicator of co-occurrence.

2.2. Estimating the resemblance of occurrence sets

The naive approach for two sensors to determine
whether two elements e1 and e2 co-occur is for sensor
e2:sid to compute the resemblance of the occurrence sets
of e1; e2 after obtaining the occurrence set vðe1Þ from sensor
e1:sid. The communication cost of this approach can be
unnecessarily high. We present two methods for sensors
to approximately compute the resemblance of element
occurrence sets with smaller communication cost.

2.2.1. Positional min-wise hashing

The first method is based on min-wise hashing. Min-wise
hashing has been used before to estimate resemblance of
sets. Consider k random min-wise independent hash func-
tions hi : ½0;wÞ ! N , i ¼ 1; 2; . . . ; k. The min-wise hash of
a set S � ½0;wÞ is the set

aðSÞ ¼ faiðSÞ j i ¼ 1; 2; . . . ; kg; ð5Þ
where

aiðSÞ ¼ minðfhiðzÞ j z 2 SgÞ: ð6Þ
Given two sets S1; S2 � ½0;wÞ, it turns out that

Pr½aiðS1Þ ¼ aiðS2Þ� ¼ rðS1; S2Þ: ð7Þ
The resemblance rðS1; S2Þ of S1; S2 can be estimated by

r̂ðS1; S2Þ ¼
jaðS1Þ \ aðS2Þj

k
: ð8Þ

Datar and Muthukrishan [9, Lemma 1] show that
ve data gathering in wireless sensor networks ..., Comput. Com-
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Theorem 1. ([9]) For any 1 > �; p; d > 0 and k P 2��3p�1

log d�1,

r̂ðS1; S2Þ ¼ ð1� �Þ � rðS1; S2Þ þ �p; ð9Þ

with probability at least 1� d.

For example, when � ¼ 0:05, p ¼ 0:99, and d ¼ 0:05,
Theorem 1 implies that, in order to estimate resemblance
with 95% accuracy and 95% confidence, k (and thus the
window size in our case) needs to be >48,416.

We define the positional min-wise hash of set S to be the
vector ða1ðSÞ; a2ðSÞ; . . . ; akðSÞÞ, and estimate the resem-
blance of two sets S1; S2 using their positional min-wise
hashes as

r̂ðS1; S2Þ ¼
jfi : aiðS1Þ ¼ aiðS2Þgj

k
; ð10Þ

In our experiments, we find that the positional min-wise
hashing approach with k ¼ 15 gives an estimated resem-
blance within 0.05 of the true resemblance for sets
S1; S2 � ½0;wÞ, where w 6 2048. The value k ¼ 15 is too
small for the standard min-wise hash approach to pro-
vide useful resemblance estimation. Hereafter, we use
positional min-wise hashing instead of the standard min-
wise hashing.
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2.2.2. Random projection

The second method we consider for estimating set
resemblance is based on random projections. Random pro-
jections is a powerful dimensionality reduction technique
with many applications, since it approximately preserves
vector norms under some conditions [2,14]. Since any set
S � ½0;wÞ has an indicator vector s 2 f0; 1gw, we refer to
a random projection ŝ of the vector s as a random projec-
tion of the set S.

Consider two sets S1; S2 � ½0;wÞ. We can show
that j S1 � S2 j¼ ks1 � s2k2 and j S1 \ S2 j¼< s1; s2 >¼
ðks1k2 þ ks2k2 � ks1 � s2k2Þ=2, where S1 � S2 ¼ ðS1 [ S2Þ�
ðS1 \ S2Þ. Furthermore,

rðS1; S2Þ ¼
jS1 \ S2j
jS1 [ S2j

¼ jS1 \ S2j
jS1 � S2j þ jS1 \ S2j

¼ ks1k2 þ ks2k2 � ks1 � s2k2

ks1k2 þ ks2k2 þ ks1 � s2k2
: ð11Þ

using the random projections ŝ1 and ŝ2 to estimate
ks1 � s2k2, our estimate of rðS1; S2Þ is

r̂ðS1; S2Þ ¼
jS1j þ jS2j � jĵs1 � ŝ2k2

jS1j þ jS2j þ kŝ1 � ŝ2k2
: ð12Þ
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2.2.3. Mis-identification errors

Using r̂ðSi; SjÞ instead of rðSi; SjÞ, introduces errors in
identifying measurement co-occurrence with threshold s.
Such errors happen when r̂ðSi; SjÞ < s while rðSi; SjÞP s
(false positive errors) and when r̂ðSi; SjÞP s while
rðSi; SjÞ < s (false negative errors). The number of
Please cite this article in press as: K. Kalpakis, S. Tang, Collaborati
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such errors depends on k, the number of hash functions
used in the positional min-wise hashing or the number of
dimensions used for the random projections, the threshold
s, and the distribution of the values rðSi; SjÞ over all the
sets Si; Sj.

Theorem 2 provides an upper bound on the probability
of such mis-identification errors when using random pro-
jections (similar estimates can be obtained using Theorem
1 and the proof of Theorem 2).

