Lecture 10: Floating Point

Spring 2020
Jason Tang
Topics

• Representing floating point numbers

• Floating point arithmetic

• Floating point accuracy
Floating Point Numbers

• So far, all arithmetic has involved numbers in the set of \mathbb{N} and \mathbb{Z}

• But what about:

 • Very large integers, greater than 2^n, given only n bits

 • Very small numbers, like 0.000123

 • Rational numbers in \mathbb{Q} but not in \mathbb{Z}, like $\frac{2}{3}$

 • Irrational and transcendental numbers, like $\sqrt{2}$ and π
Floating Point Numbers

• Issues:
 • Arithmetic (addition, subtraction, multiplication, division)
 • Representation, normal form
 • Range and precision
 • Rounding
 • Illegal operations (divide by zero, overflow, underflow)
Normal Form

• The value 411_{10} could be stored as 4110×10^{-1}, 411×10^{0}, 41.1×10^{1}, 4.11×10^{2}, etc.

• In scientific notation, values are usually normalized such that one non-zero digit to left of decimal point: 4.11×10^{2}

• Computers numbers use base-2: 1.01×2^{1101}

• Because the digit to the left of the decimal point ("binary point"?) will always be a 1, that digit is omitted when storing the number

 • In this example, the stored significand will be 01, and exponent is 1101
Floating Point Representation

- Size of exponent determines the range of represented numbers

- Accuracy of representation depends on size of significand
 - Trade-off between accuracy and range

- **Overflow**: required positive exponent too large to fit in given number of bits for exponent

- **Underflow**: required negative exponent too large to fit in given number of bits for exponent
IEEE 754 Standard Representation

- Same representation used in nearly all computers since mid-1980s
- In general, a floating point number $= (-1)^\text{Sign} \times [1].\text{Significand} \times 2^{\text{Exponent}}$
- Exponent is **biased**, instead of Two’s Complement
 - For single precision, actual magnitude is $2^{(\text{Exponent} - 127)}$

<table>
<thead>
<tr>
<th>Type</th>
<th>Sign</th>
<th>Exponent</th>
<th>Significand</th>
<th>Total Bits</th>
<th>Exponent Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Single</td>
<td>1</td>
<td>8</td>
<td>23</td>
<td>32</td>
<td>127</td>
</tr>
<tr>
<td>Double</td>
<td>1</td>
<td>11</td>
<td>52</td>
<td>64</td>
<td>1023</td>
</tr>
<tr>
<td>Quad</td>
<td>1</td>
<td>15</td>
<td>112</td>
<td>128</td>
<td>16383</td>
</tr>
</tbody>
</table>
Single-Precision Example

• Convert -12.625_{10} to single precision IEEE-754 format

• Step 1: Convert to target base 2: $-12.625_{10} \rightarrow -1100.101_{2}$

• Step 2: Normalize: $-1100.101_{2} \rightarrow -[1].100101_{2} \times 2^{3}$

• Step 3: Add bias to exponent: $3 \rightarrow 130$

<table>
<thead>
<tr>
<th>S</th>
<th>Exponent</th>
<th>Significand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11000000101010100000000000000000000000000</td>
<td>Leading 1 of significand is implied</td>
</tr>
</tbody>
</table>
Single and Double Precision Example

• Convert \(-0.75_{10}\) to single and double precision IEEE-754 format

\[-0.75_{10} \rightarrow (-3/4)_{10} \rightarrow (-3/2^2)_{10} \rightarrow -11_2 \times 2^{-2} \rightarrow [-1].1_2 \times 2^{-1}\]

• Single Precision:

<table>
<thead>
<tr>
<th>S</th>
<th>Exponent</th>
<th>Significand (23 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 1 1 1 1 1 1 0</td>
<td>1 0</td>
</tr>
</tbody>
</table>

• Double Precision:

<table>
<thead>
<tr>
<th>S</th>
<th>Exponent</th>
<th>Significand (upper 20 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 1 1 1 1 1 1 1 1 1 1 0</td>
<td>1 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Significand (lower 32 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
</tr>
</tbody>
</table>

Denormalized Numbers

- Smallest single precision normalized number is 1.000 0000 0000 0000 0000 0001 × 2^{-126}

- Use denormalized (or subnormal) numbers to store values between 0 and above number
 - Denormal numbers have a leading implicit 0 instead of 1
 - Needed when subtracting two values, where the difference is not 0 but close to it
 - Denormalized are allowed to degrade in significance until it becomes 0 (gradual underflow)
Special Values

• Some bit patterns are special:

• Negative zero

• ±Infinity, for overflows

• **Not a Number** (NaN), for invalid operations like 0/0, \(\infty - \infty \), or \(\sqrt{-1} \)

<table>
<thead>
<tr>
<th></th>
<th>Single Precision</th>
<th>Double Precision</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponent</td>
<td>Significand</td>
<td>Exponent</td>
<td>Significand</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>Nonzero</td>
<td>0</td>
<td>Nonzero</td>
</tr>
<tr>
<td>1-254</td>
<td>Anything</td>
<td>1-2046</td>
<td>Anything</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>2047</td>
<td>0</td>
</tr>
<tr>
<td>255</td>
<td>Nonzero</td>
<td>2047</td>
<td>Nonzero</td>
</tr>
</tbody>
</table>

0 or -0

± denormalized

± normal floating point

± infinity

NaN
Normal and Denormal Exponent

• A normal number stores its exponent e as $e + \text{bias}$

• Single-precision floating point has a bias of 127

• If a single-precision’s stored exponent bits are 0000…1, then its value is $\pm[1].XXX…X \times 2^{-126}$

