Query Execution [15]
Query processing

Query processing involves

- compilation
 - parsing to construct parse tree
 - optimization
 - Query rewrite to generate a logical query plan
 - Physical plan generation to make a physical query plan

Execution

Query plans are expression trees whose nodes are operators

- Extended relational algebra operators for logical query plans
- Physical operators for physical query plans
 - Implement extended relational algebra operators
 - Additional useful tasks
Types of operators

Physical operators classified according to

- #passes over the tuples of their input
 - One-pass
 - Pass-and-a-half
 - Two-pass
 - Multi-pass

- Their cardinality and #input tuples required at once
 - Unary
 - Tuple-at-a-time
 - Select, project
 - full-relation
 - Grouping/aggregates, duplicate elimination
 - Binary
 - Join, union, difference, intersection
Physical operators as iterators

Physical operators are viewed as iterators, with methods

- **Open()**
 - Initializes any structures for the operator

- **Next()**
 - Returns the next tuple in the stream of output tuples

- **Close()**
 - Destroys any structures created

The iterator model allows to non-materialize the output of operators, unless necessary or useful

- It allows for complete materialization by doing all the work in the Open() method

Some tasks fit naturally into the iterator model, some need tricks

- Sorting (multi-way merge-sort) does most of the work in the open method
Operator model

- Measure cost of operator in terms of block I/Os performed
- Assume that the output of each operator is immediately consumed by some other operator
- Cost of operator uses parameters
 - Available #memory buffers (blocks) \(M \)
 - For each argument (bag or set of tuples) \(R \)
 - The #blocks \(B(R) \)
 - The #tuples \(T(R) \)
 - The #distinct values \(V(R,X) \) of the tuples of \(R \) on the attribute-list \(X \)
- To estimate cost of an operator need to know
 - whether \(R \) is clustered, i.e. whether occupies about \(B(R) \) blocks or not
 - A used index on \(R \) is a clustering index, i.e. tuples with same value on the indexed attributes occupy as few blocks as possible
 - Safe to assume that output relations of operators are clustered!
 - often times input relations will also be assumed clustered as well!!
Operators for scanning relations

- Read the contents of relation R
 - Table-scan
 - reads the tuples of R from disk, using a system map of its blocks
 - Index-scan
 - reads the tuples using an index to locate the blocks that contain its tuples
 - Sort-scan
 - Return its tuples in a sorted order

What is the cost of each of these operators?

- Remember that we can
 sort a relation with \(B \leq M^2 \) blocks with 3B block I/Os
One-pass tuple-at-a-time unary operators

- Obvious algorithms for
 - Project
 - Select
- Have cost of B(R) regardless of M
One-pass full-relation unary operators

- **Duplicate elimination**

 Assumes $B(\delta(R)) \leq M$

- **Similarly for grouping/aggregation**
 - Keep sufficient data for each distinct group and output aggregate value for each group at Close()
 - Assumes info for #groups fits M-1 buffers
One-pass binary operators

- Given relations R and S, with S being the smaller of the two
- Assume S fits in memory (M-1) buffers
- Bag union
 - Read each tuple from S, output it; repeat for R
- Set union
 - Algorithm
 1. Read each tuple of S and build an in-memory dictionary for S
 2. Output all of S
 3. Read each tuple t of R and output it if t is not in the dictionary for S
- Set intersection, difference are similar
 - Care is needed when computing set difference
 - R-S
 - S-R
One-pass binary operators

Bag intersection
- Each tuple appears in the result a number of times equal to the minimum number of its occurrences in either input relation
- Algorithm
 - Modify the algorithm for set union to
 - Build dictionary for the tuples of S
 - maintain the #occurrences of each tuple of S
 - Read each tuple t of R and
 - If t is in the dictionary, output t and decrement its count
 - Remove t from the dictionary if its count is 0

Bag difference, Cartesian product, Natural join are similar
- The cost of all these operators is $B(S) + B(R)$
- What happens if M is “wrong”?
 - Thrashing or unnecessary passes
Nested-Loop Join

