IR Models: The Probabilistic Model

Lecture 8
Probability of Relevance?

- IR is an uncertain process
 - Information need to query
 - Documents to index terms
 - Query terms and index terms mismatch

- Leads to several statistical approaches
 - probability theory, fuzzy logic, theory of evidence...
Probabilistic Retrieval

- Given a query \(q \), there exists a subset of the documents \(R \) which are relevant to \(q \)
 - But membership of \(R \) is uncertain
- A Probabilistic retrieval model
 - ranks documents in decreasing order of probability of relevance to the information need: \(P(R \mid q, d_i) \)
Difficulties

1. Evidence is based on a lossy representation
 - Evaluate probability of relevance based on occurrence of terms in query and documents
 - Start with an initial estimate, and refine through feedback

2. Computing the probabilities exactly according to the model is intractable
 - Make some simplifying assumptions
Probabilistic Model definitions

- \(d_j = (t_{1,j}, t_{2,j}, \ldots, t_{t,j}) \), \(t_{i,j} \in \{0, 1\} \)
 - terms occurrences are boolean (not counts)
 - query \(q \) is represented similarly
- \(R \) is the set of relevant documents,
 \(\sim R \) is the set of irrelevant documents
- \(P(R \mid d_j) \) is probability that \(d_j \) is relevant,
 \(P(\sim R \mid d_j) \) irrelevant
Retrieval Status Value

- "Similarity" function
 - ratio of prob. of relevance to prob. of non-relevance
- Transform $P(R \mid d_j)$ using Bayes’ Rule
 - Compute rsv() in terms of document probabilities
- $P(R)$ and $P(\sim R)$ are constant for each document

\[
\text{rsv}(d_j, q) = \frac{P(R \mid d_j)}{P(\sim R \mid d_j)}
\]

\[
P(x \mid y) = \frac{P(x) \times P(y \mid x)}{P(y)}
\]

\[
\text{rsv}(d_j, q) = \frac{P(d_j \mid R) \times P(R)}{P(d_j \mid \sim R) \times P(\sim R)}
\]

\[
\text{rsv}(d_j, q) \approx \frac{P(d_j \mid R)}{P(d_j \mid \sim R)}
\]
Retrieval Status Value (2)

- d is a vector of binary term occurrences
- We assume that terms occur independently of each other

\[
P(d_j|R) = \prod_{t=1}^{T} P(t_i|R)
\]

\[
\text{rsv}(d_j, q) = \sum_{t=1}^{T} \log \frac{P(t_i|R)}{P(t_i|R)}
\]

\[
= \sum_{t} \log \frac{P(t_i|R)P(t_i|R)}{P(t_i|R)P(t_i|R)}
\]
Computing term probabilities

- Initially, there are no retrieved documents
 - R is completely unknown
 - Assume $P(t_i|R)$ is constant (usually 0.5)
 - Assume $P(t_i|\sim R)$ approximated by distribution of t_i across collection – IDF

$$P(t|R) = \log \frac{N - n + 0.5}{n + 0.5}$$

- This can be used to compute an initial rank using IDF as the basic term weight
Probabilistic Model Example

<table>
<thead>
<tr>
<th>d</th>
<th>col</th>
<th>day</th>
<th>eat</th>
<th>hot</th>
<th>lot</th>
<th>nin</th>
<th>old</th>
<th>pea</th>
<th>por</th>
<th>pot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1.0</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$w_t = \log (N-n+0.5/n+0.5)$

- $q_1 = eat$
- $q_2 = porridge$
- $q_3 = hot \ porridge$
- $q_4 = eat \ nine \ day \ old \ porridge$
Improving the ranking

- Now, suppose
 - we have shown the initial ranking to the user
 - the user has labeled some of the documents as relevant ("relevance feedback")

- We now have
 - N documents in coll, R are known relevant
 - \(n_i \) documents containing \(t_i \), \(r_i \) are relevant
Improving term estimates

For term i …

<table>
<thead>
<tr>
<th></th>
<th>Rel</th>
<th>Non-rel</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>docs containing term</td>
<td>r</td>
<td>$n-r$</td>
<td>n</td>
</tr>
<tr>
<td>docs NOT containing term</td>
<td>$R-r$</td>
<td>$N-R-n+r$</td>
<td>$N-n$</td>
</tr>
<tr>
<td>Total</td>
<td>R</td>
<td>$N-R$</td>
<td>N</td>
</tr>
</tbody>
</table>

\[
p_i = P(t_i \mid R) = \frac{r}{R}
\]

\[
q_i = P(t_i \mid \bar{R}) = \frac{n-r}{N-R}
\]

\[
w_i = \log \frac{p_i(1-q_i)}{q_i(1-p_i)} = \log \frac{r(N-R-n+r)}{(n-r)(R-r)}
\]
Final term weight

• Add 0.5 to each term, to keep the weight from being infinite when R, r are small:

$$w_i = \log \frac{(r + 0.5)(N - R - n + r + 0.5)}{(n - r + 0.5)(R - r + 0.5)}$$

• Can continue to refine the ranking as the user gives more feedback.
Relevance-weighted Example

Document vectors $\langle tf_{d,t} \rangle$

<table>
<thead>
<tr>
<th></th>
<th>col</th>
<th>day</th>
<th>eat</th>
<th>hot</th>
<th>lot</th>
<th>nin</th>
<th>old</th>
<th>pea</th>
<th>por</th>
<th>pot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w_t</td>
<td>-0.33</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.33</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.62</td>
<td>0.62</td>
</tr>
</tbody>
</table>