Theorem 2. Consider a family of m sets S1; S2; . . . ; Sm �
½0;wÞ, and a threshold 0 6 s 6 1 for identifying co-occur-

rence among any pair of them. Let 0 < d < 1 and b P 0. The

probability of an error in identifying co-occurrence between

any pair of sets Si; Sj when using r̂ðSi; SjÞ, with random

projections onto k vectors, instead of rðSi; SjÞ is at most m�b

plus the probability that rðSi; SjÞ 2 ½ð1� dÞs; ð1þ dÞs�,
where k P 4þ2b

�2=2��3=3
log m, � 6 minf f�1 � 1; 1� f g, and

f ¼ 1�s
1þs �

1þð1�dÞs
1�ð1�dÞs.

Proof. The proof of this theorem uses Lemmas 2 and 3
given in Appendix C. Using a ¼j Si j þ j Sj j and
b ¼ ksi � sjk2 in Lemma 3, we get a band (range) of resem-
blance values I ¼ ½ð1� dÞs; ð1þ dÞs� together with an
upper bound �0 ¼ minf f�1 � 1; 1� fg on �, such that,
r̂ðSi; SjÞ 62 I if and only if rðSi; SjÞ 62 I , provided that
kŝi � ŝjk2 is within 1� � of ksi � sjk2. The latter happens
with probability 1� m�b for k P 4þ2b

�2=2��3=3
log m, as given

by Lemma 2. Thus, with probability 1� mb there are no
errors in identifying co-occurrence when the true resem-
blance is outside the band I. Therefore, the probability of
an error in identifying co-occurrence when using r̂ðSi; SjÞ
instead of rðSi; SjÞ is at most m�b plus the probability that
rðSi; SjÞ 2 ½ð1� dÞs; ð1þ dÞs�. h

For example, for s ¼ 0:95, d ¼ 10�2, b ¼ 1, and uniform
distribution of true resemblance over ½0; 1�, the probability
of co-occurrence mis-identification errors for the random
projections approach is 6 0:03 provided that
k P 502 log m. In our experimental results, we find that
much smaller values of k are sufficient for small error
j r � r̂ j (note that here m 6 2w). Furthermore, we experi-
mentally find that the resemblance estimation error of
two sets by using the random projection approach is
	 50% smaller than that obtained with the positional
min-wise hashing approach.

2.2.4. Element signatures

We define the (positional) min-wise signature of an ele-
ment e within window W to be the (positional) min-wise
hash of its occurrence set vW ðeÞ. Similarly, the random pro-

jection signature of e is the random projection of vW ðeÞ. For
brevity, whenever it is clear from the context, we simply
talk about the signature of an element e, and we denote
it with re. The size of re is equal to k, the number of hash
functions or projections used to compute it, while the time
to compute it is OðkwÞ.
ve data gathering in wireless sensor networks ..., Comput. Com-
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3. Collaborative data gathering protocol exploiting

measurements co-occurrence

We present a protocol that the sensors and the base
station in a wireless sensor network can use to reduce the
communication costs of data gathering by exploiting
co-occurrences of measurements. The protocol allows sen-
sors to discover co-occurring elements and to collaborate
by sharing the load of communicating such co-occurring
elements, and it allows the base station to make inferences
about the sensor measurements. Here, we assume that the
co-occurrences between elements persist for some period
of time, larger than the window size w.

Sensors identify pairs of co-occurring elements e; e0 and
notify the base station that e; e0 are co-occurring. The base
station maintains the co-occurrence (symmetric) relation
C : U 
 U ! f0; 1g, such that C½e1; e2� ¼ 1 iff it has been
notified that e1 and e2 co-occur, where U ¼ [n

i¼1U i is the
universe of all the sensor elements. The binary relation C

at the base station is represented efficiently using standard
data structures for sparse undirected graphs. Further, a
sensor i may choose, at any time, a default element
mdefaultðiÞ 2 Ui [ fnullg among its non-co-occurring ele-
ments, and notify the base station of its choice. A sensor
i does not communicate mdefaultðiÞ to the base station each
time it measures mdefaultðiÞ. The base station maintains the
set of mdefaultðiÞ it has been notified of.

At the end of each time (discrete period) t, the base sta-
tion makes an inference (estimate) m̂i;t of the value mi;t sen-
sor i measures at t. For each sensor i and time t, we define
the candidate measurements V i;t to be a list of those ele-
ments e ¼ ði; vÞ 2 Ui that co-occur with an element
e0 2 U � U i communicated to the base station at time t.
By default, V i;t is considered as a FIFO list (i.e. the ele-
ments e are ordered according to the order of arrival of
their co-occurring elements e0 at the base station). We
define the extended candidate measurements bV i;t to be
equal to V i;t if V i;t 6¼ ;, equal to ðmdefaultðiÞÞ if V i;t ¼ ; and
mdefaultðiÞ 6¼ null, and otherwise to be equal to the list of ele-
ments e 2 U i that co-occur with an element e0 2 U � Ui (in
any order). Observe that ; � bV i;t � Ui. The base station
makes an inference error if m̂i;t 6¼ mi;t.

The choice of the element in bV i;t used to compute m̂i;t

affects the magnitude j m̂i;t � mi;tj as well as the likelihood
of an inference error. For simplicity we choose the first ele-
ment in bV i;t. Alternate choices of interest would be (a) the
value of the element with highest estimated resemblance in
V i;t,

3 (b) the value of the most frequent element in bV i;t, (c)
the median value of the elements in bV i;t, or (d) the fre-
quency-weighted average of the values in bV i;t, i.e.

arc min
v2Ui

X
e2bV i;t

fejv� e:vj2
0
B@

1
CA; ð13Þ
448

449

450

3 The base station estimates co-occurrence of elements using its inferred
measurements.
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where fe is the frequency of element e among i’s measure-
ments. Choice (a) may be attractive when attempting to re-
duce the likelihood of making an inference error, while the
other choices may be attractive when attempting to reduce
the magnitude of the inference errors.

