Lecture 7: Arithmetic Logic Unit

Spring 2019
Jason Tang
Topics

• Logical operations

• 1-bit adder

• Lookahead adder
Rolling and Shifting

- A **roll** (or **rotate**) pushes bits off of one end and reinserts them at the other end

 ![Roll diagram](attachment:roll.png)

 11010110 \(\rightarrow\) *10110101*

- A **left shift** pushes bits towards MSB, inserting zeroes in vacated bit positions

 ![Shift diagram](attachment:shift.png)

 11010110 \(\leftarrow\) *01011000*

- Two different types of right shift, both pushing towards LSB:
 - **Logical right shift**: vacated bits are set to zero
 - **Arithmetic right shift**: vacated bits are signed extended
Shifting Dangers

• Left shifting can be used as a cheap way to multiply by a power of 2 (but beware of overflow)

 • Left shifting a two’s complement number could result in flipping the sign bit

• Right-shifting sometimes results in dividing by a power of two, but only when original value was non-negative, or correct shift operation was used

\[
\begin{array}{c}
0101 \\
\text{right shift by 1} \\
= 5_{10}
\end{array}
\quad
\begin{array}{c}
0010 \\
= 2_{10}
\end{array}
\quad
\begin{array}{c}
1101 \\
\text{logical shift} \\
= 13_{10} \text{ (unsigned)}
\quad\text{or } -3_{10} \text{ (two’s comp)}
\end{array}
\quad
\begin{array}{c}
0110 \\
\text{arithmetic shift} \\
= 6_{10} \text{ (unsigned and two’s comp)}
\quad\text{or } -2_{10} \text{ (two’s comp)}
\end{array}
\]
C and Java Shift Operators

• In both C and Java, `<<` is **logical left shift**

• In Java, `>>` is arithmetic right shift, `>>>` is logical right shift

• In C, usually, `>>` is arithmetic for signed values and logical for unsigned

```c
#include <stdio.h>

int main(void) {
    signed char a = -42;
    printf("a is %02x, shifted: %02x\n", a, (a >> 4));
    unsigned char b = (unsigned char) a;
    printf("b is %02x, shifted: %02x\n", b, (b >> 4));
    return 0;
}
```

```
a is ffffffffd6, shifted: ffffffff
b is d6, shifted: 0d
```
Bitwise Operations

• Even though memory is (somewhat) cheap, hardware often pack different values into a single word

 • Example: store 8 separate boolean variables in a 8-bit bitfield

• Use logical AND, OR, and NOT (or NEGATE) instructions to isolate individual bits

 • AND often used to create a bitmask

• Other operators are NAND, NOR, XOR, and NXOR
C Bitwise Operations

• Combination of AND and shift are used to extract individual bits from an integer

• Combination of OR and shift are used to set individual bits in an integer

```c
#include <stdio.h>

int main(void) {
    unsigned char a = 0b11000101;
    printf("orig a: %02x\n", a);
    printf("middle 4: %02x\n", ((a >> 2) & 0xf));
    a = (0x03 << 4) | (a & 0x0f);
    printf("new a: %02x\n", a);
    unsigned char b = ~a;
    printf("b: %02x\n", b);
    return 0;
}
```

orig a: c5
middle 4: 01
new a: 35
b: 0a
C Bitfields

- Combination of unions and bitfield structs can be used to manipulate individual bits

 - Almost always involves unsigned fixed-width integers

- Is compiler dependent as to packing and endianness order of bitfield

 - Bitfields are convenient if the code will only be compiled with a particular compiler and run on a particular architecture

 - Otherwise use bitwise operations to remain portable

http://c-faq.com/struct/bitfields.html
C Bitfield Example

```c
#include <stdio.h>
#include <stdint.h>

union u {
    uint8_t val;
    struct {
        unsigned upper: 4;
        unsigned next: 2;
        unsigned flag1: 1;
        unsigned flag2: 1;
    } bits;
};

int main(void) {
    union u a;
    a.val = 0b11000101;
    printf("orig a: %02x\n", a.val);
    printf("upper 4: %02x\n", a.bits.upper);
    a.bits.flag1 = 0;
    printf("new a: %02x\n", a.val);
    return 0;
}
```

On macOS, with clang 900.0.39.2

orig a: c5
upper 4: 05
new a: 85
Arithmetic Logic Unit

- Hardware device that performs simple integer operations
- Handles up to two operands
- Has a selector to choose which operation to perform:
 - Add or subtract; usually logical operations like rotate, shift, or bitwise
 - Sometimes more complex operations like square root
- Typically, set condition code (also known as status) based upon operation

https://en.wikipedia.org/wiki/Arithmetic_logic_unit
1-Bit Half Addition

• In simplest case, a half-adder (also known as a (2, 2) adder) adds two bits together, and calculates a sum and a carry-out

\[
\begin{align*}
\text{Sum} &= A \oplus B \\
&= A \cdot \overline{B} + \overline{A} \cdot B \\
\text{CarryOut} &= A \cdot B
\end{align*}
\]

