Scheduling Tree Dags on Parallel Architectures

Konstantinos Kalpakis' and Yaacov Yeshal?3

(Please send all correspondence to: Yaacov Yesha, Computer Science Department, University of Maryland

Baltimore County, 5401 Wilkens Avenue, Baltimore, MD 21228-5398, U.S.A.; yayesha@cs.umbc.edu)

Abstract

We provide optimal within a constant explicit upper bounds on the makespan of schedules for tree
structured programs on mesh arrays of processors, and provide polynomial time algorithms to find
schedules with makespan matching these bounds. In particular, we show how to find, in polyno-
mial time, a (non-preemptive) schedule for a binary tree dag with n unit execution time tasks and
height ~ on a d-dimensional mesh array with m processors and links of unit bandwidth and unit
propagation delay whose makespan is O(n/m + pt/(d+1) 4 h), i.e. optimal within a constant factor.
Further, we extend these schedules to bounded degree forest dags with arbitrary positive integer
execution time tasks and to meshes when the propagation delay of all the links is an arbitrary
positive integer. Thus, we provide a polynomial time approximation algorithm for an NP-hard
problem, with performance ratio that is a constant.

We also show how to schedule tree dags on any parallel architecture that satisfies certain natural, not
very restrictive, conditions that are satisfied by most parallel architectures used in practice. Let € be
a fixed positive real number. We provide polynomial time computable schedules for binary tree dags
with n unit execution time tasks and height h ¢ (g(n)n~¢, g(n)logn) on any parallel architecture
satisfying those conditions, with unit bandwidth and unit propagation delay links, with optimal up
to a constant makespan O(g(n)+ h), where g is a function that depends only on that architecture.
The number of processors used is optimal within a constant factor if A < g(n)n™°¢, and is optimal
within an O(logn) factor if h > g(n)logn. As an example, for hypercube and complete binary
tree architectures, we achieve optimal within a constant makespan O(h) when h = Q(log* n), using
an optimal within an O(logn) factor number of processors. Further, we extend these schedules to
the case of bounded degree forest dags with tasks of arbitrary positive integer execution times and
architectures when the propagation delay of all the links is a given arbitrary positive integer.

Keywords: multiprocessing, parallel computation, parallel architectures, communication
delay, scheduling, tree dags, linear array, mesh array, tree decomposition.

!Computer Science Department, University of Maryland Baltimore County, 5401 Wilkens Avenue, Balti-
more, MD 21228-5398, U.S.A. E-mail: kalpakis@cs.umbc.edu and yayesha@cs.umbc.edu

2Supported in part by the National Science Foundation under grant number CCR-9106062.

3Also, supported in part by the University of Maryland at College Park, Institute for Advanced Computer
Studies.

1 Introduction

An important consideration in mapping the computational structure of a program onto
a multiprocessor system is to keep a good balance between communication overhead and
computation time. Moreover, in most multiprocessor systems not every two processors are
connected directly by a communication link. A program is represented by a directed acyclic
graph (dag). Nodes represent tasks with positive integer execution (computation) times.
Edges represent precedence constraints and functional dependencies among tasks. A parallel
machine is modeled by an undirected connected graph. Nodes represent identical processors
and edges represent communication links. Each processor has its own local memory and is
capable of executing any task. Links have propagation delay and constant bandwidth. The
propagation delay of all the links is an arbitrary positive integer. Throughout this paper, we
assume that each link has unit bandwidth, and unless we say otherwise, all links have one
unit propagation delay.

In this paper, we consider the problem of finding efficient schedules for tree structured
programs on parallel machines, and in particular on mesh arrays of processors.

Papadimitriou and Ullman [11], Papadimitriou and Yannakakis [12], Jung, Kirousis,
and Spirakis [7], and Aggarwal, Chandra, and Snir [1] study the problem of finding efficient
methods to execute given programs on parallel machines. Our model differs from the model
of Papadimitriou and Yannakakis [12] since in their model there is no notion of limited
bandwidth and all communication steps take the same time. Further, our model differs from
the model of Aggarwal, Chandra, and Snir [1] since in their model pipelining is not allowed
and all communication steps take the same time.

Ghosal, Mukherjee, Thurimella, and Yesha [5] give a polynomial time algorithm to find
a schedule for a bounded degree tree dag with n unit execution time tasks and height / on a d-
dimensional mesh with O(min{n!/(4+1) n/h}) processors achieving makespan O(max{n'/(**1) 1} logn)
(optimal and processors—optimal within an O(logn) factor). (Throughout this paper, log
denotes the base 2 logarithm. The makespan of a schedule equals the time to execute that
schedule.) Further, Ghosal et al [6] extend their schedules to bounded degree tree dags with
tasks of arbitrary positive integer execution times. Kalpakis and Yesha [8] give, for any
fixed positive real €, a polynomial time algorithm that finds a schedule for a bounded degree
tree dag with n unit execution time tasks and height A &€ (n'/?7¢,n'/%logn) on a linear
array achieving optimal within a constant makespan O(n'/? + k), while the time-processors
product is optimal within a constant when A < n'/27¢ and is optimal within O(logn) when
h > n'/?logn. They extend those schedules to d-dimensional meshes when the tree dags
have height A > dn'/(*+1) log n, achieving O(h) makespan. Kalpakis and Yesha [8] also show
that the makespan of an optimal schedule for bounded degree tree dags with n unit time
tasks and height h for the model of [12] with parameter 7 is O(7 log(n/7)/log(7/h)). Fur-
ther, they prove that, for bounded degree tree dags with unit time tasks, the linear array
is strictly more powerful than the architecture independent model of Papadimitriou and

2

Yannakakis [12] with interprocessor communication delay equal to the number of processors
minus 1. They show that there exist binary tree dags with n unit time tasks and height
o(n'/?) whose optimal schedule for the model of Papadimitriou and Yannakakis [12] has
makespan Q(y/nlogn/loglogn) and they provide schedules for those tree dags on linear
arrays with optimal within a constant makespan O(n'/?).

We provide optimal within a constant explicit upper bounds on the makespan of (non-
preemptive) schedules for tree dags on mesh arrays of processors, and polynomial time
algorithms to find schedules with makespan matching these bounds. In particular, we show
how to find, in polynomial time, a schedule for a binary tree dag with n unit execution
time tasks and height h on a d-dimensional (square) mesh array with m processors, with
unit bandwidth and unit propagation delay links, whose makespan is O(n/m +n'/4+1) 4 p),
which is optimal within a constant factor. In constructing these schedules, we develop a
new method, that we call path—centroid decomposition, for decomposing a tree into subtrees
of balanced size. Our schedules improve by an O(logn) factor upon the makespan and
time-processors product of the schedules in Ghosal et al [5]. Further, we show how to
extend these schedules to schedules for bounded degree forest dags with arbitrary positive
integer execution time tasks on meshes when the propagation delay of all the links is an
arbitrary positive integer. Thus, we provide a polynomial time approximation algorithm with
performance ratio that is a constant for an NP-hard problem (NP-hardness is established by
a straightforward reduction from MULTIPROCESSOR SCHEDULING, which was proven
NP-hard in Garey and Johnson [4]).

We also provide optimal within a constant explicit upper bounds on the makespan of
schedules for tree dags on any parallel architecture satisfying certain reasonable conditions,
and provide polynomial time algorithms to find schedules with makespan matching these
bounds. A parallel architecture M is modeled by a family of undirected connected graphs.
For any architecture M, we define three integer functions S, f, and ¢ as follows. For any
positive integer m, S(m) is equal to the number of processors in the smallest, with respect
to number of processors, machine of architecture M with > m processors. Function f is
defined so that f(m) equals the diameter of a machine with S(m) processors, and function ¢
is defined so that g(n) = min{7 : 7 > f([n/7]), integer 7 > 1}. We say that architecture M
is admissible if (i) f is non-decreasing, (ii) S(m) = O(m), and (iii) for any k, every k-node
subgraph of a machine of architecture M has diameter Q(f(k)). Most parallel architectures
that are used in practice are admissible, such as meshes, hypercubes, trees, butterflies etc.
We provide polynomial time computable schedules for bounded degree tree dags with n unit
execution time tasks and height A on any admissible architecture, whose links have unit
bandwidth and unit propagation delay, with an optimal within a constant factor makespan
O(g(n) + h), when h & (g(n)n=%,g(n)logn). The number of processors used is optimal
within a constant factor when h < g(n)n~°, and is optimal within an O(logn) factor when
h > g(n)logn. For example, since for hypercube and complete binary tree architectures
g(n) = O(logn), using our schedules for admissible architectures above, we can find, in
polynomial time, a schedule for a bounded degree tree dag 7' with n unit time tasks and

height A = Q(log” n) on a hypercube or a complete binary tree architecture with an optimal
within a constant factor makespan O(h) and an optimal within a O(logn) factor number of
processors. Note that, for hypercubes, one can obtain, via an embedding result in Bhatt et
al [2], a schedule for a binary tree dag with makespan O(k), but with much more processors,
namely n. We extend our schedules for admissible architectures to the case of bounded
degree forest dags with tasks of arbitrary positive integer execution times and to machines
of architecture M when the propagation delay for all the links is a given arbitrary positive
integer.