The choice of mdefaultðiÞ also affects both the magnitude
and likelihood of inference errors. The default element
mdefaultðiÞ chosen by each sensor i is one of its most fre-
quently occurring elements that does not co-occur with ele-
ments of other sensors. Our choice of mdefaultðiÞ attempts to
be aggressive on reducing the number of measurements
communicated to the base station. Other choices of interest
would be the frequency-weighted average or median value
of the elements that do not co-occur with elements from
other sensors if the magnitude of inference errors is of pri-
mary interest. Furthermore, if sensor i has an element e

with high frequency but short U½e�:list, then it should
choose e as its default mdefaultðiÞ.

Sensor i maintains for each co-occurring element e a
data structure U½e� that consists of: a list U½e�:list of ele-
ments that have been identified as co-occurring with e (by
sensor i or any other sensor), sorted in increasing order
of their sid’s; a list U½e�:children of elements that have been
identified as co-occurring with e by sensor i itself; an attri-
bute U½e�:state indicating the status of U½e�. Attribute
U½e�:state takes values (a) normal if U½e� is up-to-date, (b)
waiting if sensor i initiated an update and is waiting for
acknowledgement messages, (c) init if sensor i had been
the initiator of an update in the current window, (d)
updating if sensor i received an update message UpdateMsg
in the current window. For an element e that is not co-
occurring with any other element, we assume U½e� ¼ null,
and the sensor does not store U½e�.

Furthermore, each sensor i maintains a set Ri � U i of
elements that should always be communicated to the base
station. The base station may ask sensor i to append an ele-
ment e to Ri, e.g. if inference errors for such elements are
unacceptable to the application.

At each time t, sensor i communicates to the base station
its measuring element e ¼ ði;mi;tÞ, if e 6¼ mdefaultðiÞ or e 2 Ri

or e does not co-occur with any other elements. If e co-
occurs with other elements, sensor i may not need to com-
municate e to the base station, since the responsibility to
communicate the co-occurring elements to the base station
is shared among all the sensors in U½e�:list. The current win-
dow is partitioned into j U½e�:list j sub-windows, called
duty-zones, with each sensor taking charge of one duty-
zone. Sensor i will communicate e to the base station iff e

occurs during a duty-zone for which sensor i is on duty.
See Fig. 2 for further details.

We choose to split each window into equi-length duty-
zones and let each sensor in the U½e�:list take charge of a
single duty-zone. This makes the scheduling simple and
distributive, and enables sensors to quickly join or leave
U½e�:list. Different ways to split a window into duty-zones
are possible. For example, in the equi-depth approach,
the window is split into duty-zones so that each one has
ve data gathering in wireless sensor networks ..., Comput. Com-
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Fig. 2. The algorithm used by sensors to schedule transmissions of measurements to the base station.

Fig. 3. The algorithm used by sensors to discover element co-occurences.
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approximately the same number of occurrences of the
co-occurring elements. The equi-depth approach tries to
distribute the burden of communicating the co-occurring
elements equally among the sensors in U½e�:list. Such an
approach may lead to longer network lifetimes, provided
the overhead in computing equi-depth duty zones is
small. Also, sensors with more residual energy in U½e�:list
may take charge of multiple duty-zones. We defer consid-
eration and comparison of such alternatives to future
work.

Sensor i may initiate the discovery of co-occurring ele-
ments at any time, using the connected-components or
the clique approach. We present the discovery algorithm
with the connected-components approach in Fig. 3. Sensor
i maintains a set TSSi with the signatures of its elements,
with respect to the previous window. The set TSSi contains
only those elements in Ui that occurred in the previous win-
dow at sensor i. Sensor i updates the set TSSi of element sig-
natures at the end of the current window. Sensor i requests
the set TSSj of signatures of elements from sensors j 2 Adji,
and if it finds among them an element e0 that co-occurs
with e then it (i) adds e0 to U½e�:list and U½e�:children, and
(ii) updates the base station and all the sensors with an ele-
ment in U½e�:list. Whenever a sensor receives such an
update, it further updates all its children not already
updated. See Fig. 3 for further details. Note that only ele-
ments e; e0 with e:sid 6¼ e0:sid may co-occur for any thresh-
old s > 0. Further, since in practice s > 1=2, an element of
sensor i can co-occur with at most one element from
Please cite this article in press as: K. Kalpakis, S. Tang, Collaborati
mun. (2008), doi:10.1016/j.comcom.2008.01.001
another sensor j, hence the break statement at line 10 in
DiscoverCoOccurrences routine.
ve data gathering in wireless sensor networks ..., Comput. Com-
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Sensor i may decide to remove any of its co-occurring
elements e from the co-occurrence relation at any time.
In such a case, sensor i removes e from U½e�:list, chooses
a sensor j in U½e�:list to act as a removal coordinator for
updating the remaining sensors with elements in U½e�:list.
The removal coordinator sensor j ‘‘adopts” e’s children
U½e�:children, and it tells all sensors with an element in
U½e�:list to remove e from their co-occurrence lists. See
Fig. 4 for further details. Note that when sensor i was
asked by the base station to append e to Ri, the base
station may or may not ask i to remove e from co-occur-
rence relationship. It is advantageous for the other
sensors with elements in U½e�:list if the base station
chooses not to ask i to remove e from the co-occurrence
relation.