- $q_3 = hot \ porridge$, document 2 is relevant
Summary

- Probabilistic model uses probability theory to model the uncertainty in the retrieval process
- Assumptions are made explicit
- Term weight without relevance information is inverse document frequency (IDF)
- Relevance feedback can improve the ranking by giving better term probability estimates
- No use of within-document term frequencies or document lengths
Building on the Probabilistic Model: Okapi weighting

- Okapi system
 - developed at City University London
 - based on probabilistic model
- Cost of not using tf and document length
 - doesn’t perform as well as VSM
 - hurts performance on long documents
- Okapi solution
 - model within-document term frequencies as a mixture of two Poisson distributions
 - one for relevant documents and one for irrelevant ones
Okapi best-match weights

\[BM_0 = \sum_{t \in Q} \log \frac{(r + 0.5)(N - R - n + r + 0.5)}{(n - r + 0.5)(R - r + 0.5)} \quad (\text{this is } w^{(1)}) \]

\[BM_1 = \sum_{t \in Q} w^{(1)} \times \frac{t_{i,q}}{k_3 \times t_{i,q}} \]

\[BM_{25} = \sum_{t \in Q} w^{(1)} \times \frac{(k_1 + 1)t_{i,j}}{K + t_{i,j}} \times \frac{(k_3 + 1)t_{i,q}}{k_3 \times t_{i,q}} + k_2 \cdot |Q| \cdot \frac{avdl - dl}{avdl + dl} \]

\[K = k_1((1 - b) + (b \cdot dl) / avdl)) \]

in TREC-8:

\[k_1 = [1, 2] \quad k_3 = 7 \]

\[k_2 = 0 \quad b = [0.6, 0.75] \]

Lecture 8 Information Retrieval
Okapi weighting

- Okapi weights use
 - a "tf" component similar to VSM
 - separate document and query length normalizations
 - several tuning constants which depend on the collection
- In experiments, Okapi weights give the best performance
Okapi-weights Example

Document vectors \langle tf_{d,t} \rangle

<table>
<thead>
<tr>
<th>d</th>
<th>col</th>
<th>day</th>
<th>eat</th>
<th>hot</th>
<th>lot</th>
<th>nin</th>
<th>old</th>
<th>pea</th>
<th>por</th>
<th>pot</th>
<th>dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Document Lengths (dl)

<table>
<thead>
<tr>
<th>dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Term Weights (w(1))

<table>
<thead>
<tr>
<th>w(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.26</td>
</tr>
<tr>
<td>0.56</td>
</tr>
<tr>
<td>0.56</td>
</tr>
<tr>
<td>0.26</td>
</tr>
<tr>
<td>0.56</td>
</tr>
<tr>
<td>0.56</td>
</tr>
<tr>
<td>0.56</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.26</td>
</tr>
</tbody>
</table>

Query Weights

- \(q1 = \text{eat} \)
- \(q2 = \text{porridge} \)
- \(k_1 = 1.2 \)
- \(k_2 = 0 \)
- \(b = 0.75 \)
- \(\text{avdl} = 3.66 \)
- \(q3 = \text{hot porridge} \)
- \(q4 = \text{eat nine day old porridge} \)
Okapi-weights +RF Example

Document vectors $<tf_{d,t}>$

<table>
<thead>
<tr>
<th>d</th>
<th>col</th>
<th>day</th>
<th>eat</th>
<th>hot</th>
<th>lot</th>
<th>nin</th>
<th>old</th>
<th>pea</th>
<th>por</th>
<th>pot</th>
<th>dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Query q_3 = *hot porridge*:

- Document with ID 2 is relevant.

Parameters:

- $k_1 = 1.2$
- $k_2 = 0$
- $k_3 = 7$
- $b = 0.75$
- $avdl = 3.66$
Ranking algorithm

1. \(A = \{\} \) (set of accumulators for documents)
2. For each query term \(t \)
 - Get term, \(f_t \), and address of \(I_t \) from lexicon
 - set \(w^{(1)} \) and qtf variables
 - Read inverted list \(I_t \)
 - For each \(<d, f_{d,t}> \) in \(I_t \)
 1. If \(A_d \notin A \), initialize \(A_d \) to 0 and add it to \(A \)
 2. \(A_d = A_d + (w^{(1)} \times tf \times qtf) + qnorm \)
3. For each \(A_d \) in \(A \)
 1. \(A_d = A_d/W_d \)
4. Fetch and return top \(r \) documents to user
Managing Accumulators

- How to store accumulators?
 - static array, 1 per document
 - grow as needed with a hash table

- How many accumulators?
 - can impose a fixed limit
 - quit processing I_t’s after limit reached
 - continue processing, but add no new A_d’s
Managing Accumulators (2)

- To make this work, we want to process the query terms in order of decreasing idf_t
- Also want to process l_t in decreasing $tf_{d,t}$ order
 - sort l_t when we read it in
 - or, store inverted lists in $f_{d,t}$-sorted order

$<5; (1,2) (2,2) (3,5) (4,1) (5,2)> <f_t; (d, f_{d,t})…>$$
$<5; (3,5) (1,2) (2,2) (5,2) (4,1)> \text{ sorted by } f_{d,t}$$
$<5; (5, 1:3) (2, 3:1,2,5) (1, 1:4)> <f_t; (f_{d,t}, c:d,…)>$

- This can actually compress better, but makes Boolean queries harder to process
Getting the top documents

- Naïve: sort the accumulator set at end
- Or, use a heap and pull top r documents
 - much faster if $r << N$
- Or better yet, as accumulators are processed to add the length norm (W_d):
 - make first r accumulators into a min-heap
 - for each next accumulator
 - if $A_d < \text{heap-min}$, just drop it
 - if $A_d > \text{heap-min}$, drop the heap-min, and put A_d in