
Lecture 18: Device Drivers

Fall 2019

Jason Tang

�1

Slides based upon Linux Device Drivers, 3rd Edition
http://lwn.net/Kernel/LDD3/

http://lwn.net/Kernel/LDD3/

Topics

• Parts of a Linux Device Driver

• Character Devices

• File Operations

• User Space Context

�2

Linux Devices

• In Linux (and other Unix-based systems), block and character devices have
major and minor device numbers, traditionally as follow:

• major number: identifies which driver to handle device

• minor number: identifies which instance of device is being managed

• Module is any bit of runtime loaded kernel code; a device driver is a module
that controls access to a device

• Usually, kernel instantiates multiple instances of same device driver when
dealing with duplicate hardware

�3

Linux Devices

• In this example, the same serial driver is handling multiple devices, all with
major number 4

• See include/uapi/linux/major.h for mapping of major numbers to devices

• Core kernel will call serial driver’s probe function multiple times, once for each
serial hardware detected

• Many drivers have a global static variable that counts how many times its
probe function has been invoked

�4

$ ls -l /dev/tty[0-3]
crw--w---- 1 root tty 4, 0 Mar 14 15:45 /dev/tty0
crw-rw---- 1 root tty 4, 1 Mar 14 15:45 /dev/tty1
crw-rw---- 1 root tty 4, 2 Mar 14 15:45 /dev/tty2
crw-rw---- 1 root tty 4, 3 Mar 14 15:45 /dev/tty3

Driver Cleanup

• Opposite of probe is a remove function

• Called by kernel when device is removed (e.g., unplugged)

• When module is loaded, kernel calls module’s init function

• For each device detected, kernel calls driver’s probe function

• When device removed, kernel calls driver’s remove function

• When module is unloaded, kernel calls module’s exit function

• For each device still plugged in, remove function is called first

�5

Device Registration

• Within a module’s init function, a device driver registers itself on to a bus

• Examples of buses: USB, PCI, SCSI, Infiniband, platform, …

• As part of registration, device driver registers something that identifies its
hardware from others on the same bus

• Example: Manufacturers hardwire device codes into PCI devices

• After kernel has initialized all core code, it then scans each bus

• For each discovered device code, it calls the registered probe function

�6

Device Registration Example

• Example: VirtualBox emulates an Intel Pro/1000 Gigabit Ethernet adapter

• This PCI device has the device code 0x100E

• In this device driver’s module init, it registers itself with the core kernel as
capable of handing a PCI device 0x100E

• During PCI initialization, kernel scans all devices and device codes on PCI
bus

• When it finds a device with code 0x100E, it invokes the probe function
registered for that code

�7

Device Driver Operations

• Drivers typically have three parts:

• Interrupt handling deals with responding to interrupts, DMA, and other
low-level details

• User space API involves creating entries in /dev, responding to system
calls, etc., so that users can actually use the hardware

�8

Part Usage Example
Registration

(required)
Notifies core kernel of driver

ID pci_device_register()

Interrupt Handling
(almost always)

Handles hardware interrupts
generated by device

register_threaded_irq()

User Space API
(usually)

Lets programs interact with
driver miscdevice_register()

Interrupt Handling

• Device driver must service interrupts generated by hardware, by installing
interrupt service routines (ISR)

• Example: a serial port raises an interrupt upon input (it received electrical
signals on input pins)

• That interrupt line is associated to an interrupt request (IRQ) number

• Device driver registers itself as a handler to that IRQ

• Kernel invokes callback(s) that are registered to the IRQ whenever interrupt
is raised

�9

User Space API

• Application programmers need some way to interact with hardware

• Example: Applications interact with /dev/tty0 character device by:

• Writing data to /dev/tty0 eventually sends electrical signals out serial port

• Reading data from /dev/tty0 returns inputs from serial port

• Many hardware serial ports have a 16-byte circular input buffer

• Invoking an ioctl() (I/O control) on /dev/tty0 to change baud rate, flow
control, and other low-level hardware settings

�10

Creating Device Nodes

• Several mechanisms exist to create different types of device nodes

• All mechanisms involve registering callbacks to respond to user operations

• Within a module’s probe, that driver registers callbacks

• During module remove, driver unregisters those callbacks

• As part of device node creation, need to specify device name (“tty0”), major
number (“4”), and minor number (“0”)

• May also specify default permissions (“0660”)

• Kernel code must check and handle all return values

�11

File Operations

• Driver creates a struct file_operations (a function pointer table) and
sets its fields to desired callbacks

• If a callback is unspecified (is set to NULL), than that operation is not
supported; kernel returns an error if a user tries to perform that operation