Our schedules for admissible architectures use a tree decomposition for tree dags in-
duced by the method of Papadimitriou and Yannakakis [12], and a simulation technique that
we provide for their model by a parallel architecture with diameter no more than the inter-
processor communication delay in [12]. It is important to note that, because in a parallel
architecture links have constant bandwidth, because an efficient schedule for the model of Pa-
padimitriou and Yannakakis [12] may use too many processors, and because the model of [12]
over-estimates the interprocessor communication delay by taking it always to be the machine
diameter, the schedule provided by the method of Papadimitriou and Yannakakis [12] does
not necessarily provide an efficient schedule for that architecture. Careful placement of tasks,
in order to limit link congestion, while making sure that the number of processors used is
not too large, is required.

The rest of the paper is organized as follows. In Section 2 we include the needed
definitions. In Section 3 we describe the path—centroid decomposition. In Section 4 we
present our polynomial time computable optimal within a constant schedules for tree dags
on 2—dimensional meshes, and in Section 5 we generalize those schedules to higher dimen-
sional meshes. In Section 6 we present our schedules for tree dags on admissible parallel
architectures.

2 Preliminaries

A bounded degree tree dag T' is a rooted directed bounded degree tree, where the edges are
directed towards the root of the tree. (The degree of a node of T' equals the number of its
predecessors and the degree of T' is the maximum of the degrees of its nodes.) Nodes rep-
resent computational tasks and edges represent both precedence constraints and functional
dependencies among tasks. Each task v has a positive integer execution (computation) time
w(u). A bounded degree forest dag F' is a collection of bounded degree tree dags. The height
of a forest dag is the maximum of the heights of its tree dags. For simplicity, we write v € F
or (u,v) € F whenever v or (u,v) is a node or an edge in F' respectively. In a dag F, node
v is called successor of node w if (u,v) € F, and node v is called a predecessor of node w if
(v,u) € F. A leaf node is a node with no predecessors. We define the index of the root of T
to be the height of 7" plus 1, and the index of any other node u € T' to be the height of its

successor node in T'. Hereafter, unless we state otherwise, we assume binary tree dags with
tasks of unit execution times.

Given any two integers d > 0 and b > 1, we view a d—dimensional (square) mesh array
of processors with edges each of length b (that is, there are b processors on each edge) as
an integer lattice in a d-dimensional space [1,5]?. Throughout this paper, we use this view
and standard (and intuitive) geometric concepts (such as lines, points, planes, etc) when
referring to a d-dimensional mesh. For simplicity, we refer to a 2—dimensional square mesh
simply as a mesh.

Tasks are assigned to processors for execution. A task may be assigned to more than
one processor, in which case this processor holds a copy of that task. If there is at least
one task with more than one copy then we say that we have recomputation. Recomputation
is unnecessary for forest dags [5], while it is necessary for inverse forest dags [7]. All our
schedules have no recomputation. For simplicity, we refer to a copy of a task simply as a
task. We say that a task is ready if the values of all its predecessors are available to it.
Processors perform computation according to the following eight rules:

(1) Computation is synchronized.

(2) Execution of tasks is non-preemptive.

(3) A non-leaf task can not be executed before it becomes ready. All leaf tasks are ready.
(4) Each processor can execute in w(u) time units a copy of a task u that is assigned to it.
(5) At each time unit at most one value can be sent over a link.

(6) A value sent over a link arrives at the other end of that link after a number of time
units equal to the propagation delay of that link.

(7) After a copy of a task is executed, its value is available to the processor to which it is
assigned.

8) If a value is transmitted by a link to a processor then it becomes available to that
P
Pprocessor.

The makespan Tyax of a schedule is the number of time units that pass until all copies
of each task are executed. Given a dag and a parallel architecture, a schedule is called
optimal if its makespan Ti,.x is minimum among all possible schedules for that dag on that
architecture. A schedule is called processors—optimal with respect to a given time ¢ if the
number of processors used is minimum among all schedules for that dag on that architecture
whose makespan is t.

Given a bounded degree forest dag F' and a parallel architecture, our objective is to find
a schedule for F on that architecture, with the following two properties: (i) Its makespan Tax

5

is optimal or close to optimal. (ii) The number of processors used is close to the minimum
number of processors required to achieve time Ty, ..

3 Path—Centroid Decomposition of a Tree Dag

Let 7' be a binary degree tree dag with n nodes and height h. It is well known that, by
removing an appropriate edge from 7', we can partition 7" into two subtrees each with no
more than [2n/3] and no less than [n/3| nodes. To find such an edge proceed as follows.
Find a path from the root of T' to a node u of T" such that the subtree that is rooted at u
has between |n/3] and [2n/3] nodes. The required edge is the edge on that path that is
incident to u. This method is known as the edge—centroid decomposition method. Given a
positive integer (3, we can partition 7', using this method recursively, into < [3n/3] subtrees
such that each subtree has no less than |3/3| and no more than nodes [3, 10]. To find
such a decomposition of T', we do the following. Remove from 7' the edge found by applying
the edge—centroid decomposition method to 7', and recursively decompose each subtree in
the resulting forest that has more than 3 nodes. Such a decomposition of T' can always be
computed in polynomial time.

Another way to decompose T' is to partition it into a set of paths as follows. Take
a directed path from a leaf of T' to its root, remove that path from 7', and recursively
decompose each tree in the resulting forest. The set of all such paths forms a partition of 7.
The number of paths in that partition equals the number of leaves of T'. We call such a
partition of T' a path decomposition of T.

We develop yet another way to decompose a tree into subtrees. Given a positive integer
B < n, we want to find a decomposition of 7" into subtrees such that each subtree 7} in that
decomposition will satisfy the following two properties:

Property 1: 7T; has no more than § nodes.

Property 2: all the nodes of 7}, that have a predecessor in T that is not in T}, are on a
single path from a leaf of T} to the root of T;.

Also, we require that such a decomposition of T satisfies the following property:
Property 3: there are at most 2[3n /3] subtrees in that decomposition of 7'

We find such a decomposition of T" by combining the edge—centroid decomposition and the
path decomposition methods. We call the resulting method the path—centroid decomposition
method.

Let 3 be a positive integer < n. Using the edge—centroid decomposition method recur-
sively, first decompose T into ©(n/3) subtrees Ry, Ry, ..., Ry, such that each subtree has
> |3/3] and < 3 nodes. Each subtree R; satisfies the first property above, but it may fail
to satisfy the second property.

We further decompose each subtree R; that fails to satisfy the second property, into
subtrees so that both properties are satisfied. Let R! be the subtree of R; that consists of
all the nodes of R; lying on a directed path from any node of R;, with a predecessor in
T' that is not in R;, to the root of R;. Let my,73,..., 7 be a path decomposition of R;.
Observe that the successor of the root of each subtree in the forest R; — R! is in a unique
path in that path decomposition of R]. Let R;; be the subtree of R; that consists of 7; and
those subtrees in the forest R; — R, whose roots have their successors on 7j, 7 =1,2,..., k.
Observe that, for each subtree R, ;, all the nodes of R;; that have a predecessor that is not
in R;; are lying on a single path (in R;;) to the root of R;;. Further, the subtrees R, ;,
J=1,2,...,kl, form a partition of R;. Consequently, each such subtree R;; satisfies both
properties above. Finally, for any R; that was not further decomposed, let R;; = R;. The
path—centroid decomposition 1,75, T5, ... of T' consists of all the R; ;’s above. Clearly, this
decomposition can be computed in polynomial time.

Lemma 1 Let T' be a binary tree dag with n nodes and let 3 be a positive integer < n.
Then, using the path—centroid decomposition method, we can decompose T into no more
than 2[3n/B] subtrees Ty, 15, Ts, ... so that each subtree T; has < 3 nodes and all nodes of
T; with a predecessor in another subtree are lying on a single path (in T;) to the root of T;.
Further, this decomposition is polynomial time computable.

Proof: Consider the method given above for finding a path—centroid decomposition of 7T'.
Since each subtree T} is a subtree R, ;, for some positive integers 7, 7, their properties follow
from the discussion above. We only need to find an upper bound on the number of subtrees in
that path—centroid decomposition of 7'. Since we first decompose 71" using the edge—centroid
decomposition method, it follows that the number kg of subtrees R; in this decomposition
is [n/B] < ks < [3n/B]. In addition, if R; is further decomposed as above (because it
violates the second property), then the number k! of subtrees R;; in that decomposition of
R; is no more than the number of subtrees R; that have the successor of their roots in R;.
Therefore, the total number of subtrees in this path—centroid decomposition of 1" is no more

than 2kg < 2[3n/3]. [

Suppose now that we are given a path—centroid decomposition 73,75, T5,... of T'. For
each subtree T} in that decomposition we define a path #; in T}, which we call the basic path
that corresponds to T;. If T; has a node whose predecessor(s) in T is not in T;, then x; is
the single path in 7; from that node to the root of T;. Otherwise, m; consists of the root of
T; only.

