Topics

• Logical operations

• 1-bit adder

• Lookahead adder
Rolling and Shifting

- A **roll** (or **rotate**) pushes bits off of one end and reinserts them at the other end.

- A **left shift** pushes bits towards MSB, inserting zeroes in vacated bit positions.

- Two different types of right shift, both pushing towards LSB:
 - **Logical right shift**: vacated bits are set to zero.
 - **Arithmetic right shift**: vacated bits are signed extended.
Shifting Dangers

- Left shifting can be used as a cheap way to multiply by a power of 2 (but beware of overflow)

- Left shifting a two’s complement number could result in flipping the sign bit

- Right-shifting *sometimes* results in dividing by a power of two, but only when original value was non-negative, or correct shift operation was used

\[
\begin{align*}
0101 & \quad \text{right shift by 1} \quad 0010 \quad \text{left shift by 1} \quad 0110 \\
= 5_{10} & \quad = 2_{10} & \quad = 6_{10} \quad \text{(unsigned and two’s comp)} \\
\end{align*}
\]

\[
\begin{align*}
1101 & \quad \text{logical shift} \quad 1110 \quad \text{arithmetic shift} \\
= 13_{10} \quad \text{(unsigned)} & \quad \text{or} \quad -3_{10} \quad \text{(two’s comp)} & \quad = 14_{10} \quad \text{(unsigned)} & \quad \text{or} \quad -2_{10} \quad \text{(two’s comp)}
\end{align*}
\]
C and Java Shift Operators

• In both C and Java, \texttt{<<} is logical left shift

• In Java, \texttt{>>} is arithmetic right shift, \texttt{>>>} is logical right shift

• In C, usually, \texttt{>>} is arithmetic for signed values and logical for unsigned

```c
#include <stdio.h>

int main(void) {
    signed char a = -42;
    printf("a is %02x, shifted: %02x\n", a, (a >> 4));
    unsigned char b = (unsigned char) a;
    printf("b is %02x, shifted: %02x\n", b, (b >> 4));
    return 0;
}
```

a is ffffffffd6, shifted: fffffffffd
b is d6, shifted: 0d
Bitwise Operations

- Even though memory is (somewhat) cheap, hardware often pack different values into a single word
 - Example: store 8 separate boolean variables in a 8-bit bitfield

- Use logical AND, OR, and NOT (or NEGATE) instructions to isolate individual bits
 - AND often used to create a bitmask

- Other operators are NAND, NOR, XOR, and NXOR
C Bitwise Operations

- Combination of AND and shift are used to extract individual bits from an integer

- Combination of OR and shift are used to set individual bits in an integer

```c
#include <stdio.h>

int main(void) {
    unsigned char a = 0b11000101;
    printf("orig a: %02x\n", a);
    printf("middle 4: %02x\n", ((a >> 2) & 0xf));
    a = (0x03 << 4) | (a & 0x0f);
    printf("new a: %02x\n", a);
    unsigned char b = ~a;
    printf("b: %02x\n", b);
    return 0;
}
```

output:
- orig a: c5
- middle 4: 01
- new a: 35
- b: ca
C Bitfields

• Combination of unions and bitfield structs can be used to manipulate individual bits

 • Almost always involves unsigned fixed-width integers

• Is compiler dependent as to packing and endianness order of bitfield

 • Bitfields are convenient if the code will only be compiled with a particular compiler and run on a particular architecture

 • Otherwise use bitwise operations to remain portable

http://c-faq.com/struct/bitfields.html
C Bitfield Example

```c
#include <stdio.h>
#include <stdint.h>

union u {
    uint8_t val;
    struct {
        unsigned upper: 4;
        unsigned next: 2;
        unsigned flag1: 1;
        unsigned flag2: 1;
    } bits;
};

int main(void) {
    union u a;
    a.val = 0b11000101;
    printf("orig a: %02x\n", a.val);
    printf("upper 4: %02x\n", a.bits.upper);
    a.bits.flag1 = 0;
    printf("new a: %02x\n", a.val);
    return 0;
}
```

On macOS, with clang 900.0.39.2

orig a: c5
upper 4: 05
new a: 85
Arithmetic Logic Unit

- Hardware device that performs simple **integer** operations
- Handles up to two operands
- Has a selector to choose which operation to perform:
 - Add or subtract; usually logical operations like rotate, shift, or bitwise
 - Sometimes more complex operations like square root
- Typically, set **condition code** (also known as **status**) based upon operation

https://en.wikipedia.org/wiki/Arithmetic_logic_unit
1-Bit Half Addition

- In simplest case, a **half-adder** (also known as a (2, 2) adder) adds two bits together, and calculates a sum and a carry-out.

\[
\text{Sum} = A \oplus B = A \cdot \overline{B} + \overline{A} \cdot B
\]

\[
\text{CarryOut} = A \cdot B
\]