�12

struct file_operations {
 struct module *owner;
 loff_t (*llseek) (struct file *, loff_t, int);
 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
 …
 int (*mmap) (struct file *, struct vm_area_struct *);
 int (*open) (struct inode *, struct file *);
 int (*flush) (struct file *, fl_owner_t id);
 int (*release) (struct inode *, struct file *);
 …
}

https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h

Miscellaneous Devices

• Many steps involved when creating new character devices

• Miscellaneous device (miscdevice): simpler interface for smaller drivers

• Represented as a struct miscdevice, from include/linux/miscdevice.h

• Need a struct file_operations that specifies callbacks

• In Linux, all miscellaneous devices share major number 10

• Core kernel can dynamically assign minor numbers

�13

Creating Miscellaneous Device

• Set minor field to desired minor value, or the constant
MISC_DYNAMIC_MINOR to let kernel choose

• Set name field to name of device, as it should appear in /dev

• Set fops to point to an instance of a file_operations table

• (Optional) Set mode, ala chmod command

�14

struct miscdevice {
 int minor;
 const char *name;
 const struct file_operations *fops;
 …
 umode_t mode;
}

Miscellaneous Device Example

• Real-time clock (RTC) is implemented as a character device

�15

static const struct file_operations rtc_fops = {
 .owner = THIS_MODULE,
 .llseek = no_llseek,
 .read = rtc_read,
#ifdef RTC_IRQ
 .poll = rtc_poll,
#endif
 .unlocked_ioctl = rtc_ioctl,
 .open = rtc_open,
 .release = rtc_release,
 .fasync = rtc_fasync,
};

static struct miscdevice rtc_dev = {
 .minor = RTC_MINOR,
 .name = "rtc",
 .fops = &rtc_fops,
};

static int __init rtc_init(void)
{
 …
 if (misc_register(&rtc_dev)) {
 …
 return -ENODEV;
 }
 …
}

static void __exit rtc_exit(void)
{
 …
 misc_deregister(&rtc_dev);
 …
}

https://elixir.bootlin.com/linux/latest/source/drivers/char/rtc.c

File Operations: Open

• Callback invoked when process opens device node

• inode is a pointer to the inode as exists on disk; often unused

• filp is a pointer to the kernel object representing the calling process

• Return value is 0 on success, or negative on error (file will not be opened)

�16

static int foo_open(struct inode *inode, struct file *filp);

Error Values

• For most kernel functions, a negative return value indicates error

• libc will set errno to the absolute value of the return value

• Example: In standard C, the open() function returns the newly created file
descriptor (a non-negative integer) on success, or -1 on failure

• If kernel’s open callback returns 0, libc sets return value to be the file
descriptor

• If instead callback returns -EACCESS, libc sets return value to -1 and sets
errno to EACCESS

�17

File Operations: Release

• Callback invoked when process closes device node

• inode and filp are as per foo_open() callback

• Return value is 0 on successful close, or negative on error (file will not be
closed)

�18

static int foo_release(struct inode *inode, struct file *filp);

File Operations: read and write

• foo_read() called when process is reading from device, foo_write() when
process is writing to device

• filp is same file object from foo_open()

• ubuf is pointer to user buffer of where to read/write data

• count is number of bytes requested to read / number of bytes within ubuf

• ppos is offset into file; often ignored in streaming devices

�19

static ssize_t foo_read(struct file *filp, char __user *ubuf,
 size_t count, loff_t *ppos);
static ssize_t foo_write(struct file *filp, const char __user *ubuf,
 size_t count, loff_t *ppos);

User Context

• Kernel invokes callbacks on behalf of a user process

• This is called user context, as opposed to interrupt context

• User memory exists within its process’s virtual address space, but kernel
memory is in kernel’s virtual address space

• Drivers may not simply copy data between kernel and user memory

�20

static ssize_t foo_read(struct file *filp, char __user *ubuf,
 size_t count, loff_t *ppos) {
 memcpy(ubuf, kernel_data, sizeof(*kernel_data));
 …
}

Wrong! Does not work! Do not do this!

Copying Data to User Space

• When copying data into user’s memory, must check that destination is valid
location and entirely within process’s address space

• Kernel has macro copy_to_user() that makes necessary checks prior to
copying; it returns 0 on successful copy, non-zero on error

• Copy the smaller of requested amount and the amount actually available

• Return value from foo_read() is the number of bytes written to ubuf, or
negative on error

�21

Copying Data from User Space

• Likewise, always use macro copy_from_user() when copying data from
user space into kernel memory

• Copy the smaller of provided amount and the space actually available within
the kernel

• foo_write() returns the number of bytes in ubuf that was consumed

�22

Correct Read/Write Implementations

�23

static char some_kernel_buffer[80];

static ssize_t foo_read(struct file *filp, char __user *ubuf,
 size_t count, loff_t *ppos) {
 int retval;
 if (count < sizeof(some_kernel_buffer))
 count = sizeof(some_kernel_buffer);
 retval = copy_to_user(ubuf, some_kernel_buffer, count);
 if (retval < 0)
 return -EINVAL;
 return count;
}

static ssize_t foo_write(struct file *filp, const char __user *ubuf,
 size_t count, loff_t *ppos) {
 int retval;
 if (count < sizeof(some_kernel_buffer))
 count = sizeof(some_kernel_buffer);
 retval = copy_from_user(some_kernel_buffer, ubuf, count);
 if (retval < 0)
 return -EINVAL;
 return count;
}