Moreover, given that path—centroid decomposition of T', we construct, by collapsing
each subtree into a single supernode, a compressed tree 7. as follows. For each subtree T;

7

we have a supernode v in 7., i.e. each supernode represents a subtree in that decomposition
of T'. There is an edge in T, from u € T, to v € T, if the successor node of the root of the
subtree represented by u is in the subtree represented by v. We call T, the path—centroid
compressed tree of T' associated with that path—centroid decomposition of 7'. The level of
a supernode of T is equal to its distance (in 7.) from the root of T.. Define the level of a
subtree T; in that decomposition of T' to be the level of the supernode of T, representing 7;.

Perform a breadth-first-search of 7., viewing it as an undirected rooted tree, starting
from its root and number its supernodes with consecutive positive integers, with the root
of T. numbered 1, according to the order in which they are visited. We call the number
assigned to each supernode of 7., in that manner, the BF'S number of that supernode. The
BFS number of a subtree T; equals the BFS number of the supernode representing 7.

4 Scheduling Tree Dags on Meshes

We provide a polynomial time algorithm for scheduling tree dags on meshes with optimal
within a constant makespan and number of processors. Intuitively, our algorithm is based
on assigning basic paths and/or subtrees resulting from a path—centroid decomposition of a
tree T' or a subtree of 1" to processors on the leftmost vertical line or on a horizontal line of
a mesh. Tasks are executed in a greedy manner as soon as they become ready. Values are
routed over suitable selected shortest paths between their source and destination processors.
Link contention is resolved according to a first—needed—first—routed policy.

4.1 The Schedule

Let T be a binary tree dag with n unit execution time tasks and height h. We show how
to schedule T' on a 2-dimensional square mesh with 6 = 12B + 1 processors on each line,
where B is a given positive integer < n. Let P, ; be the processor of this mesh that is at the
intersection of the 7th vertical line from the left and the jth horizontal line from the bottom,
1<4,5<0.

4.1.1 Task Assignment

Using the path—centroid decomposition method with parameter [n/B], decompose T" into <
2[3n/[n/B]] < 6B subtrees each with < [n/B] tasks. Let 11,73, T5,... be the subtrees in
this decomposition in BFS order. Let 7; denote the basic path that corresponds to subtree T;.
Then, for each subtree T; do the following:

Case 1: If 7; has < B tasks, assign all the tasks in 7} to processor P .

8

FIG.1

Case 2: Otherwise, do the following. Using the path—centroid decomposition method with
parameter [n/B?*], decompose T; into < 6B subtrees each with < [n/B?*] tasks. Let
Ti1,T;2,T;3,... be the subtrees in this decomposition of 7; in BFS order. Assign all
the tasks on the basic path m; to processor P 3;, and for each subtree T} ; assign all the
tasks in 7} ; — m; to processor Pjiq 2i41.

Let p(v) denote the processor of the mesh that has been assigned task v of T'.

4.1.2 Task Execution

Processors execute the tasks that have been assigned to them as follows. At any time ¢ > 0,
each processor p selects for execution a task u that has minimum index among all tasks that
have been assigned to p and are ready at time ¢ (break ties arbitrarily). Processor p executes
task u at time t and u’s value is available to p at time ¢ 4 1.

4.1.3 Routing

The routing of values of tasks is done as follows. Consider two tasks u and v of 1" such that
v is the successor of u in 7" and p(u) # p(v). The value of u is routed from p(u) to p(v) using
the links on a shortest path from p(u) to p(v), such that the first link on that shortest path
is parallel to the basic line that contains p(v). A line of the mesh is a basic line if it is an
odd—numbered horizontal line or it is the leftmost vertical line of the mesh.

Unfortunately, several values may compete to be routed over the same link at the same
time. We use the following link contention resolution strategy. Whenever several values of
tasks compete to use the same link at the same time, the value of the task with the lowest
index is routed first (break ties arbitrarily).

Fig. 1 illustrates an example of our schedule for a tree dag on a mesh.

4.2 Computing an Upper Bound on the Makespan

To find an upper bound on the makespan of our schedule, we compute certain upper bounds
on the time it takes to route values of tasks, by analyzing the contribution of the distance
traveled and the link congestion encountered. Using these upper bounds, by induction on
the height of each task, we find an upper bound on the completion time of each task. In
particular, we prove, by induction on the height of each task, that each task v of T' starts
execution by time Comp(n, B)+3h(v) 4 6Dist(v) 4+ 6(v)+ Cong*(v), where h(v) is the height
of v. The components Comp(n, B), Dist(v), é(v), and Cong*(v), are formally defined below.
Intuitively, Comp(n, B) is an upper bound on the total amount of computation performed

9

by each processor, Cong*(v) is an upper bound on the cumulative communication delay that
is due only to link contention, and Dist(v) and é(v) are both used to bound from above
the cumulative communication delay that is due only to distances traveled. The height of
a task enters in the above inequality because of precedence constraints among tasks. Then,
the inequality above intuitively says that the elapsed time in executing a task is bounded
from above, within a constant factor, by the sum of its height, the amount of computation
performed by each processor, the delay due to link contention, and the delay due to distances
traveled.

Let t(v) denote the time at which processor p(v) starts executing a task v of 7'. Let ¢'(v)
be the time at which the value of v is available at the processor that has been assigned the
successor task of v in T, if v has a successor, and be the time at which v finishes execution
otherwise. Since each task takes one time unit for execution, t'(v) > t(v) 4+ 1. Clearly, the
makespan of our schedule for 7' is equal to the time at which the root of T' finishes execution.

Consider the task assignment of our schedule for 7" on the mesh. We say that two proces-
sors are colinear if they are both on the same basic line. Let Comp(n, B) = max{B, [n/B?*]}.
Intuitively, Comp(n, B) is an upper bound on the amount of computation performed by any
processor of the mesh. In particular, we prove the following.

Lemma 2 Fach processor is assigned at most Comp(n, B) tasks. Only processors on basic
lines may have been assigned tasks. At each time unit > Comp(n, B), each processor has
at most one ready task. Fach processor executes at most one task whose value is needed by
some other colinear processor.

Proof: Clearly, no processor is assigned more than Comp(n, B) tasks. Let p be a processor
that has been assigned at least one task. By inspection of the task assignment method, it
follows that p is either on the leftmost vertical line or on an odd-numbered horizontal line.
Hence, only processors on basic lines may have been assigned tasks. Moreover, it follows
from the task assignment method and Lemma 1 that p has been assigned a basic path, and
possible some extra tasks which have all their predecessors also assigned to p.

Since all the tasks that have been assigned to p and are not on the basic path that has
been assigned to p can be executed by time Comp(n, B), and since at most one task on that
basic path can be ready at any time after that, it follows that, at any time > Comp(n, B),
processor p has at most one ready task.

Consider a task u of T', and let v be its successor. Suppose that p(u) # p(v) are colinear.
Then, task w is the highest task on the basic path that has been assigned to p(u). Since
each processor is assigned at most one basic path, each processor executes at most one task
whose value is needed by some other colinear processor. |

We will need the following definitions for computing an upper bound on the makespan.

10

For each task u of 7', let d(u,v) be equal to the distance between processors p(u)
and p(v), where v is the successor of u. Intuitively, d(u,v) is an upper bound on the
communication delay, due only to distance traveled, for the value of u to be communicated

to p(v).

For each task v of T', let 6(v) be equal to the distance between processor p(v) and the
most distant processor that is colinear with p(v) and has been assigned an ancestor of v. Note
that if u is a predecessor of v and p(u), p(v) are colinear processors then 6(u)+d(u,v) < 6(v).
Intuitively, 6(v) is an upper bound on the communication delay, due only to distance traveled,
for the values of all ancestors of v, that have been assigned to processors colinear with p(v),
to be communicated to p(v).

For each task v of T, let Dist(v) be equal to 0 if processor p(v) is on a horizontal
basic line, and be equal to b if p(v) is on the vertical basic line. Intuitively, Dist(v) is an
upper bound on the distance the value of a predecessor of v has to travel in order to reach
p(v), when it has been assigned on a basic line along a dimension that is lower than the
dimension of the basic line containing p(v). (It is assumed that a horizontal line is a line
along dimension 1 and that a vertical line is a line along dimension 2.)

Due to the BFS assignment, the values that compete with the value of a task that is the
root of a subtree of level &, for using a link on the vertical basic line, are all values of roots
of subtrees of level K — 1, k, or £+ 1 in the path—centroid decomposition of 7'. The situation
is similar for horizontal basic lines. In order to measure the delay due to link contention, we
define below, for each task u of T', the following two quantities Cong(u) and Cong*(u).