The base station may compute co-occurrence of ele-
ments using the inferred measurements m̂i;t in a window,
and then use this information to provide hints to the sen-
sors to initiate either the discovery or removal of co-
occurring elements. Such discovery or removal may be
targeted since the base station could hint sensors to verify
co-occurrence of specific pairs of elements. This will be
useful, for example, when the communication costs of
the discovery or removal become prohibitive (e.g. sensors
with large number of neighbors). Moreover, in the
extreme, we can have the base station compute all the
co-occurrence relationships, together with choosing a
default value and transmission schedule for each sensor
to minimize the likelihood and/or magnitude of inference
errors.
U
N

C
O

R
R

E
C

Fig. 4. Algorithm used by sensors to remove an
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3.1. Analysis of the costs of the protocol

We analyze the worst-case running-time, memory, and
communication costs of our protocol for collaborative data
gathering.

Consider the BaseStationEstimator routine. SincebV i;t � U i, it follows that the worst-case running-time for
each time period t is

Pn
i¼1OðUiÞ ¼ OðUÞ. Note that, for

the case where we use just the first element in V i;t to esti-
mate m̂i;t, the worst-case running-time is reduced to OðnÞ
by skipping the computation of the complete set bV i;t. The
memory required at the base station to store the co-occur-
rence relation C is Oðnþ mÞ, where m ¼ OðU 2Þ is the num-
ber of pairs of co-occurring elements.

Let M ¼ maxe2Ufj U½e�:list jg, d ¼ maxn
i¼1fj Adji jg,

c ¼ maxn
i¼1fminfw;Uigg, and u ¼ maxn

i¼1fU ig.
Observe that, for each window,

j TSSi j6 minfw; j Ui jg 6 c.
Consider the SensorMeasurementLoop routine executed

at sensor i. For each window, its worst-case running-time isX
ðe;reÞ2TSSi

w � Oðminfw;U½e�:listgÞ þ OðTSSi � k � wÞ

¼ Oðminfw;U ig � ðw �minfw;Mg þ k � wÞÞ
¼ Oððw �minfw;Mg þ k � wÞ � uÞ; ð14Þ

while the worst-case total memory required to maintain
U½e�, for all e 2 U i, is OðUiMÞ ¼ OðM � uÞ. The memory
required for TSSi is Oððk þ wÞ � TSSiÞ ¼ Oððk þ wÞ�
minfw;UigÞ ¼ Oððk þ wÞ � uÞ.
element from its co-occurence relationships.

ve data gathering in wireless sensor networks ..., Comput. Com-
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Consider now the DiscoverCoOccurrences routine at
sensor i. Its worst-case running-time isX
j2Adji

Oðk � TSSj � TSSiÞ þ
X

ðe;reÞ2TSSi

OðU½e�:listÞ

¼ Oðd � k �minfw;Uigminfw;Ujg þminfw;U ig �MÞ
¼ Oðd � k � u2 þM � uÞ; ð15Þ

while sending a total of at most minfw;U ign ¼ OðunÞ
UpdateMsgs each of size OðMÞ.

Finally, consider the cost of the Remove procedure for
an element e. This routine sends at most n messages alto-
gether, each of size OðU þMÞ.
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4. Experimental evaluation

We discuss the results of our experiments on evaluating
the effectiveness of our in-network data co-occurrence
detection methods, and the energy efficiency of data gath-
ering protocol.
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4.1. Data sets and performance metrics

We use synthetic datasets, as well as real sensor mea-
surements downloaded from the ‘‘James Reserve Data
Management System” [1]. For the real datasets, we down-
load from [1] the temperature and humidity measurements
taken by 12 sensors deployed in James Reserve, California
during a two day span (August 9 and 10, 2005). In our sim-
ulation, we round the original measurements x to roundðxÞ.

We generate synthetic datasets using three parameters:
the window size w, the element frequency f in the window,
and the true resemblance r between pairs of occurrence
sets. The occurrence set of an element in a window is gen-
erated using a uniform distribution (i.e. select f � w num-
bers in ½0;wÞ with uniform distribution).

For evaluating our co-occurrence detection methods, we
use two primary metrics: (1) the average resemblance esti-
mation error j rðS1; S2Þ � r̂ðS1; S2Þ j, and (2) the size k of
the signatures re used by the resemblance estimation meth-
ods. For evaluating our data gathering protocol, we use (1)
the rate at which the base station makes inference errors,
calculated as the ratio of the number of inference errors
over the total number of measurements made by all the
sensors, and (2) the relative reduction
j Mdg�r �Mdg j = j Mdg j of the communication costs for
data gathering, where Mdg�r and Mdg are the total number
of measurements communicated to the base station by all
the sensors, with and without our proposed collaborative
data gathering method, respectively.4

The communication overhead of the proposed scheme is
due to the discovery and removal of co-occurring elements
631

632

633

634

635

4 Alternate communication cost models are possible, e.g. distance of
sensors from base station, etc. Though such models may give even better
savings of the communication costs, the simple unit cost model is sufficient
to demonstrate the benefits of our approach.
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in our protocol. These overheads are proportional to the
size of TSSi and the number of sensors in each sensor’s
neighborhood Adji, while the size of TSSi is proportional
to the size of the element signatures re and the number
of elements in TSSi. The communication overhead is typi-
cally no more than the cost of communicating all the mea-
surements to the base station during a single window. As
long as co-occurrences persist for a few windows, the over-
head is small compared to the savings in the measurement
communication costs.