<table>
<thead>
<tr>
<th>Input</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sum</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>0 1</td>
<td>1</td>
</tr>
<tr>
<td>1 0</td>
<td>1</td>
</tr>
<tr>
<td>1 1</td>
<td>0</td>
</tr>
</tbody>
</table>
1-Bit Full Adder

- A full-adder (a (3, 2) adder) includes a carry-in bit as well.

\[
\text{Sum} = (A \cdot \overline{B} \cdot \overline{C_{in}}) + (\overline{A} \cdot B \cdot \overline{C_{in}}) + \\
(\overline{A} \cdot \overline{B} \cdot C_{in}) + (A \cdot B \cdot C_{in})
\]

\[
C_{out} = (B \cdot C_{in}) + (A \cdot C_{in}) + \\
(A \cdot B) + (A \cdot B \cdot C_{in})
\]

\[
= (B \cdot C_{in}) + (A \cdot C_{in}) + (A \cdot B)
\]

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum calculation is left as an exercise to the reader.
ALU Selector

- ALU has a selector to choose which operation to perform

- Example: an ALU with 4 operations:

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Supporting Subtraction

• Subtraction means adding the negative, and the negative in two’s complement is a bit inversion, plus one: $A - B = A + \overline{B} + 1$

• By adding a selector to B operand, the same adder is used for addition and subtraction
Multibit ALU

- A full ALU (16-bit, 32-bit, etc) can be created by connecting adjacent 1-bit ALUs, using Carry In and Carry Out lines.

- Carry Out from one adder is connected to Carry In of next adder (a ripple carry adder).

 - Will be slow due to gate propagation delay.

- As before, perform a subtraction by inverting B and set Carry In to 1.
Setting Condition Codes

- Recall that condition code register bits are set automatically as a result of some operations.

<table>
<thead>
<tr>
<th>condition</th>
<th>set by</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero (Z)</td>
<td>result is zero</td>
</tr>
<tr>
<td>carry (C)</td>
<td>carry out of MSB</td>
</tr>
<tr>
<td>negative (N)</td>
<td>MSB was 1</td>
</tr>
<tr>
<td>overflow (V)</td>
<td>an overflow</td>
</tr>
</tbody>
</table>

- By examining the Carry Out bit of MSB adder and resulting value, ALU sets condition bits.

Overflow calculation is left as an exercise to the reader.
Propagation Delays in Ripple ALUs

- Carry In of a 1-bit adder depends upon result of previous 1-bit adder.

- Result of adding most significant bits is only available after all bits (i.e., after \(n-1\) single bit additions).
 - Too slow in time-critical hardware.

- **Carry Lookahead ALU** anticipates value of Carry Out.
 - Takes many more gates to anticipate carry.
 - Worst case scenario is \(\log_2(n)\), where \(n\) is number bits in the adder.
Carry Lookahead Theory

• Let the **generate function** $G(A, B)$ be 1 if A plus B will generate a Carry Out

 • In binary arithmetic, $G(A, B) = A \cdot B$, regardless of Carry In (C_{in})

• Let the **propagate function** $P(A, B)$ be 1 if A plus B will generate a Carry Out, but only when C_{in} is 1

 • $P(A, B) = A + B$ or $A \oplus B$

• Then the Carry Out for bit i is $C_i = G_i + (P_i \cdot C_{i-1})$

• For a carry lookahead group with size 2, $C_i = G_i + (P_i \cdot (G_{i-1} + (P_{i-1} \cdot C_{i-2})))$

 • By the Distributive Law, $C_i = G_i + (P_i \cdot G_{i-1}) + (P_i \cdot P_{i-1} \cdot C_{i-2})$
Using Carry Lookahead Groups

• For a carry lookahead group size 4, \(C_4 = G_3 + (P_3 \cdot G_2) + (P_3 \cdot P_2 \cdot G_1) + (P_3 \cdot P_2 \cdot P_1 \cdot G_0) + (P_3 \cdot P_2 \cdot P_1 \cdot P_0 \cdot C_{in}) \)

• Thus, all Carry Outs for the group can be calculated in parallel:

Cascading Carry Lookahead

- Equal gate delays for S2 and S4
- Carry Out of one group is propagated to next carry lookahead group
 - 16-bit adder can be implemented as 4 groups of 4-bit adders
 - Can create supergroups of carry lookahead groups
Speed of Carry Generation

- A carry lookahead group has 2 gate delays

- For this 1-bit adder, the gate delays are 2 for the Carry Out and 3 for the Sum

- For a 16-bit ripple adder, the gate delays are \((16 \times 2) = 32\) for the final Carry Out, \((15 \times 2+3) = 33\) for final sum bit

- If instead the adder had 4 sets of 4-bit groups, the delays are \((4 \times 2) = 8\) for final Carry Out, \((3 \times 2+3) = 9\) for final sum bit

- Larger groups would be faster, but use more gates