Define (T, k) to be equal to the number of subtrees in the path—centroid decomposition
of T which are at levels k—1, k, and k+1. Define v*(T, k) to be equal to E;L/:k v(T,7), where o’
is the height of the compressed tree that corresponds to the path—centroid decomposition
of T'. Likewise, define (7}, k) to be equal to the number of subtrees in the path—centroid
decomposition of T; which are at levels k — 1, k, and k + 1. Define v*(7;, k) to be equal

to Z?;k v(Ti,7), where h! is the height of the compressed tree that corresponds to the path—
centroid decomposition of T;.

For each task u of T" define Cong(u) and Cong*(u) as follows. There are two cases
to consider. In the first case, v has been assigned to a processor, say P z;, on the vertical
basic line. Task u is contained in the subtree 7;. Define Cong(u) to be equal to (7', k)
and Cong*(u) to be equal to v*(7T,k + 1), where k is the level of T; in the path—centroid
decomposition of 7'. In the second case, u has been assigned to a processor, say Pji12i41,
on a horizontal basic line. Task u is contained in the subtree T; ;. Define Cong(u) to be
equal to (7}, k) and Cong*(u) to be equal to v*(1};, k + 1), where k is the level of T; ; in the
path—centroid decomposition of 7;. Observe that if a task v and its successor v in 1" have
been assigned to different colinear processors then Cong*(u) + Cong(u) = Cong*(v), since
the levels of the subtrees that correspond to u and v differ by one. Intuitively, Cong(u) is
an upper bound on the communication delay, due only to link contention, for the value of

11

u to be communicated to p(v) given that v is the successor of v and that p(u) and p(v) are
different colinear processors. Further, Cong®(v) is an upper bound on the communication
delay, due only to link contention, for the values of all ancestors of v that have been assigned
to processors colinear with p(v), to be communicated to p(v).

The following lemma summarizes the properties of Dist(u), d(u,v), 6(u), Cong(u),
and Cong*(u) that we use later to compute an upper bound on the makespan of our schedule.

Lemma 3 Let u be a task of T' and let v be its successor in 1'. Then, the following are true:

(a) If tasks u and v have been assigned to the same processor, then Dist(u) =
Dist(v), 6(u) = 6(v), and Cong*(u) = Cong™*(v).

(b) If tasks u and v have been assigned to different colinear processors then
Dist(u) = Dist(v), 6(u) + d(u,v) < é6(v), and Cong*(u) + Cong(u) =
Cong*(v).

(c) If u and v have been assigned to non-colinear processors then Dist(u) + b <
Dist(v).

(d) For any task v of T, 0 < é(v) < b, 0 < Cong*(v) < 3b, and 0 < Dist(v) < b.

Proof: Follows from the definitions of the quantities involved. |

We state now the main theorem of this section.

Theorem 1 Let T be a binary tree dag with n unit execution time tasks and height h. Given
a mesh with m processors, we can find, in polynomial time, a schedule for T on the given
mesh with optimal within a constant factor makespan O(n/m 4+ n'/® + h).

Proof: Let u and v be two tasks of T such that v is the successor of u in T. Recall that
t(u) denotes the time at which u starts execution at p(u), and #'(u) denote the time at
which u’s value is available to its successor. Obviously, if p(u) = p(v) then t'(u) = t(u) + 1.
In Lemma 4, we show that if p(v) and p(u) are different colinear processors then #'(u) <
t(u) + d(u,v) + Cong(u). In Lemma 5, we show that if p(v) and p(u) are non—colinear
then, t'(u) < max{t(u) + b+ 3,t(v') + 3} if task v has a predecessor v’ on the basic path
assigned to p(v), and #'(u) < t(u) + b + 3 otherwise. Then, in Lemma 6, using the three
inequalities above and Lemmas 2 and 3, we show, by induction on the height of each task,
that ¢(v) < Comp(n, B) + 3h(v) + 6Dist(v) + 6(v) + Cong*(v). From part (d) of Lemma 3,
and since Comp(n, B) = max{B, [rn/B*|} and b = 12B + 1, it follows that the makespan of
our schedule for 7' is < max{B, [n/B*|} +120B +3h+ 11 and it uses (12B + 1)* processors.
By taking B = min{[n/%], [(n/h)*], max{1, [(m!/? — 1)/12]}}, it follows that we can
find, in polynomial time, a schedule for 7" on a mesh with m processors and makespan

O(n/m + nt/3 4+ h).
12

We note here that Q(n/m + nt/3 4 h) is a lower bound on the makespan of any schedule
for T' on a 2-dimensional mesh with m processors (for details see Ghosal et al [5]). (This
lower bound is basically the maximum of the number of tasks assigned to each processor, the
height of the tree, and half the diameter of the mesh, i.e. Tpax = Q(max{n/m,m'? h}) >
Q(n/m + nt/3 4 h).) Thus, our schedule for 7' is optimal within a constant. |

In the remainder of this section, we prove Lemmas 4, 5, and 6. At the end of the section we
explain how to extend our schedules to bounded degree forest dags with arbitrary positive
integer execution times and to meshes when the propagation delay of all the links is an
arbitrary positive integer.

Lemma 4 Let u and v be two tasks of T' such that v is the successor of u and processors
p(u) # p(v) are colinear. Then, the value of task u is available to processor p(v) at time

t'(u) < t(u) + d(u,v) + Cong(u).

Proof: If p(u) and p(v) are on the vertical basic line, then u is the root of a subtree in the
path—centroid decomposition of T'. If p(u) and p(v) are on the (2¢ + 1)th horizontal basic
line, for some 7, then wu is the root of a subtree in the path—centroid decomposition of 7;.

Suppose that both p(u) and p(v) are on the vertical basic line. The case where both are
on a horizontal basic line is similar. Let & be the level of the subtree in the path—centroid
decomposition of T' that has u as its root.

The time to communicate the value of task u from p(u) to p(v) is bounded as follows.
The distance the value of task u travels is d(u,v). Due to the BFS assignment, the links on
the shortest path from p(u) to p(v) can only be used for routing the values of the roots of
the subtrees in the path—centroid decomposition of 7" whose levels are &k — 1, k, or k + 1.
Thus, the value of u can be delayed, due to link contention, by no more than Cong(u) — 1
other values. Consequently, the time to communicate the value of u from p(u) to p(v) is
< d(u,v)+ Cong(u)— 1. Since the value of u is available to p(u) at time t(u) + 1, the lemma
follows. u

Lemma 5 Let u and v be two tasks of T' such that v is the successor of u and processors
p(u) # p(v) are non—colinear. Let @ be the basic path of T assigned to p(v). Then, the value
of task u is available to p(v) at time t'(v) < max{t(u)+ b+ 3,¢(v') + 3} if task v has a
predecessor v’ on w, and at time t'(u) < t(u) + b+ 3 otherwise.

Proof: In order to find the time by which the value of task u is available to processor p(v),
we need to find an upper bound on the distance the value of u has to travel when it is routed
from p(u) to p(v). Further, we need to examine the effect of link contention on the time it
takes to communicate the value of u to p(v). Note that, by the task assignment method,
both tasks are contained in a subtree 7; in the path—centroid decomposition of 7', 7 is the

13

basic path that corresponds to 7}, and v is on #. In addition, p(v) is processor P »; on the
vertical basic line, while p(u) is processor Pji12i41, 1 < j < 6B, on a horizontal basic line.

First, we find a bound on the distance the value of u travels. The value of u is routed
from Pjiq2i41 to Pjy12; using the link that connects them. Then, it is routed from Pjiq o
to P using the links on the shortest path between these two processors, which are all on
the 2¢th horizontal line of the mesh. Let £, be the set of links used. The distance the value
of u travels is equal to |E,| =7+ 1 <b.

Second, we find the delay the value of u will experience due to link contention. Observe
that if in routing the value of a task u’ of T" a link in F, is used then task u’ is in T; — 7 and
the successor of u’ is on the basic path «.

Because of the link contention resolution strategy, the value of u can be delayed only
by values of tasks whose index is less than or equal to the index of u. Recall that the index
of a task is the height of its successor task. Since T' is a binary tree, there is at most one
more task with index equal h(v) that may use a link in £,. In addition, the successor of
such a task is task v. Hence, the value of u can be delayed by at most one other value of a
task with index equal to h(v).

There are two cases to consider. In the first case, the value of u is delayed only by
values of tasks with index h(v). Since the value of u is available to p(u) at time #(u) 4 1, it
follows that the value of u is available to p(v) at time ¢'(u) < t(w) + b+ 3.

In the second case, the value of u is delayed by the value of a task with index less than
h(v). Then, v must have a predecessor v’ on 7. Let u’ be the task with index less than A(v)
that delayed the value of u last. Since the successor of u' is also assigned to p(v), the value
of v/ must arrive at p(v) no later than the time at which v’ becomes ready, i.e., t'(v') < t(v').
Since the value of u may be delayed by at most one other value of a task with index equal
to h(v), and since u’ is the task with index less than h(v) whose value delayed the value of
u last, the value of u arrives at processor p(v) by time t'(v') + 1 + 1 < ¢(v') + 3. The lemma
now follows. u

Lemma 6 FEach task v of T' is executed at time

t(v) < Comp(n, B) + 3h(v) + 6Dist(v) 4+ é(v) + Cong™(v). (1)

Proof: We prove this claim by induction on the height of each task.