4.2. Experimental results – synthetic datasets

To evaluate and compare the performance of our two
in-network data co-occurrence detection methods, we gen-
erated 100 pairs of occurrence sets, for window sizes w

ranging from 256 to 2048. In this experiment, the true
resemblance r between pairs of occurrence sets is 	 0:95,
while the element frequency f is 30%. Fig. 5 shows the
resemblance estimation performance of the positional
min-wise and random projection methods for different win-
dow and signature sizes, while Fig. 6 shows their perfor-
mance for signature size k ¼ lg w (i.e. using k random
vectors or min-wise hash functions). As expected, larger
values of k result in better resemblance estimation. It can
be seen that a signature size of k ¼ lg w works well for both
the positional min-wise and random projections methods.
Furthermore, we see that the random projection method
gives more accurate resemblance estimates compared to
the positional min-wise method. Based on these results,
in the remaining experiments, we use the random projec-
tion method with signature size k ¼ lg w for resemblance
estimation.

Next, we examine the behavior of the resemblance estima-
tion for different sizes of occurrence sets (i.e. elements with
different frequencies of occurrence), as well as occurrence
sets with different true resemblances. The results of these
experiments are given in Fig. 7. We see that the random
projection signatures provide good resemblance estimation
as the element frequencies f change, for occurrence sets with
true resemblance 	 0:95. We also see that the estimated
resemblance converges to the true resemblance as the true
resemblance of occurrence sets increases, for element
frequency f fixed at 30%. These results are useful for the
following two important reasons. Since co-occurrence can
happen for elements of different frequencies, it is critical
for the resemblance estimation to be rather insensitive to
element frequencies. Further, having the resemblance esti-
mation become more accurate for larger values of true
resemblance, allows us to use the resemblance threshold s
as a lever for controlling the number of estimation errors
at the base station, and to better exploit the tradeoff between
number of errors and communication costs.

Next, we consider the connected-components and the
clique approaches for identifying set with n P 2 co-occur-
ing elements. These two approaches affect both the base
station inference error rate as well as the communication
ve data gathering in wireless sensor networks ..., Comput. Com-
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Fig. 5. Magnitude of the resemblance estimation error with varying signature size k, using (a) positional min-wise signatures, and (b) random projection
signatures.
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Pcosts of data gathering. For these experiments, we consider
sets of n ¼ 2; 3; . . . ; 10 elements, one element per sensor,
with varying frequency f, window size w ¼ 1024, true
resemblance between pairs of element occurrence sets
0.95, signature size k ¼ lg w, and frequency of the default
element chosen by each sensor equal to 30%. We apply
both approaches for 100 consecutive windows. The results
of these experiments are given in Figs. 8 and 9.

Fig. 8 gives the base station inference error rate, while
Fig. 9 shows the relative reduction of communication costs.
We can clearly see that the inference error rate is low, and
that the reduction of communication costs is substantial
and increases as n increases. Both achieve comparable com-
munication cost savings when the same number of elements
are identified as co-occurring. As expected, the inference
error rate with the clique approach is lower and increases
slower with n as compared with the connected-components
256 512 768 1024 1280 1536 1792 2048
0

0.01

0.02

0.03

0.04

0.05

0.06
Convergence to true resemblance (r), k = log(w)

Window size (w)

A
vg

 d
iff

er
en

ce
 (

er
ro

r)
 b

et
w

ee
n 

es
tim

at
ed

 a
nd

 tr
ue

 r
es

em
bl

an
ce

r = 0.85
r = 0.90
r = 0.95
r = 0.99

b

n signatures of size lg w for (a) varying element frequencies and fixed true
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Fig. 8. Base station measurement inference error rate using (a) the connected-components approach and (b) the clique approach for identifying groups of
co-occurring elements.
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Fig. 9. Relative reduction of communication costs for collaborative data gathering when using (a) the connected-components approach, and (b) the clique
approach for identifying sets of co-occuring elements.
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comes with higher communication and computation over-
heads, since the signatures of every element in U½e�:list
needs to be examined before an element e0 can join
U½e�:list. Moreover, the clique approach may result in smal-
ler U½e�:list, leading into smaller reduction of communica-
tion costs. Consequently, the connected-components
approach should be preferred for most applications.
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5 Data for only these two days were available. The dataset had some
missing measurements. Each missing measurement was replaced with a
unique new value.
4.3. Experimental results – real dataset