- Natural join \(R(X,Y) \Join S(Y,Z) \)
- Tuple-based nested-loop join
 - for each tuple \(t_s \) in \(S \) do begin
 - for each tuple \(t_R \) in \(R \) do begin
 - if \(t_s \) and \(t_R \) join to make \(t \)
 - output \(t \)

- \(S \) is called the outer relation and \(R \) the inner relation of the join
- Cost is \(T(R)T(S) \)
 - Expensive since it examines every pair of tuples in the two relations
- Fits the iterator framework easily
 - reopen the scan of \(R \) for each tuple of \(S \)
- Requires no indices and can be used with any kind of join condition
Block-based nested-loop join

- Read a block instead of a single tuple at a time
 - Join all tuples in the pair of blocks at hand
- If S fits in M-1 buffers, make it the inner relation
 - Cost now is B(R)+B(S)
- If neither S nor R fit in memory and the S (the smallest) is the outer relation then the cost is

\[
\frac{B(S)}{M-1}(M-1 + B(R)) = B(S) + \frac{B(S) \cdot B(R)}{M-1}
\]
Two-pass algorithms

- Input relations may be too large for the one-pass algorithms to handle
- Consider two-pass algorithms
 - Multi-pass algorithms can be obtained easily by induction/recursion from two-pass algorithms
- Focus on two-pass algorithms that are based on
 - Sorting
 - Hashing
 - Indexing
Two-pass duplicate elimination using sorting

Algorithm

- Partition \(R \) into at most \(M \) sublists each of size at most \(M \), and write to disk each sorted sublist
- Read one block from each sorted sublist
- For each tuple \(t \) still in memory do
 - Output \(t \) and then delete all its occurrences from any blocks in memory
 - If a block becomes empty load it with another block from the same sorted sublist
 - Delete \(t \) from each newly loaded block as well

Cost is \(2B(R) + B(R) = 3B(R) \)

Requires that \(B(R) \leq M^2 \)
Two-pass grouping and aggregation using sorting

- Similar to the duplicate elimination algorithm
 - Sort based on the grouping attributes X only
 - Compute aggregate value for each distinct value of X, in sorted order
 - Instead of deleting all other occurrences of a tuple t as in duplicate elimination, update the aggregate information for the group t[X]
Two-pass set-union using sorting

- Two-pass set union algorithm using sorting
 - Make sorted sublists for both R and S
 - Use a buffer for each sorted sublist of either R or S
 - Load each buffer with the 1st block of its sublist
 - Repeatedly, for each tuple t in memory
 - Output t
 - Delete t from the memory buffers
 - If a buffer empties reloaded with the next block from the same sublist
 - delete all occurrences of t from each newly loaded buffer as well

Cost is $3(B(R) + B(S))$

Requires that $B(R) + B(S) \leq M^2$
Two-pass intersection and difference using sorting

- Modify when t is output in the 2-pass sort-based set-union algorithm
- Set-intersection: output when t appears in both R and S
- Set-difference R-S: output when t appears in R but not in S
- Bag-intersection/difference
 - keep track of #occurrences g(t,R) of t in each relation R while making the sorted sublists
 - For intersection, output t \(\min(g(t,S), g(t,R)) \) times
 - For difference R-S, output t \(\max(g(t,R) - g(t,S), 0) \) times
Simple sort-based join

Algorithm

- Sort R and S
- Load two input buffers with the 1st block of R and S
- for each least value y of the join attributes Y in memory
 - Find all tuples from R and S with value y on Y, and output their join
 - use all remaining memory to read qualifying tuples from R and S
 - Delete all tuples with value y on attributes Y from memory
 - Reload any of the two input buffers with the next block from its corresponding relation

Cost is $5(B(R)+B(S))$

Requires that $B(R) \leq M^2$ and $B(S) \leq M^2$

Algorithm is a good choice when there are a lot a joinable tuples for each value y
More efficient sort-based join

Previous algorithm can be modified by

- Writing the sorted sublists to disk instead of the sorted relations
- Allocating one buffer to each sorted sublist

Advantage

Cost is $3(B(R) + B(S))$

Requires that $B(R) + B(S) \leq M^2$

Disadvantage

the algorithm is bad when there are very large number of tuples with a common value for the join attributes
Two-pass algorithms using hashing

