
Lecture 3 Information Retrieval 1

Text Processing

Information Retrieval

Lecture 3

Lecture 3 Information Retrieval 2

Text Operations

� Converting text to indexing terms

� Goal: produce a set of indexing terms

� that make the best use of resources

� that will accurately match user query terms

Lecture 3 Information Retrieval 3

Text Processing Steps

1. Lexical Analysis

2. Elimination of stopwords

3. Stemming

4. Selection of index terms

5. Building a thesaurus

Lecture 3 Information Retrieval 4

Lexical Analysis

� Converting byte stream to tokens

� a.k.a tokenization or lexing

� Three ways to build your lexer

� manually (in C or a scripting language)

� use a generator such as lex or flex

� use a special-purpose DFA generator

� Handling of numbers and punctuation
should be tunable for the application

Lecture 3 Information Retrieval 5

Lexing: Numbers and digits

� Numbers need context

� "deaths from car accidents in 1989"

� {deaths, car, accidents, 1989}

� {1989} could retrieve many irrelevant docs

� However...

� numbers do appear in user queries

� rest of terms can give context

� might be helped by using phrases

Lecture 3 Information Retrieval 6

Lexing: Hyphens

� Keep them?

� query might use a non-hyphenated variant

� end-of-line hyphens are noise

� Throw them out?

� can’t recognize a hyphenated term in a query

� Two advanced solutions

� index as phrase but allow partial matches

� use proximity information

Lecture 3 Information Retrieval 7

Lexing: Punctuation

� Obvious: segment on puctuation

� But (like hyphens) can appear inside a
single term:

� "B.C.", "B.S.": without periods, these are just
single letters

� URLs as index terms?

� Idea: look at surrounding characters

� whitespace? end of sentence

� not whitespace? abbreviation

Lecture 3 Information Retrieval 8

Lexing: Markup

� Nowadays, everything has markup

� SGML, HTML, XML...

� This information can be useful or not...

� Some alternatives:

� emit text appearing inside all or some tags

� emit tags as tokens which can be interpreted
by the indexer.

Lecture 3 Information Retrieval 9

Writing a lexer by hand

whi l e ((c = get char ()) ! = EOF) {
i f (i sal pha(c)) { …

� Very fast! but

� Error-prone

� Hard to make it flexible or modular

� Alternative: use a scripting langauge

� Easier to describe text patterns

� But can be hard to maintain

Lecture 3 Information Retrieval 10

Using a DFA generator

� Generalization of the hand-written lexer

� Define a state machine

� transitions occur on different character input

� states define possible next steps

� write a table, not a procedure

� Program generates the lexer

� Easier to maintain and debug!
(Frakes & Baeza-Yates ’92 have code)

Lecture 3 Information Retrieval 11

Stop Words

� the, of, and, a, in, to, is, for, with, are

� take up a lot of space

� retrieve all documents

� don’t relate to information need

� It’s easy to index something that appears
everywhere

� Removing stopwords can cause problems:

� "to be or not to be" → {be}

� "C" as a stop word would be trouble for a computer
programming index!

Lecture 3 Information Retrieval 12

Removing Stop Words

� Start with a list of stop words

� Table lookup

� Make a table out of a static stoplist

� Match each token against the table

� Hashes, perfect hashing, tries

� Build into the lexical analyzer (see F&BY)

� Or take a statistical approach

Lecture 3 Information Retrieval 13

Stemming

� Reduce variant word forms to a single
"stem" form

� -'s, -ing, -ed, -s; in-, ad-, pre-, sub-, ...

� Four approaches

� table lookup - use a dictionary

� successor variety - fancy suffix removal

� affix removal - cut prefixes and suffixes

� character n-grams (not really stemming)

Lecture 3 Information Retrieval 14

Porter’s algorithm (1980)

� Removes suffixes in
five stages

� Only one rule in each
stage fires

� Each depends on a
suffix and the stem
measure m

[C](VC)m[V]

cats -> catS -> ø

caress -> caressSS -> SS

ponies -> poni

ties -> ti

IES -> I

caresses -> caressSSES -> SS

Stage 1a and b

motoring -> motor(*v*) ING->

plastered -> plaster(*v*) ED->

feed -> feed

agreed -> agree

(m>0)
EED->EE

Lecture 3 Information Retrieval 15

Porter Errors (Krovetz 93)

Too eager

� organization/organ

� doing/doe

� policy/police

� university/universe

� negligible/negligent

� arm/army

� past/paste

Too cautious

� european/europe

� matrices/matrix

� create/creation
� machine/machinery

� explain/explanation

� resolve/resolution

� triangle/triangular

Lecture 3 Information Retrieval 16

Stems and roots

� Stemmers are language specific

� See the Snowball project
http://snowball.sourceforge.net/

for stemmers in other languages

� Morphological analysis

� reducing words to their linguistic roots

� requires more sophisticated processing

� Think about how this can affect the query

Lecture 3 Information Retrieval 17

Character n-grams

� Slide an n-character window through text

� No stemming or stoplisting

� May need to consider punctuation and
hyphens

� Redundant tokens: good for noisy text

� Less effective than word (stem) pairs in
clean text

Lecture 3 Information Retrieval 18

Term Selection

� Individual words

� Adjacent word pairs (word n-grams)

� Noun phrases

� requires more sophisticated NLP

� identify nouns along with adjectives and
adverbs in the same phrase

� "computer science" and "world-wide web"

Lecture 3 Information Retrieval 19

The Case for Complexity

� User queries are only one or two words

� The bag-of-words approach is too
simplistic given short queries

� Using phrases, sophisticated handling for
numbers, etc. boosts the quality of that
first list of documents.

Lecture 3 Information Retrieval 20

The Case for Simplicity

� Query throughput is as (more?) important
than quality responses

� Disk is cheap

� Complex processing takes too long

� Easy to make a wrong decision

� Feedback will improve the results

Lecture 3 Information Retrieval 21

Simple or Complex?

Can look at it on two levels:

� Does more sophisticated term
processing improve retrieval results?
... or ...

� Does it enable a more sophisticated
interface for the user?

Lecture 3 Information Retrieval 22

Designing with Filters

� The UNIX philosophy: "do one thing and
do it well."

� Filters read text input and produce text
output

� can be linked together in pipes

� can be simple (cut, nl) or complex (awk,perl)

� Lexers are filters

� You can have several in your toolbox