To evaluate how our method might perform in real sen-
sor networks, we download the temperature and humidity
measurements taken, every 5 min, by 12 sensors deployed
in James Reserve, California during a two days span
(August 9 and 10, 2005) and rounded each measurement
Please cite this article in press as: K. Kalpakis, S. Tang, Collaborati
mun. (2008), doi:10.1016/j.comcom.2008.01.001
x to roundðxÞ.5 We use window size w ¼ 512, random pro-
jection signatures of size lg w with the connected-compo-
nents approach for identifying sets of co-occurring
elements, and resemblance threshold s ¼ 0:90. We used
the measurements in the first window for co-occurrence
detection and found six sets of co-occurring elements
among the temperature measurements: one with 6 ele-
ments, one with 3 elements, and four with 2 elements. Each
sensor selects the most frequent temperature measurement
(element) as its default element, among measurements
(elements) that do not co-occur with measurements of
other sensors. Following our method, during the first
ve data gathering in wireless sensor networks ..., Comput. Com-
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window, the sensors communicated 4481 measurements
out of 6144ð12
 512Þ measurements taken (a savings of
1663 measurements), while the number of measurement
inference errors at the base station was 94. In other words,
our scheme achieved a 27.1% reduction of the communica-
tion cost for data gathering with an error rate of 1.53%.

Though we are primarily interested in the number of
inference errors rather than their magnitude, we note that
for the real dataset, the p-norms of the all the sensor mea-
surements kðm̂i;t � mi;tÞi;tkp and kðmi;tÞi;tkp are 58.20 and
1292.02 for p ¼ 2, are 493 and 84562 for p ¼ 1, and are
10 and 29 for p ¼ 1, respectively; the average and maxi-
mum of the relative error j m̂i;t � mi;t j =mi;t over all i; t is
0.0068 and 0.7143. The magnitude of the inference errors
made for the real data set is small.

5. Related work

Related work falls into two areas: set resemblance esti-
mation and collaborative data gathering in wireless sensor
networks.

5.1. Set resemblance estimation

Broder [4,5] utilizes min-wise independent hash func-
tions for identifying near-duplicate documents on the web
by estimating their resemblance using a fixed size signature
for each document. Datar et al. [9] present min-wise based
algorithms for estimating rarity and similarity on win-
dowed data streams, accurate up to factor 1� e using space
logarithmic in the window size. We also utilize a min-wise
hashing as one of the methods for estimating resemblance
of sets. However, to meet the computation constraints
imposed by the sensors, we extend min-wise hashing to
positional min-wise hashing to substantially reduce the
required number of hash functions for computing
signatures.

Random projections is a powerful dimensionality reduc-
tion technique with many applications, since it approxi-
mately preserves vector norms under some conditions.
Cole et al. [7] utilize random projection on sketching the
windowed time series data to discover Pearson correlation,
for cases when orthogonal transformations such as DFT,
DWT, or SVD can not be used because the data sets do
not have any clear principal components. Similarly, Indyk
et al. [15] use random projection on sketch computation for
identifying representative trends in time series data. For
stream data management, Thaper et al. [17] use random
projection on constructing dynamic multidimensional his-
tograms that succinctly approximate the data distribution
of the underlying continue stream. We utilize random pro-
jection for estimating the resemblance of two remote sets.

Agarwal and Trachtenberg [3] propose protocols for
estimating the number of differences between sets held on
remote hosts, using counting Bloom filters [11]. Given the
size of two sets from the same domain, the number of the
differences between them can be calculated using their
Please cite this article in press as: K. Kalpakis, S. Tang, Collaborati
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resemblance (see Section 2.2.2). Hence, our position min-
wise hashing and random projection signatures are simple
and effective methods for estimating the difference between
remote sets from the same domain, at a cost which is log-
arithmic in the size of the domain.

5.2. Collaborative data gathering

Exploiting data correlations for data gathering in wire-
less sensor networks has been recently addressed by Criste-
scu et al. [8], Chou et al. [6], Rickenbach et al. [18], Sharaf
et al. [16], Yoon and Shahabi [19], and Gupta et al. [13].
Cristescu et al. [8] consider the problem of finding the opti-
mal transmission structure and the rate-distortion alloca-
tions at the various spatially distributed nodes, in order
to minimize the total power consumption of the network.
Chou et al. [6] and Rickenbach et al. [18] exploit correla-
tions for coding the sensor measurements in order to
reduce the total number of bits transmitted during data
gathering. In Chou et al. [6], the data gathering node tracks
the correlation structure among the sensor nodes, and uses
this information to inform the sensors of the number of bits
they should use for encoding their measurements. A fixed
correlation structure is assumed, and all sensors are
engaged in all of the data transmissions. In particular, Ric-
kenbach et al. [18] consider foreign-coding and self-coding
schemes and present algorithms for constructing optimal
and near-optimal data gathering trees for foreign-coding
and self-coding, respectively.

Gupta et al. [13] propose algorithms to select a subset of
sensors, called connected correlation-dominating set, that
form a connected communication graph and whose data
may be sufficient to reconstruct data for the entire sensor
network at the base station. During data gathering only
those selected sensors will be involved in communication
of measurements to the base station. They assume that sen-
sors know the correlation structure, and their focus is on
computing the correlation-dominating set. We present a
scheme for sensors to detect, in-network, and then utilize
measurement co-occurrence, which is different from corre-
lation, for reducing the communication costs of data
gathering.