Basis: Let v be a task of height h(v) = 0. Task v is ready at time 0. By Lemma 2 each
processor is assigned < Comp(n, B) tasks. Thus, p(v) will start executing task v by time
Comp(n, B). Because all other terms on the right hand-side of (1) are non—negative, the
claim is true for v.

14

Inductive hypothesis: Suppose that the claim is true for each task of height < j.

Inductive step: Let v be a task of height h(v) = j. Let x be the basic path that has
been assigned to processor p(v). If v is not on 7 then, since all predecessors of v are also
assigned to p(v) and p(v) has been assigned < Comp(n, B) tasks, the claim is true for v.
Thus, suppose that v is on 7. Task v becomes ready when the values of all its predecessors
are available to p(v). Let u be a predecessor of v in 7. Since h(u) < h(v) — 1 < j,
by the inductive hypothesis for u, processor p(u) starts executing task u at time t(u) <
Comp(n, B) + 3h(u) + 6Dist(u) + 6(u) + Cong™(u). We show that the value of u is available
to p(v) at time

t'(u) < Comp(n, B) + 3h(v) + 6Dist(v) + 6(v) + Cong*(v). (2)

There are three cases to consider.

Case 1: processors p(u) and p(v) are identical. The value of u is available to p(v) at time
t'(u) = t(u) + 1. Then, (2) follows from the inductive hypothesis for v and part (a) of
Lemma 3.

Case 2: p(u) and p(v) are different colinear processors. By Lemma 4, the value of u becomes
available to p(v) at time t'(u) < t(u) + d(u,v) + Cong(u). Inequality (2) follows from
the inductive hypothesis for v and part (b) of Lemma 3.

Case 3: p(u) and p(v) are non—colinear. Processor p(u) is on a horizontal basic line and
p(v) is on the vertical basic line. By part (c¢) of Lemma 3, Dist(«)+b < Dist(v). There
are two sub-cases to consider.

Case 3.1: v does not have a predecessor on x. By Lemma 5, t'(u) < t(u) + b+ 3.
Since h(u) < h(v) — 1, (2) follows from the inductive hypothesis for v and parts
(c) and (d) of Lemma 3.

Case 3.2: v has a predecessor v’ on 7. By Lemma 5, the time at which the value of
u is available to p(v) is t'(u) < max{t(u) + b+ 3,¢(v’) + 3}. Since v’ and v have
been assigned to the same processor and h(v') < h(v) — 1, (2) follows from the
inductive hypothesis for v’, part (a) of Lemma 3, and the analysis in case 3.1.

Consequently, the value of any predecessor u of v is always available to p(v) by time
Comp(n, B) + 3h(v) 4 6Dist(v) + é(v) + Cong*(v), which implies that task v becomes ready
by that time. Since by Lemma 2 each processor has at most one ready task at each time
unit > Comp(n, B), inequality (1) is true for each task v of T'. |

Note that our schedule for T' on a mesh induces a schedule for 7' on a linear array with m
processors and optimal within a constant makespan O(n/m + n'/? + h).

Next, we extend our schedules for binary tree dags to bounded degree tree dags with
tasks of arbitrary positive integer execution times and to meshes when the propagation delay

15

of all the links is an arbitrary positive integer. To this end, we generalize, in a straightforward
manner, the path—centroid decomposition method to bounded degree weighted trees. Then,
we can show the following. Suppose that we are given a weighted bounded degree tree
dag T with each task of T" having an arbitrary positive integer weight (i.e. execution time).
Suppose also that we are given a mesh with m processors and with links each with ro time
units propagation delay. Let W be the sum of the weights of all the tasks of 7. Let the
weighted height h,, of T be equal to the maximum sum of the weights of all the tasks of T
on a directed path in 7', where the maximum is taken over all directed paths in 7'. Then,
we can find, in polynomial time, a schedule for T" on the given mesh whose makespan is
O(W/m + (Wrg)l/S + hy), i.e. optimal within a constant.

In addition, we can schedule forest dags on meshes. Let F' be a binary forest dag with
n unit execution time tasks and height h. Let ny.x be the maximum number of tasks of
any tree in F. Suppose that a mesh with m processors is given. To schedule F' do the
following. First, combine the small trees in F', by adding O(n) dummy tasks, to trees with
O(nmax) tasks. Second, schedule each tree, which has ©(n,.;) tasks, on disjoint sub—meshes
of the given mesh using our schedule for tree dags. The makespan of the resulting schedule
is O(n/m+nl32 +h), i.e. optimal within a constant. This approach generalizes to schedules

for bounded degree weighted forest dags on meshes when the propagation delay for all the
links is an arbitrary positive integer.

5 Scheduling Tree Dags on Higher Dimensional Meshes

We give a polynomial time algorithm for scheduling tree dags on d—dimensional meshes with
optimal within a constant makespan and number of processors. Intuitively, our algorithm
is based on assigning basic paths resulting from the path—centroid decomposition of a tree
to processors on a line of the d-mesh, and then recursively assigning the forests of tasks on
which those paths depend to distinct submeshes perpendicular to that line. The algorithm
is a generalization of our scheduling algorithm for tree dags on meshes.

5.1 The Schedule

Let T be a binary tree dag with n unit execution time tasks and height k. Let B be a positive
integer < n, and b = 128 + 1. We show how to find a schedule for 7" on a d-dimensional
(square) mesh with (12B + 1) processors and O(n/B® + dB + h) makespan, d > 2. By

choosing appropriate values for B, we obtain the desired schedules.

Let L, be the line of the d-dimensional mesh that is along dimension d and passes
through processor Py, 1. Line Ly is a basic line along dimension d. Assign the tasks of 7'
to the processors of the d-dimensional mesh recursively as follows.

16

Case 1: d = 2. Use our schedule for meshes in the previous section.

Case 2: d > 2. Compute a path—centroid decomposition of 7' with parameter [n/B].
Let Ty,T5,T5, ... be the subtrees in that decomposition in BFS order. Let m; be the
basic path that corresponds to 7;. For each subtree T; do the following. If 7T; has
< B tasks assign all the tasks in 7; to the 2:th processor on Ly. Otherwise, do the
following. Assign all the tasks on m; to the 2:th processor on Ly. Let Pq;q be the
(d — 1)-dimensional submesh of the d-dimensional mesh that is perpendicular to Ly
at its (2¢ + 1)th processor. Let L,_1 be the line of Py;4; that is along dimension d — 1
and intersects the line Ly. Line Ly 4 is a basic line along dimension d — 1. Assign,
recursively, the tasks in 7; to the processors of the Py; 11 submesh, using line L;_;
instead of line L;. Remove from the processors of Py; 11 any task that is on 7;.

FIG.2 Fig. 2 illustrates an example of the task assignment method.

The processors of the d-dimensional mesh execute the tasks that have been assigned to
them following the same regime as for the case of 2-dimensional meshes, i.e. the ready task
with smallest index is executed first.

The routing of values of tasks is done as follows. Consider two tasks u and v of T'
such that v is the successor of v in 7" and such that processors p(u) and p(v) are different.
The value of u is routed from p(u) to p(v) using the links on a shortest path in the d-mesh
from p(u) to p(v), such that the first link on that shortest path is parallel to the basic line
that contains p(v). We use the same link contention resolution policy as in our schedules for
2-dimensional meshes, i.e. the value of a task with the smallest index is routed first. Fig. 3
FIG.3 illustrates an example of routing values of tasks in a d-dimensional mesh.

5.2 The Makespan

Using similar arguments as in the case of 2-dimensional meshes we show the following.

Theorem 2 Suppose that we are given a binary tree dag T' with n tasks and height h, and
a d—dimenstonal mesh with m processors. Then, we can find, in polynomial time, a schedule
for T on the given mesh with optimal within a constant makespan O(n/m + n*/(¢+1) 4 p).

Proof sketch: (See [9] for a detailed proof.) Similar to the proof of Theorem 1.

We extend, in a straightforward manner, the definitions of Comp(n, B), Dist(u), d(u,v),
§(u), Cong(u) and Cong*(u) to d-dimensional meshes. For example, Comp(n, B) = max{B, [n/B%]|},
Dist(u) = (¢ — 1)b for each task u assigned on a basic line along dimension ¢, and d(u,v) is
the distance between tasks assigned to colinear processors. The definitions of 6(u), Cong(u),
and Cong*(u) are similar to the ones for the 2-dimensional meshes.

