Compression for IR

Why Use Compression?

- More storage
 - inverted file and documents use lots of space
 - Compression lets us index more documents
- **Faster access**
 - A compressed block stores more information

3

Each read brings in more data

Index Compression

- Postings list: list of < d, f_{t,d}>
 - or, if we have within-document offsets, < d; $f_{t,d}$; $o_1 ... o_{f(t,d)}$ >
- 4 bytes for id, counts, offsets expensive
- Can compress integers using simple encodings
 - Best encoding depends on how values are distributed

Document gaps

Representing *d* document numbers: keep d in ascending order store as sequence of gaps 3, 5, 20, 21, 23, 76, 77, 78 becomes: 3, 2, 15, 1, 2, 53, 1, 1 Gaps can be efficiently compressed frequent terms have short gaps rare terms have large gaps Also for offsets?

Integer Coding

- Nonparametric codes
- · Binary
- Unary
- Elias gamma, delta
- · Variable-byte
- Parametric codes
 - Golomb

•

Local Golomb

Unary code

1 = 0

- Encode integer *n* as (n-1) 1's followed by a 0.
 - 3 = 110
 9 = 111111110
- Simple and fast
 - Smallest numbers have very short codes, but codeword length grows quickly.

Variable-Byte Code

Binary, but use minimum number of bytes 7 bits to store value, 1 bit to flag if there is another byte • 0 < x < 128: 1 byte · 128 < x < 16384: 2 bytes · 16384 < x < 2097152: 3 bytes Integral byte sizes for easy coding Very effective for medium-sized numbers A little wasteful for very small numbers

Bernoulli Model

Idea: use actual density of pointers to parameterize the compression function If f = number of pointers, then f / (N * n) = chance that a random document contains some random term This implies that if p = probability of a word occurring, then $Pr(qap of size x) = (1-p)^{x-1}p$ gaps follow a geometric distribution 11

Example Code Values

Ga	р	Coding method				
X	Unary	Gamma	Delta	Golomb-3	Golomb-6	
1	0	0	0	0 0	0 00	
2	10	10 0	100 0	010	0 01	
3	110	10 1	100 1	0 1 1	0 100	
4	1110	110 00	101 00	10 0	0 101	
5	11110	110 01	101 01	10 10	0 110	
6	111110	110 10	101 10	10 11	0 111	
7	1111110	110 11	101 11	110 0	10 00	
8	11111110	1110 000	11000 000	110 10	10 01	
9	111111110	1110 001	11000 001	110 11	10 100	
10	111111111	0 1110 010	11000 010	1110 0	10 101	
					13	

Choosing b

To minimize the average code length

$$b^{A} = \left| \begin{array}{c} lg(2-p) \\ -lg(1-p) \end{array} \right| \approx 0.69 \cdot \frac{N \cdot n}{f}$$

- Simplification assumes p = f/(N * n) << 1
- N = number of documents
- n = number of distinct words
- f = number of (document, word) pairs

Rice code

- A Rice code is a Golomb code where b is a power of 2
- Very fast to decode
 - binary part is the lower *m* bits
 - unary part is in the upper bits
 - easy to implement with shifts and masks

Local Golumb/Rice

- b over whole collection may be large
 - average-length not a good target
- Can instead use a local model
 - $f_t =$ the number of occurrences of each term

- (which we store anyway)
 - Compute b^A using $p = f_t/N$ for each term

Bits per entry

Table 3.8 Compression of inverted files in bits per pointer.

Method	Bits per pointer				
	Bible	GNUbib	Comact	TREC	
Global methods					
Unary	262	909	487	1918	
Binary	15.00	16.00	18.00	20.00	
Bernoulli	9.86	11.06	10.90	12.30	
γ	6.51	5.68	4.48	6.63	
δ	6.23	5.08	4.35	6.38	
Observed frequency	5.90	4.82	4.20	5.97	
Local methods		有些有些 1			
Bernoulli	6.09	6.16	5.40	5.84	
Hyperbolic	5.75	5.16	4.65	5.89	
Skewed Bernoulli	5.65	4.70	4.20	5.44	
Batched frequency	5.58	4.64	4.02	5.41	
	E 24	2.00	2 07	E 10	

Which scheme is best?

