L ecture 18: Device Drivers

Fall 2019
Jason Tang

Slides based upon Linux Device Drivers, 3rd Edition
http://lwn.net/Kernel/L DD3/



http://lwn.net/Kernel/LDD3/

Topics

« Parts of a Linux Device Driver

« Character Devices

* File Operations

- User Space Context



Linux Devices

- In Linux (and other Unix-based systems), block and character devices have
major and minor device numbers, traditionally as follow:

* major number: identifies which driver to handle device
« minor number: identifies which instance of device is being managed

- Module is any bit of runtime loaded kernel code; a device driver is a module
that controls access to a device

- Usually, kernel instantiates multiple instances of same device driver when
dealing with duplicate hardware



Linux Devices

S 1s -1 /dev/tty[0-3]

crw—--w———-—- 1 root tty 4, 0 Mar
crw-rw—-—--—- 1 root tty 4, 1 Mar
crw—-rw———-—- 1 root tty 4, 2 Mar
crw—-rw———-- 1 root tty 4, 3 Mar

14
14
14
14

15:
15:
15:
15:

45
45
45
45

/dev/tty0
/dev/ttyl
/dev/tty?2
/dev/tty3

* In this example, the same serial driver is handling multiple devices, all with

major number 4

« See include/uapi/linux/major.h for mapping of major numbers to devices

« Core kernel will call serial driver’s probe function multiple times, once for each

serial hardware detected

- Many drivers have a global static variable that counts how many times its

probe function has been invoked



Driver Cleanup

- Opposite of probe is a remove function

- Called by kernel when device is removed (e.g., unplugged)

 When module is loaded, kernel calls module’s init function

« For each device detected, kernel calls driver’s probe function

- When device removed, kernel calls driver’s remove function

 When module is unloaded, kernel calls module’s exit function

 For each device still plugged in, remove function is called first



Device Registration

- Within a module’s init function, a device driver registers itself on to a bus

- Examples of buses: USB, PCI, SCSI, Infiniband, platform, ...

 As part of registration, device driver registers something that identifies its
hardware from others on the same bus

- Example: Manufacturers hardwire device codes into PCI devices

« After kernel has initialized all core code, it then scans each bus

 For each discovered device code, it calls the registered probe function



Device Registration Example

- Example: VirtualBox emulates an Intel Pro/1000 Gigabit Ethernet adapter

« This PCI device has the device code 0x100E

* In this device driver’s module init, it registers itself with the core kernel as
capable of handing a PCI device 0x100E

 During PCl initialization, kernel scans all devices and device codes on PCI
bus

- When it finds a device with code 0x100E, it invokes the probe function
registered for that code



Device

Driver Operations

* Drivers typically have three parts:

Part

Registration
(required)

Interrupt Handling
(almost always)

User Space API
(usually)

Usage
Notifies core kernel of driver
ID

Handles hardware interrupts
generated by device

Lets programs interact with
driver

Example

pcli device register ()

register threaded 1rqg()

miscdevice regilster ()

* Interrupt handling deals with responding to interrupts, DMA, and other

low-level details

« User space API involves creating entries in /dev, responding to system
calls, etc., so that users can actually use the hardware



Interrupt Handling

 Device driver must service interrupts generated by hardware, by installing
interrupt service routines (ISR)

- Example: a serial port raises an interrupt upon input (it received electrical
signhals on input pins)

- That interrupt line is associated to an interrupt request (IRQ) number
 Device driver registers itself as a handler to that IRQ

- Kernel invokes callback(s) that are registered to the IRQ whenever interrupt
IS raised



User Space API

* Application programmers need some way to interact with hardware
- Example: Applications interact with /dev/tty0 character device by:
- Writing data to /dev/tty0 eventually sends electrical signals out serial port
- Reading data from /dev/tty0 returns inputs from serial port
- Many hardware serial ports have a 16-byte circular input buffer

 Invoking an 1octl () (I/O control) on /dev/tty0 to change baud rate, flow
control, and other low-level hardware settings

10



Creating Device Nodes

« Several mechanisms exist to create different types of device nodes

 All mechanisms involve registering callbacks to respond to user operations

» Within a module’s probe, that driver registers callbacks

- During module remove, driver unregisters those callbacks

 As part of device node creation, need to specify device name (“tty0”), major
number (“4”), and minor number (“0”)

- May also specify default permissions (“0660”)

 Kernel code must check and handle all return values

11



File Operations

struct file_operations {
struct module xowner;
loff_t (xllseek) (struct file *, loff_t, int);
ssize_t (xread) (struct file %, char __user %, size t, loff_t x);
ssize_t (xwrite) (struct file *, const char __user %, size_ t, loff_t x);
ssize_t (xread_iter) (struct kiocb %, struct iov_iter x);
ssize_t (xwrite_iter) (struct kiocb *, struct iov_iter x);

int (s«mmap) (struct file %, struct vm_area_struct *);
int (xopen) (struct inode %, struct file x);

int (xflush) (struct file %, fl owner_t id);

int (xrelease) (struct inode %, struct file %);

}

- Driver creates a struct file operations (a function pointer table) and
sets its fields to desired callbacks