Sharaf et al. [16] present the TiNA mechanism that
reduces data transmissions and provides approximate
results to aggregation queries by utilizing data temporal
coherency. Sensors will send a reading upwards on an
aggregation tree only if their reading differs from the last
recorded reading by more than a given tolerance. Yoon
and Shahabi [19] present CAG, a similar mechanism to
TiNA, that utilizes spatial correlation of sensor data. When
generating an aggregation tree, CAG forms clusters of
nodes sensing values within a user-provided error toler-
ance. Subsequently only one value per cluster is transmit-
ted upwards on the aggregation tree. Both TiNA and
CAG exploit data correlation in the context of in-network
aggregation, while our work utilizes data co-occurrence on
gathering every measurement from all the sensors.
ve data gathering in wireless sensor networks ..., Comput. Com-
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Moreover, while these works above that utilize data cor-
relation need numerical data, and it is unclear how they
should handle enumerated (non-numerical) data, our
approach works for both discrete numerical and non-
numerical data.

Statistical models have been used for data acquisition in
[12,10]. Goel et al. [12] present PERMON, a system for
motion detection using the spatio-temporal correlation in
sensor readings to reduce data transmissions. In PER-
MON, the base station generates a prediction model for
each sensor based on sensor readings, and it sends these
models back to the sensors. After receiving a prediction
model, sensors will send a new reading only when it differs
from the one in the motion prediction model. Deshpande
et al. [10] incorporate parametric statistical models of the
real-world into their sensornet query processing architec-
ture. Time-varying multivariate Gaussian models are used,
and sensors will be used to acquire and transmit data only
when those models are insufficient to answer queries with
acceptable accuracy. In a sense, the notion of measurement
co-occurrence we utilize is a time-varying non-parametric
statistical model of the sensor measurement field, which
does not require normality as [10] does.
T

853854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871
N
C

O
R

R
E
C

6. Conclusion

We describe a novel approach for the problem of gath-
ering at a base station all the measurements of the sensors
in wireless sensor networks. Our approach exploits co-
occurrence of sensor measurements, in order for sensors
to share the cost of communicating co-occurring measure-
ments to the base station. The base station makes infer-
ences, sometimes erroneous, about the true sensor
measurements based on the information it receives. We
present two energy efficient methods enabling the sensors
to estimate the resemblance of their measurement occur-
rence sets, one using (positional) min-wise hashing and
one using random projections. We also present a simple
and effective protocol for sensors to collaborate in trans-
mitting measurements to the base station.

We experimentally evaluate the proposed approach, and
find that it offers substantial savings in the communication
costs for few number of inference errors at the base station.
For synthetic datasets it provides up to 65% savings on the
communication costs and <6% inference errors, and for a real
dataset it provides 27% savings and 1.53% inference errors.
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UAppendix A

Lemma 1. For any two sets S1; S2 with resemblance

0 6 p 6 1,

minfj S1 j; j S2 jg=maxfj S1 j; j S2 jgP p=ð1þ pÞ. Further,

if S1 6¼ ; then j S1 \ S2 j = j S1 jP pð1þ 2pÞ=ð1þ pÞ2.

Proof. Assume, w.l.o.g., that S1 is not empty. By
definition,
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p ¼ rðS1; S2Þ ¼
jS1 \ S2j
jS1 [ S2j

: ð16Þ

Since j S1 [ S2 j¼j S1 j þ j S2j� j S1 \ S2 j, we have that

jS1 \ S2j
jS1j þ jS2j

¼ p
1þ p

: ð17Þ

Furthermore, since

minfjS1j; jS2jgP jS1 \ S2j ¼
p

1þ p
ðjS1j þ jS2jÞ

P
p

1þ p
maxfjS1j; jS2jg; ð18Þ

it follows that

1 P
minfjS1j; jS2jg
maxfjS1j; jS2jg

P
p

1þ p
: ð19Þ

In addition, if S1 6¼ ; then

jS1j þ jS2j
jS1j

¼ 1þ jS2j
jS1j

P 1þ minfjS1j; jS2jg
maxfjS1j; jS2jg

¼ 1þ p
1þ p

¼ 1þ 2p
1þ p

; ð20Þ

and the lemma follows. h
EAppendix B

We construct sequences with co-occurring values of high
frequency, and correlation coefficients that can be any-
where in the range ð�1; 1Þ, thus demonstrating that the cor-
relation coefficient is not an indicator of co-occurrence. Let
xðIÞ be the set of elements of a vector x with indices in an
index set I, and let xðIÞ ¼ c indicate the fact that all ele-
ments xðIÞ are equal to c. For a given frequency f, we gen-
erate a set I of n � f uniformly distributed random integers
in ½1; n�. Let J ¼ ½1; n� � I . We create the following six n-
dimensional vectors:

� x1 with x1ðIÞ ¼ 1 and x1ðJÞ ¼ 0.
� x2 with x2ðIÞ ¼ 3 and x2ðJÞ ¼ 0.
� y1 with y1ðIÞ ¼ 0 and y1ðJÞ be random real number uni-

formly distributed over ½0; 5�.
� y2 with y2ðIÞ ¼ 0 and y2ðJÞ be random real number uni-

formly distributed over ½�5; 0�.
� z1 ¼ x1 þ y1, and
� z2 ¼ x2 þ y2.