- Assuming an index larger than memory
- Smallest index size
- · Delta, Golomb, or Rice for d-gaps
- Gamma for frequencies
- Golomb or Rice for offsets
- · Variable-byte for all is competitive
- Fastest query time
 - Golomb d-gaps with Gamma freqs
 - Rice d-gaps with Variable-byte freqs

18

Variable-byte for all best

The Moral of the Story

- Index compression is good
 - index is smaller
 - more fits in each block, so it's also faster to read at query time, despite decoding.

 Variable-byte schemes can even make an inmemory index faster!

Text Compression concepts

•*Alphabet* = set of possible *symbols* words, characters, or fixed-length strings Modeling model: probability of each symbol Can be static, semi-static, or adaptive Coding Convert symbols into binary digits Use short codes for frequent strings Huffman or arithmetic coding

Building the Huffman Tree

- 1.Input: symbols and their probabilities
- 2.Loop...
 - 1.Choose two symbols with smallest P(s)
 - 2. Join them under a parent node p
 - P(p) = P(s1) + P(s2)
 - 3.Repeat, ignoring nodes that are already children
- Good data structure for this?
- Many possible Huffman trees for a given model

Using a Huffman Code

- Encoding
 - look up each symbol in the code table
 - need to output coding tree for decoding
- Decoding
 - start at root of Huffman tree
 - follow appropriate branch for each bit

23

when leaf is reached, output symbol

How good is Huffman?

Shannon's Theorem
I(s) = - Ig Pr(s) (optimum bits/symbol)
E = sum[Pr(s) I(s)] = sum[- Pr(s) Ig Pr(s)]
Entropy for example: 2.55 bits/char
Character-based Huffman gives an average compression rate of about 5 bits/char

Word-based Huffman Coding

- Idea: Use words as symbols
 - Encode words and nonwords separately
 - Or, assume spaces between words
 - encode words and nonspace separators together

Word-based Huffman

- Advantages
 - Compression rate down to ~2 bits/symbol
 - We already know the word frequencies
- Disadvantages
 - The alphabet is VERY large
 - Huffman code tree takes a lot of memory
 - Need the tree in memory for decoding
 - Pointer chasing will cause thrashing

Canonical Huffman Codes

Same codeword length as Huffman code

- But choose codeword bits carefully
 - sort words of same codeword length
 - assign codewords in increasing numerical order

- Ionger codewords sort first lexically
- Encoding can be determined quickly from
 - codeword length
 - first codeword of that length
 - position in list
- Very compact storage

	Y	I I MIIII I MI		~••• ••	1010100	
Table 2.2	A canonica	il Huffman code.	as	7	1010100	
Symbol		Codeword	for	7	1010101	
Symbol	Longth	Bite	had	, 7	1010110	
	Lengui	Dits	- he	7	1011000	
100	17	000000000000000000000000000000000000000	her	, 7	1011000	
101	17	000000000000000000000000000000000000000	his	7	1011001	
102	17	000000000000000000000000000000000000000	it it	7	1011010	
103	17	0000000000000011		7	1011100	
		•••	said	7	1011100	_
yopur	17	00001101010100100	she	7	1011110	
youmg	17	00001101010100101	that	7	1011110	Vt
youthful	17	00001101010100110	with	, 7	1100000	4
zeed	17	00001101010100111	Volu	7	1100001	-Ö
zephyr	17	00001101010101000		6	110001	Ľ
zigzag	17	00001101010101001	in	6	110010	D
11th	16	0000110101010101	was	6	110011	
120	16	0000110101010110	a	5	11010	ž –
	• • •		and	5	11011	j.
were	8	10100110	of	5	11100	
which	8	10100111	to	5	11101	

Creating a Canonical Code

numl[I] <- number of codewords of length | 1. Store value of first code of length I in firstcode[] 2. firstcode[maxlen] = 0 for I <- (maxlen – 1) downto 1 do firstcode[l] <- (firstcode[l+1] + numl[l+1]) / 2 nextcode[1..maxlen] <- firstcode[1..maxlen]</pre> 3. for i <- 1 to n do 4. set codeword[i] <- nextcode[l]</pre> set symbol[l_i, nextcode[l_i] – firstcode[l_i]] <- i 2. set nextcode[l_i] <- nextcode[l_i] + 1 3. 29

Codelengths and Decoding

Computing codeword lengths is tricky. Decoding isn't... 1. set v <- nextinputbit() set I <- 1 2. while v < firstcode[I] do set v <- 2*v + nextinputbit()</pre> set | <- | + 1 3. Return symbol[I, v – firstcode[I]] 30