• When exponent bits are all zeroes, the number is denormal

• Implied exponent is defined as $2^{-(\text{bias} - 1)}$

• Largest denormal single-precision value is $\pm[0].1111…1 \times 2^{-126}$
Floating Point Arithmetic

• Floating point arithmetic differs from integer arithmetic in that exponents are handled as well as the significands

 • For addition and subtraction, exponents of operands must be equal

 • Significands are then added/subtracted, and then result is normalized

• Example: \([1].101 \times 2^3 + [1].111 \times 2^4\)

 • Adjust exponents to equal larger exponent: \(0.1101 \times 2^4 + 1.1110 \times 2^4\)

 • Sum is thus \(10.1011 \times 2^4 \rightarrow [1].01011 \times 2^5\)
Floating Point Addition / Subtraction

• Compute $E = A_{\text{exp}} - B_{\text{exp}}$

• Right-shift A_{sig} to form $A_{\text{sig}} \times 2^E$

• Compute $R = A_{\text{sig}} + B_{\text{sig}}$

• Left shift R and decrement E, or right shift R and increment E, until MSB of R is implicit 1 (normalized form)

 • If cannot left shift enough, then keep R as denormalized
Floating Point Addition Example

- Calculate $0.5_{10} - 0.4375_{10}$, with only 4 bits of precision

 - $0.5_{10} \rightarrow (1/2)_{10} \rightarrow 0.1_2 \times 2^0 \rightarrow [1].000_2 \times 2^{-1}$

 - $0.4375_{10} \rightarrow (1/4)_{10} + (1/8)_{10} + (1/16)_{10} \rightarrow 0.0111_2 \times 2^0 \rightarrow [1].110_2 \times 2^{-2}$

 - Shift operand with lesser exponent: $1.110_2 \times 2^{-2} \rightarrow 0.111_2 \times 2^{-1}$

 - Subtract significands: $1.000_2 \times 2^{-1} - 0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$

 - Normalize: $0.001_2 \times 2^{-1} \rightarrow [1].000_2 \times 2^{-4} = (2^{-4})_{10} \rightarrow (1/16)_{10} \rightarrow 0.0625_{10}$

 - No overflow/underflow, because exponent is between -126 and +127
Floating Addition Hardware
Floating Point Multiplication and Division

• For multiplication and division, the sign, exponent, and significand are computed separately

 • Same signs → positive result, different signs → negative result

 • Exponents calculated by adding/subtracting exponents

 • Significands multiplied/divided, and then normalized
Floating Point Multiplication Example

- Calculate $0.5_{10} \times -0.4375_{10}$, with only 4 bits of precision

 - $[1].0002 \times 2^{-1} \times [1].1102 \times 2^{-2}$

- Sign bits differ, so result is negative (sign bit = 1)

- Add exponents, **without bias**: $(-1) + (-2) = -3$

- Multiply significands:

- Keep result to 4 precision bits: 1.1102×2^{-3}

- Normalize results: $-[1].1102 \times 2^{-3}$
Floating Point Multiplication

- Compute \(E = A_{\text{exp}} + B_{\text{exp}} - \text{Bias} \)
- Compute \(S = A_{\text{sig}} \times B_{\text{sig}} \)
- Left shift \(S \) and decrement \(E \), or right shift \(S \) and increment \(E \), until MSB of \(S \) is implicit 1 (normalized form)
 - If cannot left shift enough, then keep \(S \) as denormalized
- Round \(S \) to specified size
- Calculate sign of product
Accuracy

• Floating-point numbers are approximations of a value in \mathbb{R}

 • Example: π stored as a single-precision floating point is $[1].10010010000111111011011_2 \times 2^1$

 • This floating point value is exactly 3.1415927410125732421875

 • Truer value is 3.1415926535897932384626…

 • Floating point value is accurate to only 8 decimal digits

• Hardware needs to round accurately after arithmetic operations

http://www.exploringbinary.com/pi-and-e-in-binary/
Rounding Errors

- **Unit in the last place (ulp)**: number of bits in error in the LSB of significand between actual number and number that can be represented.

- Example: store a floating point number in base 10, maximum 3 significand digits

 - 3.14×10^1 and 3.15×10^1 are valid, but 3.145×10^1 could not be stored

 - ULP is thus 0.01

- If storing π, and then rounding to nearest (i.e., 3.14×10^1), the rounding error is 0.0015926...

- If rounding to nearest, then maximum rounding error 0.005, or 0.5 of a ULP

https://matthew-brett.github.io/teaching/floating_error.html
Accurate Arithmetic

• When adding and subtracting, append extra guard digits to LSB

• When rounding to nearest even, use guard bits to determine to round up or down

• Example: $2.34_{10} \times 10^0 + 2.56_{10} \times 10^{-2}$, with and without guard bits, maximum 3 significand digits

\[
\begin{array}{c}
2.34 \quad 4 \\
+ 0.0 \quad 2 \\
\hline
2.36
\end{array}
\quad
\begin{array}{c}
2.34 \quad 0 \quad 0 \\
+ 0.0 \quad 2 \quad 5 \quad 6 \\
\hline
2.36 \quad 5 \quad 6
\end{array}
\rightarrow \text{rounded to } 2.37 \times 10^0
IEEE 754 Rounding Modes

- Always round up (towards $+\infty$)

- Always round down (towards $-\infty$)

- Truncate

- Round to nearest even (RNE)
 - Most commonly used, including on IRS tax forms
 - If LSB is 1, then round up (resulting in a LSB of 0); otherwise round down (again resulting in a LSB of 0)