17

Then, we extend Lemmas 2-6 to the case of d-dimensional meshes. Lemma 2 holds
as is. Parts (a) and (b) of Lemma 3 still hold. The inequality in part (¢) of Lemma 3
becomes Dist(u) + (j — ¢)b < Dist(v), where the basic lines that contain p(u) and p(v)
are along dimensions ¢ and j respectively. Further, in part (d) of Lemma 3 we have 0 <
Dist(v) < (d—1)binstead of 0 < Dist(v) < b. The statement of Lemma 4 remains intact. The
inequalities at Lemma 5 now become #'(u) < max{t(u)+ (Dist(v)—Dist(u))+3,¢(v')+3} and
t'(u) < t(u)+ (Dist(v) — Dist(u)) + 3. Lemma 6 holds, using the extended definitions of the
quantities involved. Consequently, our schedule for 7" has makespan < max{B, [n/B?]} +
24(3d — 1)B 4+ 3h + 6d — 1 and it uses (12B + 1)d Processors.

By taking B = min{[n'/{*V] [(n/h)Y/4], max{1, [(m'/?—1)/12]}}, it follows that we
can find, in polynomial time, a schedule for T' on a d-dimensional mesh with m processors
and makespan O(n/m + nl/(d‘H + h). On the other hand, Q(n/m + pt/(d+1) 4 h) is a lower
bound on the makespan of any schedule for 7" on a d- mesh with m processors (for details
see Ghosal et al [5]). Therefore, our schedule for 7' is optimal within a constant. u

These schedules can be generalized to bounded degree tree dags with tasks of arbitrary
positive integer execution times and to d-dimensional meshes when the propagation delay
of all links is an arbitrary positive integer ro. In particular, given such a tree dag T' and
such a mesh, we can find in polynomial time a schedule for the given tree dag on the given
mesh with optimal within a constant makespan O(W/m + (Wrd)Y/@+) 4+ b) where W is
the sum of the execution times of all the tasks of the tree dag and h,, is its weighted height.
These schedules can also be extended to bounded degree forest dags. See [9] for details.

6 Scheduling on Admissible Parallel Architectures

We show how to schedule binary tree dags with unit execution time tasks on any admissible
parallel architecture M with makespan optimal within a constant factor for a large range of
the height of those tree dags.

First, we show that a machine of architecture M can simulate for tree dags the architec-
ture independent model of Papadimitriou and Yannakakis [12] with constant slowdown, for
any interprocessor communication delay 7 such that 7 > f([n/7]). In other words, we find,
in polynomial time, a schedule for any binary tree dag 7" with n unit execution time tasks
and height h on a machine of architecture M with S([n/7]) processors whose makespan
is O(Tpy), where Tpy is the makespan of an optimal schedule for 7" on the architecture inde-
pendent model of Papadimitriou and Yannakakis [12]. For brevity, we call this architecture
independent model of Papadimitriou and Yannakakis [12] the PY model.

Second, by choosing appropriate values for 7, and by using two upper bounds on Tpy
in [8, 13], we provide a polynomial time computable schedule for 7' on a machine of an
admissible parallel architecture M with an optimal within a constant factor makespan

18

Tmax = O(g(n) + h), when h &€ (g(n)n=¢,g(n)logn). The number of processors used is
optimal within a constant factor when h < g(n)n™¢, and is optimal within a O(logn) factor
when h > g(n)logn. Further, given a positive integer m, we provide a polynomial time
computable schedule for 7" on a machine of an admissible parallel architecture M with S(m)
processors and an optimal within a constant makespan O(g(n) + n/m), when h < g(n)n=°.
We note that our schedules for admissible architectures generalize to the case of bounded
degree forest dags with tasks with arbitrary positive integer execution times, and to admis-
sible architectures when the propagation delay of all the links is a given arbitrary positive

integer.

6.1 Simulating the PY Model by Parallel Architectures

Given a parallel architecture M we show that, for any binary tree dag, M can simulate
with constant slowdown the PY model with a suitable parameter 7. The PY model [12]
is defined by having the value of a task, whose execution is completed by a processor p at
time t, available to processor p at time ¢, and to any other processor at time ¢ + 7. Because
in a parallel architecture links have constant bandwidth, because an efficient schedule for
the PY model may use too many processors, and because the PY model over-estimates the
interprocessor communication delay by taking it to always be the machine diameter, the
schedule provided by the method in [12] does not necessarily provide an efficient schedule
for that architecture. Careful placement of tasks, in order to limit link contention, while
making sure that the number of processors used is not too large, is required.

An outline of this section is as follows. Using a function introduced by Papadimitriou
and Yannakakis [12], we decompose a tree dag into subtrees. We then number those subtrees
in a certain order. Subsequently, using an Eulerian tour of a certain multigraph associated
with a parallel machine, we index all the processors. Using those numbered subtrees above
and that indexing of the processors, we describe the assignment of tasks to processors, the
execution of tasks by processors, and the routing of values of tasks to their destinations.
Finally, we compute an upper bound on the time to execute all tasks according to our

schedule.

A tree dag T' with n unit execution time tasks and height h is given. The e function
introduced by Papadimitriou and Yannakakis [12], induces a decomposition of 7" into subtrees
as follows. Compute the e value for each task u of 7" as in [12]. Let T; be the subgraph
of T' that consists of the root of T together with its min{k, 7} ancestors in 7' with the
highest e values, where k is the number of ancestors of the root of T'. Since the e function
is increasing along any directed path in 7', it follows that 7} is a subtree of T'. Then, using
the same approach recursively, decompose each subtree in the forest 7' — T4. The resulting
subtrees 11,75, T5, ... form a decomposition of 1" into subtrees. We call this decomposition
of T'a PY-decomposition of T

19

To a PY-decomposition of 7' there corresponds a compressed tree T as follows. For
each subtree T; there is a supernode wu; in 7", and we say that supernode u; represents
subtree T;. There exists an edge in 7" from a supernode u; to a supernode u; if the successor
of the root of the subtree T; is in the subtree T;. The level of a supernode u; is equal to the
distance of u; from the root of T’. The height of a supernode u; is equal to the height of the
subtree of 7" that is rooted at u;. A supernode of height 0 is a leaf supernode.

We number the supernodes of 7" as follows. Fix any left-to-right order for the prede-
cessors of each supernode. Perform a preorder traversal of 7", by viewing it as an undirected
rooted tree, and number its supernodes with consecutive positive integers according to the
order they are visited and so that the root supernode is numbered 1. The preorder number
of a supernode u; is the number assigned to it in this manner. Let rma(u;) be the supernode
with the maximum preorder number in the subtree of 7" that is rooted at supernode u;.
Supernode rma(u;) is the rightmost leaf ancestor of supernode u; in 7".

Let M be a machine of a parallel architecture M with m = S([n/7]|) processors. Index
the processors of M as follows. Find a spanning tree M’ of M with diameter < 2f(m).
Construct an Eulerian multigraph M" by using two copies of each edge of M’ , and then
find an Euler tour of M”. Number the processors of M with consecutive positive integers,
starting from 1, according to the order in which each processor was encountered for the first
time on that Fuler tour. The index of a processor is equal to the number assigned to it in
this manner. Let M'[¢, j] denote the smallest subtree of M’ that spans all processors whose
index is in the interval [¢,7], 1 < <5 < m.

For simplicity, we describe our schedule for T' on machine M with respect to supernodes
of the compressed tree T'. We make the following (intuitive) conventions. Let w; be any
supernode of 7", T; be the subtree of T represented by u;, and p be any processor of M. The
value of supernode u; is the value of the root task of 7;. We say that supernode u; has been
assigned to processor p if all the tasks in 7; have been assigned to p. We say that processor p
executes supernode u; whenever p executes all the tasks in 7; (in any order that respects
precedence constraints among tasks), provided that the values of all predecessor supernodes
of u; are available to p.

We now describe our schedule for T on M. Assign the supernodes of T" to processors
of M as follows. A processor is available if it has been assigned less than 7 4 1 tasks.
Let wuy,uq,us,... be the supernodes of 7" in increasing order of their preorder numbers.
Fori:=1,2,3,..., assign supernode u; to the lowest index available processor of M. Let p(u;)
be the index of the processor that has been assigned wu;. Processors execute the supernodes
assigned to them level-by-level starting from supernodes of level A" as in [5], where A’ is the
height of 7. In particular, for £ = A’ down to zero perform the following two steps:

Step 1: Each processor executes all supernodes of level k that have been assigned
to it.

Step 2: Each processor routes the value(s) of the supernode(s) it executed at

20

Step 1 to the processor assigned their successor supernode u in 7", Routing
is done over shortest paths in M'[p(u), p(rma(u))] and link contention is

resolved in FIFO order.

Because the root supernode has no successors, step 2 is not performed for k = 0.

We note here that compressed trees, preorder traversal, level-by—level execution, and
routing over non-overlapping intervals were used in Ghosal et al [5]. However, they use a
different compressed tree. Our approach is a generalization of the approach used in [8] to
simulate, for tree dags, the PY model by a linear array.

We state now the main theorem of this section.