Observe that 1 and 3 co-occur between x1 and x2, as do 1
and 0 between x1 and y1, etc. We then normalize each one
of these six sequences to have mean 0 and variance 1. Every
pair of the normalized sequences still has a pair of (discret-
ized) values that co-occur (at a level 	 1:0 with high prob-
ability). The correlation coefficients between a sample of
the sequences x1; x2; y1; y2; z1, and z2 for n ¼ 1000 and
f ¼ 0:95 are
ve data gathering in wireless sensor networks ..., Comput. Com-
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900

901

902

903

904

905

906

908908

909

910

912912

913

914

916916

917

918

919

921921

922

x1 x2 y1 y2 z1 z2

x1 1:0000 1:0000 �0:8043 0:8034 �0:6298 0:9459

x2 1:0000 1:0000 �0:8043 0:8034 �0:6298 0:9459

y1 �0:8043 �0:8043 1:0000 �0:6265 0:9681 �0:7500

y2 0:8034 0:8034 �0:6265 1:0000 �0:4803 0:9532

z1 �0:6298 �0:6298 0:9681 �0:4803 1:0000 �0:5817

z2 0:9459 0:9459 �0:7500 0:9532 �0:5817 1:0000

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð21Þ
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Here each pair of these sequences has a pair of co-occur-
ring values at the level of 1.0. The correlation coefficient
between pairs of distinct sequences does not indicate
whether any values co-occur.
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Appendix C

Lemma 2 (Achlioptas [2]). For every set S ¼ fs1; s2; . . . ;
sng � Rd , and every � > 0, the projection fŝ1; ŝ2; . . . ; ŝng onto

a set of k vectors fz1; z2; . . . ; zkg � Rd , each of whose entries
zi;j are i.i.d. random variables, is such that for all 1 6 i; j 6 n,

ð1� �Þksi � sjk 6 kŝi � ŝjk 6 ð1þ �Þksi � sjk; ð22Þ

with probability at least 1� nb, provided that

k P 4þ2b
�2=2��3=3

log n. Each zi;j is an i.i.d. random variable that

takes the values
ffiffiffiffiffiffiffiffi
3=k

p
, �

ffiffiffiffiffiffiffiffi
3=k

p
, and 0 with probability 1/6,

1/6, and 2/3, respectively.

Similar results to Lemma 2 are known when the entries
of the projection vectors are i.i.d. normal random variables
Nð0; 1Þ, scaled by 1=

ffiffiffi
k
p

, where k ¼ Xð��2 log nÞ.

Lemma 3. Consider the function f ðxÞ ¼ ða� bxÞ=ðaþ bxÞ
for x P 0, where a > 0, b P 0. Function f is non-increasing

in x, and f ð1þ �Þ 6 f ðxÞ 6 f ð1� �Þ for 1� � 6 x 6 1þ �,
where 0 < � < 1. Moreover, for all 0 < d < 1 and

0 < k1 < 1,

f ð0ÞP k1 ! f ð1þ �ÞP ð1� dÞf ð0Þ and f ð1� �Þ
P k1 ! f ð0ÞP ð1� dÞk1; ð23Þ

if � 6 �0 ¼ minf f�1 � 1; 1� f g where f ¼ 1�k1

1þk1
� 1þð1�dÞk1

1�ð1�dÞk1
.

Proof. Observe that for any 0 < k1 6 k2 < 1

k1 6 f ð0Þ 6 k2 $ c1b 6 a 6 c2b; ð24Þ

where ci ¼ ð1þ kiÞ=ð1� kiÞ, for i ¼ 1; 2. First, we prove
that f ð0ÞP k1 implies f ð1þ �ÞP ð1� dÞf ð0Þ if

� 6
1þ k1

1� k1

� 1� ð1� dÞk1

1þ ð1� dÞk1

� 1: ð25Þ

Since f ð0ÞP k1, we have that a P c1b, where
c1 ¼ ð1þ k1Þ=ð1� k1Þ. Since aþ ð1þ �Þb 6 aþ ð1þ �Þ a

c1

and a� ð1þ �Þb P a� ð1þ �Þ a
c1

, we have that
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a� ð1þ �Þb
aþ ð1þ �Þb P

c1 � 1� �
c1 þ 1þ � : ð26Þ

Therefore, it is sufficient to have

c1 � 1� �
c1 þ 1þ � P ð1� dÞk1 $ c1

1� ð1� dÞk1

1þ ð1� dÞk1

P 1þ �; ð27Þ

which implies that it is sufficient to have

1þ k1

1� k1

� 1� ð1� dÞk1

1þ ð1� dÞk1

� 1 P �: ð28Þ

Second, we prove that f ð1� �ÞP k1 implies
f ð0ÞP ð1� dÞk1 if

� 6 1� 1� k1

1þ k1

� 1þ ð1� dÞk1

1� ð1� dÞk1

: ð29Þ

Since f ð1� �ÞP k1, we have that a P c1ð1� �Þb ¼ c01b,
where c1 ¼ ð1þ k1Þ=ð1� k1Þ. Therefore, a� b P a� a=c01
and aþ b 6 aþ a=c01, which implies that

f ð0Þ ¼ a� b
aþ b

P
a� a=c01
aþ a=c01

¼ c01 � 1

c01 þ 1
: ð30Þ

Thus, it is sufficient to require that

c1ð1� �Þ � 1

c1ð1� �Þ þ 1
P ð1� dÞk1; ð31Þ

which is equivalent to having

c1ð1� �Þ � 1

2
P

ð1� dÞk1

1� ð1� dÞk1

$ � 6 1� 1� k1

1þ k1

� 1þ ð1� dÞk1

1� ð1� dÞk1

: ð32Þ
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