

Probability of Relevance?

- IR is an uncertain process
 - Information need to query
 - Documents to index terms
 - Query terms and index terms mismatch
 - Leads to several statistical approaches
 - probability theory, fuzzy logic, theory of evidence...

Rel(q,d)

-> {0,1}

Probabilistic Retrieval

Given a query q, there exists a subset of the documents R which are relevant to q
But membership of R is uncertain
A Probabilistic retrieval model
ranks documents in decreasing order of probability of relevance to the information need: P(R | q,d_i)

Difficulties

1.	Evidence is based on a lossy representation
•	Evaluate probability of relevance based on occurrence of terms in query and documents
•	Start with an initial estimate, and refine through feedback
	Computing the probabilities exactly according to the model is intractable
•	Make some simplifying assumptions
Lecture 8	Image: Second

Probabilistic Model definitions

terms occurrences are boolean (not counts)

· query q is represented similarly

- R is the set of relevant documents,
 - ~R is the set of irrelevant documents

 $P(R \mid d_j)$ is probability that d_j is relevant,

P(~R | d_i) irrelevant

Information Retrieval

Retrieval Status Value

Retrieval Status Value (2)

Computing term probabilities

Initially, there are no retrieved documents

- R is completely unknown
- Assume P(t_i|R) is constant (usually 0.5)
- Assume P(t_i|~R) approximated by distribution of t_i across collection – IDF

$$P(t|\overline{R}) = \log \frac{N-n+0.5}{n+0.5}$$

 This can be used to compute an initial rank using IDF as the basic term weight

1		u 5		9	Г	as	> L	IIE		a	210	ا ز	EI		VV	ei	gr	IL				
																	-					
1																						
	Lecti	ure 8	8						Inf	orm	atio	n Re	etrie	val							8	
1	 		+		 																 	

-	Prob	bab	ilist	ic I	Mo	del	Ex	am	ple	}
d			D)ocun	nent v	ectors	s <tf<sub>d,t</tf<sub>	>		
	col	day	eat	hot	lot	nin	old	pea	por	pot
1	1.0			1.0				1.0	1.0	
2								1.0	1.0	1.0
3		1.0				1.0	1.0			
4	1.0			1.0						1.0
5								1.0	1.0	
6			1.0		1.0					
W _t	0.26	0.56	0.56	0.26	0.56	0.56	0.56	0.0	0.0	0.26
		= eai				w _t =lo	a(N-n	+0.5/	′n+0.	5)
			rridge t norri			w _t -io				
	· ·		t porri t nine	•	old po	rridge				

Improving the ranking

- Now, suppose
 - · we have shown the initial ranking to the user
 - the user has labeled some of the documents as relevant ("relevance feedback")
- We now have
 - N documents in coll, R are known relevant
 - n_i documents containing t_i, r_i are relevant

Improving term estimates

for term i	Rel	Non-rel	Total
docs containing term	r	n-r	n
docs NOT containing term	R-r	N-R-n+r	N-n
Total	R	N-R	N
$p_i = P(t_i \mid R) =$	$=\frac{r}{R}$	$w_i = \log \frac{p_i(1 - q_i)}{q_i(1 - q_i)}$	$(-q_i)$ $(-p_i)$
$q_i = P(t_i \mid \overline{R}) =$	$=\frac{n-r}{N-R}$	$= \log \frac{r(N - n)}{(n - n)}$	$\frac{-R-n+r)}{r(R-r)}$
Lecture 8	Informatio	on Retrieval	11

Final term weight

Add 0.5 to each term, to keep the weight from being infinite when R, r are small:

$$w_i = \log \frac{(r+0.5)(N-R-n+r+0.5)}{(n-r+0.5)(R-r+0.5)}$$

Can continue to refine the ranking as the user gives more feedback.