Theorem 3 Let T be a binary tree dag with n unit execution time tasks, and M be a parallel
architecture. Let 7 be an integer such that 7 > f([n/7]). Then, we can find, in polynomial
time, a schedule for T on a machine of architecture M with S([n/7]) processors whose
makespan is O(Tpy), where Tpy is the makespan of an optimal schedule for T on the PY
model with parameter 7.

Proof: First, we prove that at the kth iteration of step 2, & > 1, the value of each supernode
of level k is routed to the processor that has been assigned its successor supernode. Let v be
a supernode of level k and let u be its successor supernode. Since supernodes are assigned to
processors according to their preorder number and since the preorder number of v is between
the preorder numbers of u and rma(u), it follows that p(u) < p(v) < p(rma(u)). Hence, v
has been assigned to a processor in M'[p(u), p(rma(u))], and its value is routed to p(u) at
the kth iteration of step 2. Further, in Lemma 8 below, we prove that all supernodes of level
k that are assigned to the same processor have the same successor supernode. Consequently,
the values of all supernodes of level &k are available to their successor supernodes for the next
iteration of step 1.

Second, in Lemma 7 below, we prove that the height A’ of the compressed tree 7"
is < [e(r)/7], where r is the root of T'. Hence, the total number of iterations of steps 1

and 2 is < [e(r)/7] + L.

Third, in Lemma 9 below, we prove that each iteration of step 1 takes < 27 4+ 1 time,
and each iteration of step 2 takes < 2f([n/7])+47+4 time. Since m = S([n/7]), f(m) < 7.
Thus, each iteration of steps 1 and 2 takes no more than 87 + 5 time.

Since the total number of iterations is < e(r)/7 + 2, the time to execute 7' on M is no
more than 13e(r) + 167 + 10. On the other hand, Papadimitriou and Yannakakis [12] show
that e(r) < Tpy. Therefore, the makespan of our schedule for 7' on M is O(Tpy). [

In the remainder of this section we prove Lemmas 7, 8, and 9.

21

Lemma 7 The height of the compressed tree 1" is < [e(r)/7|, where r is the root of T'.
FEach non-leaf supernode of T' represents a subtree of T with 7 + 1 tasks, and each leaf
supernode represents a subtree of T' with < 7 + 1 tasks. The number of non—leaf supernodes

is < [n/(m 4+ 1)].

Proof: Consider two supernodes u; and u; such that u; is a predecessor of u; in 7”. Let
r; and r; be the root tasks of the subtrees 7; and 7} represented by u; and u; respectively.
Since the e function is increasing along any directed path in 7', and since 7} contains r;
together with its 7 ancestors with the highest e values, it follows that e(r;) > e(r;) + 7. In
addition, T contains 7 4 1 tasks, while 7} contains < 74 1 tasks. Consequently, the height
of T"is < [e(r)/7], a non-leaf supernode represents a subtree of T with 7 + 1 tasks, and
a leaf supernode represents a subtree of T' with < 7 4 1 tasks. Furthermore, since 7' has n
tasks, 7" has < [n/(7 + 1)] non-leaf supernodes. |

Lemma 8 There are enough processors to assign all supernodes of T'. Fach processor is
assigned at most one non-leaf supernode. FEach processor is assigned at most 27 + 1 tasks.
Further, all leaf supernodes assigned to the same processor have the same successor supern-
ode. If a processor is assigned a leaf supernode and a non-leaf supernode then either they
both have the same successor supernode or they have different levels.

Proof: Consider the assignment of supernodes to processors. Since M has m = S([n/7]) >
[n/(7 4+ 1)] processors and a processor is available if it has been assigned < 7 + | tasks,
there are enough processors to assign all the supernodes of 7". In addition, since a non—leaf
supernode represents a subtree with 7+ 1 tasks, each processor is assigned at most one non—
leat supernode, and no processor is assigned more than 27 41 tasks. Observe that if u; is the
successor supernode of a supernode u; then p(u;) < p(u;). Moreover, since supernodes are
assigned to processors in preorder, if a processor has been assigned more than one supernode
then all those supernodes, except possibly one supernode which is a non-leaf supernode,
are leaf supernodes and have the same successor supernode. Consider now a processor that
has been assigned a leaf supernode u; and a non-leaf supernode u;. Note that the preorder
number of wu; is less than the preorder number of u;. Consequently, either u; and u; have
the same successor supernode or u; and u; have different levels. |

Lemma 9 The time to perform step 1 is no more than 27 +1 and the time to perform step 2
is no more than 2f([n/7]) + 47 + 4.

Proof: By Lemma 8, each processor is assigned < 27 + 1 tasks. Therefore, each iteration of
step 1 takes time < 27 + 1.

Consider now the kth iteration of step 2, k = h', h'—1,...,2,1. At that iteration, values
of supernodes of level k& are communicated to supernodes of level &k — 1. Let vy, vq,vs, ...

22

be the non-leaf supernodes of 717, in increasing order of their preorder numbers, whose
level is £ — 1. Consider one such supernode v;. All predecessor supernodes of v; are at
level k£ and have preorder numbers between the preorder numbers of the supernodes wv;
and rma(v;). Because supernodes are assigned to processors according to their preorder
numbers, all predecessor supernodes of v; have been assigned to processors with indices in
the interval [p(v;), p(rma(v;))]. The value of each predecessor supernode v! of v; is routed to
the processor assigned v; using a shortest path in M'[p(v;), p(rma(v;))]. Since link contention
is resolved in FIFO order, the communication delay to route the value of v} to v; is the sum of
the delay due to distance traveled and the delay due to link contention. Because the diameter
of M"is < 2f(m) = 2f([n/7]), the time to route the value of v to v;, that is due only to
distance traveled, is < 2f([n/7]). (Recall that, by definition of S and f, f(m) = f(S(m)).)

Next, we find the delay for routing the value of v} to v; that is due only to link contention.
The value of v/ may compete for using a link with values of supernodes destined to v; and to
other supernodes of level k£ — 1. Since v; represents a subtree of a binary tree dag with 7+ 1
tasks, the number of predecessor supernodes of v; is < 2(7 + 1). Hence, the value of v! may
compete with < 2(7 + 1) other values that are destined to v;. In addition, the number of
values that are routed in M'[p(v;), p(rma(v;))] is at most 2(7 4 1). It remains to analyze the
effect of link contention due to values destined to other supernodes of level k—1. For any two
such supernodes v;, vy, j < [, we have that the preorder number of rma(v;) is less than that of
v;. Consequently, p(rma(v;)) < p(v;), which implies that all the intervals [p(vy), p(rma(vq))],
[p(vs2), p(rma(vs))], [p(vs), p(rma(vs))], ... are non—overlapping. Further, since the processors
are indexed with respect to an Euler tour of a double—copy of M’, it follows that each link
of M' is contained in at most two subgraphs M'[p(v;), p(rma(v;))] of M’, for j =1,2,3,....
Therefore, the value of v! competes with at most 4(7 4 1) other values. Consequently, the

communication delay to route the value of v! to v; is < 2f([n/7])+4(7 +1), and the lemma
follows. u

We mention here that our simulation method can be generalized, in a straightforward
manner, to bounded degree forest dags with tasks of arbitrary positive integer execution
times and to architectures when the propagation delay of all the links is an arbitrary positive
integer (see [9] for details).

6.2 Optimal within a Constant Schedules for Tree Dags on Par-
allel Architectures

Using the simulation result of Theorem 3, two upper bounds in [8, 13] on the makespan of
a schedule for a binary tree dag on the PY model, a lower bound on the makespan of a
schedule for a tree dag on an admissible architecture, and by choosing appropriate 7 values,
we provide schedules for binary tree dags on any admissible parallel architecture.

We state now two upper bounds in [8, 13] on the makespan of a binary tree dag on the

23

PY model. Thurimella and Yesha [13] prove that there exists a schedule for a binary tree
dag with n unit execution time tasks and height h on the PY model with parameter 7 whose
makespan is < h + 7[logn|. In [8], we prove the following lemma that provides an upper
bound on the makespan of schedules for tree dags on the PY model.

Lemma 10 Let T be a binary tree dag with n tasks and height h. Let 7 be a positive integer
such that n > 7 > h. Then, there exists a schedule for T on the PY model with parameter T
whose makespan is O(7 log(n/7)/log(7/h)).

Proof sketch: Using the edge—centroid decomposition method recursively we construct a
sequence of binary tree dags D; from T (we take Dy = T') such that the number of tasks in
D;, as i increases, decreases geometrically by a factor of Q(h/7). Then, for each ¢, we show
that we can execute all the tasks in D; — D;_; on the PY model in O(7) time. For details
see [8]. u

We continue by proving the following lower bound on the makespan of a schedule for a
tree dag on an admissible parallel architecture.

