Collaborative Filtering

Lecture 15
Information Filtering recap

- Look at each document’s content, and see if it matches user’s interests
- Construct user’s initial profile
 - Use examples of relevant and irrelevant documents
 - Mine content from home page, job descriptions, etc
 - Learn profile using e.g. relevance feedback
- Match incoming documents to profiles
- Refine profile from user feedback

- Examples: TREC filtering task
Reducing Information Overload

- Filtering is a response to information overload
- Content-based filtering
 - “I only want to read about this topic.”
 - “I don’t want to read articles by this person.”
- But people filter based on other features, too
 - reputation, popularity
 - reliability
 - novelty
 - recommendation from friend or colleague
Collaborative Filtering

- Filtering based on recommendations
 - Find people with similar taste to yours
 - Recommend to you what they’ve liked
- Automating “word-of-mouth”
 - Computers can consider thousands of items
- Lazy-evaluation filtering
 - Don’t examine content directly
 - Wait until someone else recommends it
Why Collaborative Filtering?

• Many people are watching the same stream
 • Some of them may have overlapping interests
 • e.g. “US-China relations”, “air accidents”, “international border disputes”
 • Leverage group effort
• Recommendations capture what content can’t
 • quality
 • preference
 • popularity
 • utility
How to filter collaboratively

- Collect ratings of documents from users
 - thumbs up/down
 - five-point response scale
- Identify users who have similar tastes
 - compute correlations of users' ratings
 - user-user similarity measure
- Use the most similar users to predict future ratings
Movie Ratings

<table>
<thead>
<tr>
<th></th>
<th>Comedies</th>
<th></th>
<th>Dramas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>3</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>?</td>
<td>9</td>
<td>?</td>
<td>2</td>
</tr>
<tr>
<td>Craig</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Diane</td>
<td>?</td>
<td>9</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Lecture 15
Information Retrieval
How to do it

- User ratings form a ratings matrix
 - users \times documents, where elements are ratings
- Compute correlation coefficients

$$ r(u_1, u_2) = \frac{(u_1 - \overline{u}) \cdot (u_2 - \overline{u})}{\|u_1 - \overline{u}\| \|u_2 - \overline{u}\|} $$

- Predicted rating = weighted sum of (rating * correlation coefficient)
How to do it (Part 2)

<table>
<thead>
<tr>
<th></th>
<th>Comedies</th>
<th></th>
<th>Dramas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>3 5</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Bob</td>
<td>4 9</td>
<td></td>
<td>7 9 2</td>
</tr>
<tr>
<td>Craig</td>
<td>4 9</td>
<td></td>
<td>7 8 1</td>
</tr>
<tr>
<td>Damian</td>
<td>4 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lecture 15 Information Retrieval
Tapestry (Xerox PARC, ’92)

- Mail and document filtering system
- Both content-based and collaborative
 - users can annotate (endorse) documents
 - filtering on standard fields, as well as ‘replied-to-by’, ‘endorsed-by’
- TQL: an SQL-like, persistent query language
Ringo (MIT, ’95)

- **Goal:** recommend music albums
- **Accessible via email or WWW**
- **Prediction algorithm**
 - Initial profile: ratings (1-7 scale) for 125 artists
 - Predictions computed using correlation method
- **Interface**
 - Recommendation included confidence measure
 - Could suggest artists/albums you would like or hate
 - Could advise regarding a specific album
 - Users can write textual reviews, add artists & albums
GroupLens (U. Minnesota, ’94)

- **Goal:** recommend USENET articles
- **Problem:** USENET is distributed!
 - collect ratings at central servers
 - client connects to both NNTP server and GLRB
- **Problem:** People like their newsreaders
 - augmented existing readers: xrn, tin, gnus
 - worked to make rating a “minimally intrusive” task
 - goal for user is to spend less time reading news
GroupLens Design Goals

- Integrate with existing newsreaders
- Provide fast, current recommendations
 - ~24 predictions/sec (SPARC 5, 32MB, 1997)
 - single key rating input
 - articles are read quickly, then expire
 - 1-day delay in predictions means missing half the users
- Privacy
 - uses pseudonyms with an authentication protocol
Ratings in GroupLens

![Graphs showing ratings distribution for different groups](image-url)
Correlation Between Users
Other GroupLens Applications

- MovieLens: http://movielens.umn.edu/
- BeerLens?
- NetPerceptions
 - Amazon.com, CDnow, Wine.com
Yenta: another kind of CF

- A matchmaking tool
 - clusters documents on your computer
 - characterizes clusters by key words
 - finds other people with similar clusters
- Finds people, not documents
 - locate experts and others who share interests
ReferralWeb (AT&T Labs, ’96)

- Constructing and searching social networks
 - “Find me a friend of a friend who knows about collaborative filtering.”
- Works like a Web spider
 - Searches for documents which mention a person
 - web pages, technical papers, USENET threads, organizational charts
 - Finds names on those pages and searches for them
 - Recurses one or two levels
PHOAKS (AT&T Labs, ’96)

• “People Helping One Another Know Stuff”
• Automatically extracts URLs from USENET articles
 • mentioning URL == recommendation, if
 • message is not crossposted to many groups
 • URL not in .signature
 • URL not in quoted portion of article
 • If it doesn’t look like an advertisement
• Compiles the essential URLs for newsgroups
Pros and Cons of CF

- Can recommend
 - books, movies, CDs, ... anything that can be rated
 - based on quality, authority, popularity, utility...

- Limitations
 - can only recommend what has been rated
 - can only recommend to someone who rates
 - sparse ratings or cold start problem
 - Lots of computation and storage