- Data does not fit in memory
- Partition data into M buckets using a hash function so that
 - A bucket or a pair of buckets with the same hash, one from each relation, fits in memory
- Perform the required operation in one-pass on
 - a single bucket for unary operators
 - On a pair of buckets for binary operators
- Duplicate elimination, set union, difference, intersection, and join can all be done this way

Cost is $3(B(R) + B(S))$
Requires that $\min(B(R), B(S)) \leq M^2$
Index-based selection

- Equality-selection can be evaluated using an index (index-scan)
 \[\sigma_{v=a}(R) \]

- Cost for

 - Clustering index is \(h + \frac{B(R)}{V(R,v)} \)

 - Non-clustering index is \(h + \frac{T(R)}{V(R,v)} \)

- Where \(h \) is the #block I/Os to access the index

 - Typically \(h \) is <5 for either B-tree or hash indexes

- Additional selection predicates can be evaluated using certain indexes

 \[\sigma_{a \leq v \leq b}(R) \quad \sigma_{v \neq a}(R) \]
Index-based join

- Use index to access tuples of the inner relation in tuple-based nested-loop join
 - Cost is approximately $T(R)B(S)/V(S,Y)$ or $T(R)T(S)/V(S,Y)$ depending on whether index is clustering or not

- If index allows for sorted access to the tuples of a relation, eg B-tree index
 - Use the 2nd phase (“merge phase”) of sorted-based join algorithms
 - Since relation(s) are already accessible in sorted order
 - Cost is $B(R)+B(S)$ if both the indexes are clustering

- Other operations (duplicate elimination, set difference/union/intersection, grouping and aggregation) can be done similarly
Buffer management

- Physical operators use some #buffers M
- The DBMS buffer manager allocates available buffers to operators/queries from a buffer pool in
 - physical memory directly
 - Virtual memory managed by the Operating System
- Buffer pool is limited so careful management is needed to avoid
 - Thrashing
 - Unnecessary performance degradation
- Buffer replacement strategies
 - LRU
 - FIFO
 - MRU
 - Clock
 - System control – pinned blocks
Buffer manager & physical operators

Considering the algorithm of a physical operator

- How does it respond to changes in the number M of available buffers?
 - when M is not what it was assumed initially?
 - changes during the execution of the operator?
 - More buffers become available
 - A used buffer is taken away from the operator by the buffer manager

- How can the operator affect the decisions of the buffer manager?
 - Can it suggest
 - a replacement strategy?
 - a range of buffers needed for good performance?
 - A function to forecast its performance for any parameter value M?
 - Pin blocks?
Multi-pass algorithms

The two-pass algorithms discussed generalize to k-passes using recursion/induction

- Sort-based algorithms
 Cost is \((2k - 1)(B(R) + B(S))\) provided that \(B(R) + B(S) \leq M^k\)

- Hashing-based algorithms
 Cost is \((2k - 1)(B(R) + B(S))\) provided that \(\min(B(R), B(S)) \leq M^k\)
Parallel machines with p processors can be

- Shared memory model
- Shared disk (NUMA) model
- Shared nothing model
Parallelism for physical operators

Idea is to

- distribute the input relations to processors so that each one gets about \(\frac{1}{p} \)th of the input
- Each processor works on its given data
- Ensure the communication overhead and synchronization barriers are under control
 - sending a block over the network is typically faster than a block I/O
Parallel sort-based join

- **Partition and ship data to processors**
 - Total #blocks shipped: \(\frac{p - 1}{p} (B(R) + B(S)) \)
 - #block I/Os per processor: \(\frac{(B(R) + B(S))}{p} \)

- **Each processor**
 - Stores the tuples it receives at cost: \(\frac{(B(R) + B(S))}{p} \)
 - Applies sort-based join on its fragment of the data
 - \(3 \frac{(B(R) + B(S))}{p} \) provided that \(B(R) + B(S) \leq pM^2 \)

- **Total #block I/Os per processor**
 - \(5 \frac{(B(R) + B(S))}{p} \) provided that \(B(R) + B(S) \leq pM^2 \)

- **A speedup by a factor of about p!!**