Lemma 11 Let T be a tree dag with n unit execution time tasks and height h. Let T be
the makespan of a schedule for T' on an admissible parallel architecture M. Then, Ty =

Qg(n) 4+ k) and the number of processors used is Q(n/Tmax)-

Proof: Consider an optimal schedule for 7' on a machine M of architecture M. That
schedule uses a subgraph M of M with k > 1 processors. Since M is admissible, the
diameter of M is Q(f(k)). The makespan Tp.x of that schedule is > [n/k|, because at
least one processor has been assigned > [n/k]| tasks. Since both the height of 7" and half
the diameter of M is a lower bound on the makespan, it follows that the makespan of that
schedule is Q(n/k + f(k) + h). On the other hand, by definition of g and since f is non—
decreasing, we have that if [n/k] < g(n) then f(k) > g(n). Thus, max{[n/k], f(k)} > g(n)
for all & > 1. Consequently, the makespan for that schedule is Q(g(n) + k). Further, any
schedule for 7" on M with makespan Trax uses Q(n/Tmax) processors. |

Using the upper and lower bounds above, Theorem 3, and choosing appropriate 7’s, we
prove the following two theorems.

Theorem 4 Let € be any fixed positive real number. Then, for any binary tree dag T with
n unit execution time tasks and height h & (g(n)n=, g(n)logn), we can find, in polynomial
time, a schedule for T on M with O(min{n/g(n),nlogn/h}) processors and optimal within a
constant factor makespan O(g(n)+h). This schedule is processors—optimal within a O(log n)
factor when h > g(n)logn, and is processors—optimal within a constant factor when h <

g(n)n=*.
924

Proof: There are two cases to consider.

Case 1: h > g(n)logn. Take 7 = [h/logn]. Since Tpy < h + t[logn| [13], Tpy = O(h).
Further, since 7 > ¢g(n) and f is non-decreasing, f([n/g(n)]) > f([n/7]). By defini-
tion of g, g(n) > f([n/g(n)]), implying that 7 > f([n/7]). Hence, by Theorem 3, we
can find, in polynomial time, a schedule for 7" on M with S([n/7]) = O(nlogn/h)

processors and makespan O(h).

Case 2: h < g(n)n~°. Take 7 = g(n). By Lemma 10, Tpy = O(7log(n/7)/log(7/h)) =
O(7) = O(g(n)). By definition of g and since f is non-decreasing, 7 > f([n/7]) >
f(In/(r 4+ 1)]). Thus, by Theorem 3, we can find, in polynomial time, a schedule for
T on M with S([n/7]) = O(n/g(n)) processors and makespan O(g(n)).

The theorem now follows from Lemma 11. |

Theorem 5 Let ¢ be any fixed positive real number. Then, for any binary tree dag T with
n unit execution time tasks and height h < g(n)n™, we can find, in polynomial time, given
any positive integer m, a schedule for T on M with min{S([n/g(n)]), S(m)} processors and
makespan O(g(n)+n/m), i.e. both optimal and processors—optimal within a constant factor.

Proof: There are two cases to consider.

Case 1: m <n/g(n). Take 7 = [n/m| — 1. Since [n/7] < m < [n/g(n)] and f is non-
decreasing, f([n/7]) < f(m) < f([n/g(n)]. Since g(n) < n/m, g(n) < [n/m]—-1=r7.
By definition of ¢, g(n) > f([n/g(n)]), implying that 7 > f([n/7]). Besides, since
g(n) <7, h < 7mn°. By Lemma 10, Tpy = O(7) = O(n/m). Hence, by Theorem 3,
we can find, in polynomial time, a schedule for 7" on M with S([n/7]) < S(m) <
S([n/g(n)]) processors and makespan O(n/m).

Case 2: m > [n/g(n)]. Take 7 = g(n). By definition of ¢ and since 7 = g(n), 7 >
f(In/g(n)]). By Lemma 10 and since h < g(n)n=°, Tpy = O(g(n)). Hence, by The-
orem 3, we can find, in polynomial time, a schedule for 7" on M with S([n/g(n)]) <
S(m) processors and makespan O(g(n)).

The theorem now follows from Lemma 11. |

As an application of Theorems 4 and 5, we provide polynomial time computable sched-
ules for binary tree dags on hypercube and complete binary tree architectures with optimal
within a constant factor makespan and time—processors product optimal within a O(logn)
factor. It can be shown easily that for hypercubes and complete binary tree architectures we
have S(m) = O(m), f(m) = O(logm) and g(n) = O(logn). Moreover, both architectures
are admissible. Then, using Theorem 4, we can find, in polynomial time, a schedule for a tree
dag T with n tasks and height A = Q(log®n) on a hypercube or complete binary tree archi-
tecture with O(n(logn)/h) processors and optimal within a constant factor makespan O(h).
Note that, for hypercubes, one can obtain, via an embedding result in Bhatt et al [2], a

25

schedule for a binary tree dag on a hypercube with makespan O(h), but with much more
processors, namely n.

Further, it can be shown, by a straightforward extension of a result in [8], that for
arbitrarily many positive integers n there exist binary tree dags with n unit execution time
tasks and height o(n!/(#*1) that require w(n'/“*1)) time on the PY model. Therefore, our
optimal within constant schedules for tree dags on d-dimensional meshes can not be derived
by simulating schedules for the PY model with the interpretation for the interprocessor
communication delay 7 implied by Papadimitriou and Yannakakis [12].

Theorems 3, 4, and 5 can be generalized to bounded degree forest dags with tasks of ar-
bitrary positive integer execution times and to admissible architectures when the propagation
delay for all the links is an arbitrary positive integer (see [9] for details).

26

References

[1]

2]

[6]

7]

[10]
[11]
[12]

[13]

A. Aggarwal, A. K. Chandra, and M. Snir. Communication complexity of PRAMs.
Theoretical Computer Science, 71, pp. 3-28, 1990.

S. Bhatt, F. Chung, T. Leighton, and A. Rosenberg. Optimal Simulations of Tree
Machines. In Proc. of 27th Annual Symposium on Foundations of Computer Science,

pp- 274-282, 1986.

G. Frederickson. Updating of minimum spanning trees, with applications. SIAM Journal

on Computing, 14(4), pp. 781-798, 1985.

M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, San Francisco, 1979.

D. Ghosal, A. Mukherjee, R. Thurimella, and Y. Yesha. Mapping task trees onto a
linear array. In Proc. of 1991 International Conference on Parallel Processing, Vol. 1,

pp. 629-633, 1991.
D. Ghosal, A. Mukherjee, R. Thurimella, and Y. Yesha. Scheduling task-trees onto a

linear array. manuscript, 1992.

H. Jung, L. Kirousis, and P. Spirakis. Lower bounds and efficient algorithms for multi-

processor scheduling of dags with communication delays. In Proc. of ACM Symposium
on Parallel Algorithms and Architectures, pp. 254-264, 1989.

K. Kalpakis and Y. Yesha. On the Power of the Linear Array Architecture for Per-
forming Tree-Structured Computations. UMIACS-TR-92-75 CS-TR-2924, University
of Maryland at College Park, Institute for Advanced Computer Studies, July 1992.

K. Kalpakis and Y. Yesha. Optimal within a Constant Schedules for Forest Dags on
Parallel Architectures. UMIACS-TR-92-110.1 CS-TR-2974.1, University of Maryland
at College Park, Institute for Advanced Computer Studies, October 1992.

S. R. Kosaraju. Parallel evaluation of division-free arithmetic expressions. In Proc. of

18th Annual ACM Symposium on Theory of Computing, pp. 231-239, 1986.

C. H. Papadimitriou and J. D. Ullman. A communication-time tradeoff. SIAM Journal
on Computing, 16(4), pp. 639-646, 1987.

C. H. Papadimitriou and M. Yannakakis. Towards an architecture-independent analysis

of parallel algorithms. STAM Journal on Computing, 19(2), pp. 322-328, 1990.

R. Thurimella and Y. Yesha. A scheduling principle for precedence graphs with commu-
nication delay. In Proc. of 1992 International Conference on Parallel Processing, Vol.

111, pp. 229-236, 1992.

27

processors assigned tasks
————— routes of values

processor §HHHHHH
assigned the root

(L1

2nd dimension!| _ 1t dimension links used to route values

to basicline
along dimension 2

Figure 1: Scheduling a tree on a 2-dimensional mesh. Tasks are assigned to processors on
basic lines (thick lines). Links on thin lines are used only for routing values of tasks from
processors on basic lines along dimension 1 to processors on the basic line along dimension
2. The root of that tree is assigned to processor (1,2). The possible routes of the value of a
task are shown with dashed lines.

28

basic line
\

basic paths

next perpendicular

. /submesh

submesh perpendicular
to basic line

processors assigned basic paths

Figure 2: The task assignment method. Basic paths 7 are assigned on a basic line along
some dimension. For each basic path 7 some subtrees of tasks whose successors are on 7 are
assigned to a submesh that is perpendicular to that basic line.

29

basic line along dimension |

basic line along
dimension i <]

basic path next perpendicular

submesh

——— submesh perpendicular
to basic line

communication paths

processor assigned basic path

Figure 3: Communicating the value of task u to the processor assigned its successor task v.
Tasks v and v have been assigned to different processors on different basic lines.

30

