
��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � �

IR Models:
The Probabilistic Model

Lecture 8

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � �

Probability of Relevance?

� IR is an uncertain process

� Information need to query

� Documents to index terms

� Query terms and index terms mismatch

� Leads to several statistical approaches

� probability theory, fuzzy logic, theory of evidence...

��� �� ���
��

 ! "#
�

$ %

&

'
& '

() *� � '
�

� '�

 ! +#
�

$,

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � �

Probabilistic Retrieval

� Given a query q, there exists a subset of
the documents R which are relevant to q

� But membership of R is uncertain

� A Probabilistic retrieval model

� ranks documents in decreasing order of
probability of relevance to the information
need: P(R | q,di)

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � �

Difficulties

1. Evidence is based on a lossy representation

� Evaluate probability of relevance based on
occurrence of terms in query and documents

� Start with an initial estimate, and refine through
feedback

2. Computing the probabilities exactly according
to the model is intractable

� Make some simplifying assumptions

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � �

Probabilistic Model definitions

� dj = (t1,j, t2,j, … tt,j), ti,j ∈ {0,1}

� terms occurrences are boolean (not counts)

� query q is represented similarly

� R is the set of relevant documents,
~R is the set of irrelevant documents

� P(R | dj) is probability that dj is relevant,
P(~R | dj) irrelevant

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � �

Retrieval Status Value

� "Similarity" function

� ratio of prob. of relevance
to prob. of non-relevance

� Transform P(R | dj) using
Bayes’ Rule

� Compute rsv() in terms of
document probabilities

� P(R) and P(~R) are
constant for each
document

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � �

Retrieval Status Value (2)

� d is a vector of binary
term occurrences

� We assume that
terms occur
independently of
each other

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � �

Computing term probabilities

� Initially, there are no retrieved documents

� R is completely unknown

� Assume P(ti|R) is constant (usually 0.5)

� Assume P(ti|~R) approximated by distribution of ti
across collection – IDF

� This can be used to compute an initial rank
using IDF as the basic term weight

Probabilistic Model Example

0.260.00.00.560.560.560.260.560.560.26wt

1.01.06

1.01.05

1.01.01.04

1.01.01.03

1.01.01.02

1.01.01.01.01

potporpeaoldninlothoteatdaycol

Document vectors <tfd,t>d

� q1 = eat

� q2 = porridge

� q3 = hot porridge

� q4 = eat nine day old porridge

��� � ��� � 	
 � � �
�

� � � �
�

� �

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � � �

Improving the ranking

� Now, suppose

� we have shown the initial ranking to the user

� the user has labeled some of the documents
as relevant ("relevance feedback")

� We now have

� N documents in coll, R are known relevant

� ni documents containing ti, ri are relevant

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � � �

Improving term estimates

NN-RRTotal

N-nN-R-n+rR-rdocs NOT
containing term

nn-rrdocs containing
term

TotalNon-relRelfor term i …

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � � �

Final term weight

� Add 0.5 to each term, to keep the weight
from being infinite when R, r are small:

� Can continue to refine the ranking as the
user gives more feedback.

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � � �
Relevance-weighted Example

� q3 = hot porridge, document 2 is relevant

0.950.620.620.00.00.0-0.330.00.0-0.33wt

1.01.06

1.01.05

1.01.01.04

1.01.01.03

1.01.01.02

1.01.01.01.01

potporpeaoldninlothoteatdaycol

Document vectors <tfd,t>d

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � ��

Summary

� Probabilistic model uses probability theory to
model the uncertainty in the retrieval process

� Assumptions are made explicit

� Term weight without relevance information is
inverse document frequency (IDF)

� Relevance feedback can improve the ranking
by giving better term probability estimates

� No use of within-document term frequencies or
document lengths

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � ��

Building on the Probabilistic
Model: Okapi weighting

� Okapi system

� developed at City University London

� based on probabilistic model

� Cost of not using tf and document length

� doesn’t perform as well as VSM

� hurts performance on long documents

� Okapi solution

� model within-document term frequencies as a
mixture of two Poisson distributions

� one for relevant documents and one for irrelevant
ones

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � � �

Okapi best-match weights

� � � �� � � �

��� � �

��� �

! � � �" # � �" $ �

%'& () * +-, .0/

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � ��

Okapi weighting

� Okapi weights use

� a "tf" component similar to VSM

� separate document and query length
normalizations

� several tuning constants which depend on
the collection

� In experiments, Okapi weights give the
best performance

Okapi-weights Example

0.260.00.00.560.560.560.260.560.560.26w(1)

21.01.06

42.02.05

42.01.01.04

31.01.01.03

31.01.01.02

62.02.01.01.01

potporpeaoldninlothoteatdaycol

dlDocument vectors <tfd,t>d

� q1 = eat

� q2 = porridge

� q3 = hot porridge

� q4 = eat nine day old porridge

��
� � ���
�

�

	 � �

�

� �

� � �
�

�

�� �� � �
�

� �

Okapi-weights +RF Example

0.950.620.620.00.00.0-0.330.00.0-0.33w(1)

21.01.06

42.02.05

42.01.01.04

31.01.01.03

31.01.01.02

62.02.01.01.01

potporpeaoldninlothoteatdaycol

dlDocument vectors <tfd,t>d

� q3 = hot porridge,
doc 2 is relevant

��
� � ���
�

�

	 � �

�

� �

� � �
�

�

�� �� � �
�

� �

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � ��

Ranking algorithm
1. A = {} (set of accumulators for documents)
2. For each query term t

• Get term, ft, and address of It from lexicon
• set w(1) and qtf variables
• Read inverted list It

• For each <d, fd,t> in It

1. If Ad ∉A, initialize Ad to 0 and add it to A
2. Ad = Ad + (w(1) x tf x qtf) + qnorm

3. For each Ad in A
1. Ad = Ad/Wd

4. Fetch and return top r documents to user

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � ��

Managing Accumulators

� How to store accumulators?

� static array, 1 per document

� grow as needed with a hash table

� How many accumulators?

� can impose a fixed limit

� quit processing It’s after limit reached

� continue processing, but add no new Ad’s

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � � �

Managing Accumulators (2)

� To make this work, we want to process the
query terms in order of decreasing idft

� Also want to process It in decreasing tfd,t order

� sort It when we read it in

� or, store inverted lists in fd,t-sorted order
<5; (1,2) (2,2) (3,5) (4,1) (5,2)> <ft ; (d, fd,t)…>
<5; (3,5) (1,2) (2,2) (5,2) (4,1)> sorted by fd,t

<5; (5, 1:3) (2, 3:1,2,5) (1, 1:4)> <ft ; (fd,t , c:d,…)…>

� This can actually compress better, but makes
Boolean queries harder to process

��� � �� � � � ��	
�� � � � � � 	 ��� � � � � �� � ��

Getting the top documents

� Naïve: sort the accumulator set at end

� Or, use a heap and pull top r documents

� much faster if r << N

� Or better yet, as accumulators are processed to
add the length norm (Wd):

� make first r accumulators into a min-heap

� for each next accumulator

� if Ad < heap-min, just drop it

� if Ad > heap-min, drop the heap-min, and put Ad in