- If a callback is unspecified (is set to NULL), than that operation is not
supported; kernel returns an error if a user tries to perform that operation

https://elixir.bootlin.com/linux/latest/source/include/linux/fs.h 12



Miscellaneous Devices

- Many steps involved when creating new character devices

- Miscellaneous device (miscdevice): simpler interface for smaller drivers

- Represented as a struct miscdevice, from include/linux/miscdevice.h

- Need a struct file operations that specifies callbacks

* In Linux, all miscellaneous devices share major number 10

« Core kernel can dynamically assign minor numbers

13



Creating Miscellaneous Device

struct miscdevice {
int minor;
const char xname;
const struct file_operations *fops;

umode_t mode;
I3

Set minor field to desired minor value, or the constant
MISC DYNAMIC MINOR to let kernel choose

Set name field to name of device, as it should appear in /dev

Set fops to point to an instance of a file operations table

(Optional) Set mode, ala chmod command

14



Miscellaneous Device Example

static const struct file_operations rtc_fops = {

.owner = THIS_MODULE,

. Llseek = no_lLlseek, static int __init rtc_init(void)

. read = rtc_read, {
#ifdef RTC_IRQ .

.poll = rtc_poll, if (misc_register(&rtc_dev)) {
#endif -

.unlocked 1octl = rtc_1ioctl, return —ENODEV;

. 0pen = rtc_open, }

.release = rtc_release,

. fasync = rtc_fasync, }
b

static void __exit rtc_exit(void)

static struct miscdevice rtc_dev = { {

.minor = RTC_MINOR, .

.name = "rtc", misc_deregister(&rtc_dev);

. fops = &rtc_fops,
b ¥

- Real-time clock (RTC) is implemented as a character device

https://elixir.bootlin.com/linux/latest/source/drivers/char/rtc.c 15



File Operations: Open

static int foo_open(struct inode *xinode, struct file *xfilp);

- Callback invoked when process opens device node

« inode iIs a pointer to the inode as exists on disk; often unused

« filp Is a pointer to the kernel object representing the calling process

« Return value is 0 on success, or negative on error (file will not be opened)

16



—rror Values

* For most kernel functions, a negative return value indicates error

 libc will set errno to the absolute value of the return value

- Example: In standard C, the open () function returns the newly created file
descriptor (a non-negative integer) on success, or -1 on failure

- If kernel’s open callback returns 0, libc sets return value to be the file
descriptor

« If instead callback returns —-EACCESS, libc sets return value to -1 and sets
errno to EACCESS

17



File Operations: Release

static int foo_release(struct inode xinode, struct file xfilp);

- Callback invoked when process closes device node

- inode and f£ilp are as per foo_open() callback

* Return value is 0 on successful close, or negative on error (file will not be
closed)

18



File Operations: read and write

static ssize_t foo_read(struct file xfilp, char __user subuf,
size_t count, loff_t xppos);
static ssize_t foo _write(struct file xfilp, const char __user xubuf,
size t count, loff_t xppos);

foo_read() called when process is reading from device, foo_write() when
process is writing to device

filp is same file object from foo_open()

ubuf is pointer to user buffer of where to read/write data

count is humber of bytes requested to read / number of bytes within ubuf

ppos is offset into file; often ignored in streaming devices

19



User Context

- Kernel invokes callbacks on behalf of a user process

- This is called user context, as opposed to interrupt context

« User memory exists within its process’s virtual address space, but kernel
memory is in kernel’s virtual address space

 Drivers may not simply copy data between kernel and user memory

static ssize_t foo_read(struct file xfilp, char __user sxubuf,
size_t count, loff_t xppos) {
memcpy (ubuf, kernel_data, sizeof(xkernel _data));

Wrong! Does not work! Do not do this!

20



Copying Data to User Space

When copying data into user’s memory, must check that destination is valid
location and entirely within process’s address space

Kernel has macro copy to user () that makes necessary checks prior to
copying; it returns O on successful copy, non-zero on error

Copy the smaller of requested amount and the amount actually available

Return value from foo_read() is the number of bytes written to ubuf, or
negative on error

21



Copying Data from User Space

- Likewise, always use macro copy from user () when copying data from
user space into kernel memory

- Copy the smaller of provided amount and the space actually available within
the kernel

 foo_write() returns the number of bytes in ubuf that was consumed

22



Correct Read/Write Implementations

static char some_kernel buffer[80];

static ssize_t foo_read(struct file *xfilp, char __user xubuf,
size_t count, loff_t xppos) {
int retval;
if (count < sizeof(some_kernel_buffer))
count = sizeof(some_kernel_buffer);
retval = copy_to_user(ubuf, some_kernel buffer, count);
if (retval < 0)
return —EINVAL;
return count;

}

static ssize_t foo_write(struct file *xfilp, const char __user xubuf,
size_t count, loff_t xppos) {
int retval;
if (count < sizeof(some_kernel_buffer))
count = sizeof(some_kernel buffer);
retval = copy_from_user(some_kernel _buffer, ubuf, count);
if (retval < 0)
return —EINVAL;
return count;