<table>
<thead>
<tr>
<th>Input</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
1-Bit Full Adder

- A full-adder (also known as (3, 2) adder) includes a carry-in bit as well

\[
\text{Sum} = (A \cdot \overline{B} \cdot \overline{C_{in}}) + (\overline{A} \cdot B \cdot \overline{C_{in}}) + (A \cdot B \cdot C_{in})
\]

\[
C_{out} = (B \cdot C_{in}) + (A \cdot C_{in}) + (A \cdot B) + (A \cdot B \cdot C_{in})
\]

= \((B \cdot C_{in}) + (A \cdot C_{in}) + (A \cdot B) \)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum calculation is left as an exercise to the reader
ALU Selector

- ALU has a selector to choose which operation to perform

- Example: an ALU supporting 4 operations:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Supporting Subtraction

• Subtraction means adding the negative, and the negative in two’s complement is a bit inversion, plus one: \[A - B = A + \overline{B} + 1 \]

• By adding a selector to B operand, the same adder is used for addition and subtraction
Multibit ALU

• A full ALU (16-bit, 32-bit, etc) can be created by connecting adjacent 1-bit ALUs, using Carry In and Carry Out lines

• Carry Out from one adder is connected to Carry In of next adder (a ripple carry adder)

 • Will be slow due to gate propagation delay

• As before, perform subtraction by inverting B and set Carry In to 1
Setting Condition Codes

• Recall that condition code register bits are set automatically as a result of some operations

<table>
<thead>
<tr>
<th>condition</th>
<th>set by</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero (Z)</td>
<td>result is zero</td>
</tr>
<tr>
<td>carry (C)</td>
<td>carry out of MSB</td>
</tr>
<tr>
<td>negative (N)</td>
<td>MSB was 1</td>
</tr>
<tr>
<td>overflow (V)</td>
<td>an overflow</td>
</tr>
</tbody>
</table>

• By examining the Carry Out bit of MSB adder and resulting value, ALU sets condition bits

Overflow calculation is left as an exercise to the reader
Propagation Delays in Ripple ALUs

• Carry In of a 1-bit adder depends upon result of previous 1-bit adder

• Result of adding most significant bits is only available after all bits (i.e., after \(n-1 \) single bit additions)

 • Too slow in time-critical hardware

• \textbf{Carry Lookahead ALU} anticipates value of Carry Out

 • Takes many more gates to anticipate carry

 • Worst case scenario is \(\log_2(n) \), where \(n \) is number bits in the adder
Carry Lookahead Theory

• Let the \textit{generate function} \(G(A, B)\) be 1 if \(A\) plus \(B\) will generate a Carry Out

 • In binary arithmetic, \(G(A, B) = A \cdot B\), regardless of Carry In (\(C_{\text{in}}\))

• Let the \textit{propagate function} \(P(A, B)\) be 1 if \(A\) plus \(B\) will generate a Carry Out, but only when \(C_{\text{in}}\) is 1

 • \(P(A, B) = A + B\) or \(A \oplus B\)

• Then the Carry Out for bit \(i\) is \(C_i = G_i + (P_i \cdot C_{i-1})\)

• For a \textit{carry lookahead group} with size 2, \(C_i = G_i + (P_i \cdot (G_{i-1} + (P_{i-1} \cdot C_{i-2})))\)

 • By the Distributive Law, \(C_i = G_i + (P_i \cdot G_{i-1}) + (P_i \cdot P_{i-1} \cdot C_{i-2})\)
Using Carry Lookahead Groups

• For a carry lookahead group size 4, \(C_4 = G_3 + (P_3 \cdot G_2) + (P_3 \cdot P_2 \cdot G_1) + (P_3 \cdot P_2 \cdot P_1 \cdot G_0) + (P_3 \cdot P_2 \cdot P_1 \cdot P_0 \cdot C_{\text{in}}) \)

• Thus, all Carry Outs for the group can be calculated in parallel:
Cascading Carry Lookahead

- Equal gate delays for S2 and S4
- Carry Out of one group is propagated to next carry lookahead group
 - 16-bit adder can be implemented as 4 groups of 4-bit adders
- Can create supergroups of carry lookahead groups
Speed of Carry Generation

• A carry lookahead group has 2 gate delays

• For *this 1-bit adder*, the gate delays are 2 for the Carry Out and 3 for the Sum

• For a 16-bit ripple adder, the gate delays are
 \((16 \times 2) = 32\) for the final Carry Out,
 \((15 \times 2 + 3) = 33\) for final sum bit

• If instead the adder had 4 sets of 4-bit groups, the delays are
 \((4 \times 2) = 8\) for final Carry Out,
 \((3 \times 2 + 3) = 9\) for final sum bit

 • Larger groups would be faster, but use more gates