	Rele	var	nce	e-we	eigh	ntec	d E	xan	nple	9
d				Docun					1 1	-
	col	day	eat	hot	lot	nin	old	pea	por	pot
1	1.0			1.0				1.0	1.0	_
2								1.0	1.0	1.0
3		1.0				1.0	1.0			-
4	1.0			1.0						1.0
5								1.0	1.0	-
6			1.0		1.0					_
W _t				-0.33		0.0	0.0		0.62	0.95
	• q3	= hot	porri	<i>dge</i> , d	ocum	ent 2	is rele	evant		
	Lecture 8			Info	rmation R	etrieval				13

Summary

Probabilistic model uses probability theory to model the uncertainty in the retrieval process Assumptions are made explicit Term weight without relevance information is inverse document frequency (IDF) Relevance feedback can improve the ranking by giving better term probability estimates No use of within-document term frequencies or document lengths

Building on the Probabilistic Model: Okapi weighting

- Okapi system
 - developed at City University London
 - based on probabilistic model
- Cost of not using tf and document length
 - doesn't perform as well as VSM
 - hurts performance on long documents
- Okapi solution
 - model within-document term frequencies as a mixture of two Poisson distributions
 - one for relevant documents and one for irrelevant ones

Okapi best-match weights

Okapi weighting

- Okapi weights use
 - · a "tf" component similar to VSM
 - separate document and query length normalizations
 - several tuning constants which depend on the collection
- In experiments, Okapi weights give the best performance

(Dka	pi-v	wei	ght	s E	xa	mp	le			
d			C)ocum	nent v	ectors	s <tf<sub>d,t</tf<sub>	>			dl
	col	day	eat	hot	lot	nin	old	pea	por	pot	
1	1.0			1.0				2.0	2.0		6
2								1.0	1.0	1.0	3
3		1.0				1.0	1.0				3
4	1.0			1.0						2.0	4
5								2.0	2.0		4
6			1.0		1.0						2
W ⁽¹⁾	0.26	0.56		0.26	0.56	0.56	0.56	0.0	0.0	0.26	
	-	1 = ea 2 = pc 3 = hc	orridge				$1_1 = 1.1_2$ $1_2 = 0_2$		$k_3 = 0$ $b = 0$		6

	Dkapi	-wei	ght	s +	RF	E	kam	nple)	
d		C)ocum	ent v	ector	s <tf<sub>d,t</tf<sub>	>			dl
	col da	ay eat	hot	lot	nin	old	pea	por	pot	
1	1.0		1.0				2.0	2.0		6
2							1.0	1.0	1.0	3
3	1.	0			1.0	1.0				3
— 4	1.0		1.0						2.0	4
5							2.0	2.0		4
- 6		1.0		1.0						2
W ⁽¹⁾	-0.33 0.			0.0	0.0	0.0	0.62	0.62	0.95	
		<i>hot pc</i> 2 is rel				$f_1 = 1.$ $f_2 = 0$		$k_3 = 7$ b = 0. avdl =		

Ranking algorithm

- I. A = {} (set of accumulators for documents)
- 2. For each query term t
 - Get term, f_t, and address of I_t from lexicon
 - set w⁽¹⁾ and qtf variables
 - Read inverted list I_t
 - For each <d, $f_{d,t}$ > in I_t
 - If $A_d \notin A$, initialize A_d to 0 and add it to A
 - 2. $A_d = A_d + (w^{(1)} \times tf \times qtf) + qnorm$
- 3. For each A_d in A
 - 1. $A_d = A_d / W_d$
- 4. Fetch and return top r documents to user

Information Retrieval

Managing Accumulators

- How to store accumulators?
 - static array, 1 per document
 - grow as needed with a hash table
- How many accumulators?
 - · can impose a fixed limit
 - quit processing I's after limit reached
 - continue processing, but add no new A_d's

Managing Accumulators (2)

To make this work, we want to process the query terms in order of decreasing idf, Also want to process I_t in decreasing tf_{d,t} order sort I, when we read it in or, store inverted lists in f_{dt}-sorted order <5; (1,2) (2,2) (3,5) (4,1) (5,2)> <*f*_t; (*d*, *f*_{dt})...> <5; (3,5) (1,2) (2,2) (5,2) (4,1) sorted by f_{dt} <5; (5, 1:3) (2, 3:1,2,5) (1, 1:4)> <*f*_t; (*f*_{d,t}, *c*:*d*,...)...> This can actually compress better, but makes • Boolean queries harder to process Information Retrieval 22 I ecture 8

Getting the top documents

- Naïve: sort the accumulator set at end
- Or, use a heap and pull top r documents
 - much faster if r << N
- Or better yet, as accumulators are processed to add the length norm (W_d):
 - make first r accumulators into a min-heap
 - for each next accumulator
 - if A_d < heap-min, just drop it
 - if $A_d >$ heap-min, drop the heap-min, and put A_d in