User-Centered and System-Centered IR

Information Retrieval

Lecture 2

User tasks
Role of the system
Document view and model
What is Information Retrieval?

IR is the study of the

- Representation
- Storage
- Organization
- Access

of information items

- articles, books, web pages, CDs, movies ... for the people who are interested in them.
The User Task

- A person has a goal to accomplish:
 - find a plumber
 - keep informed about a business competitor
 - write a scholarly article
 - investigate an allegation of fraud
- Along the way, he needs to find information to accomplish the goal.
Three Kinds of User Tasks

1. Monitoring a well-known topic over time
2. Following a plan of searches to learn a specific thing
3. Undirected exploration to gain basic knowledge on a topic
Classical Model of Info Seeking

1. Information need
2. Query
3. Send to System
4. Receive Results
5. Evaluate Results

- Reformulate
- Done?
 - Yes: Finish
 - No: Reformulate
"Berry-Picking" Model

- Users learn as they search
 - causes need to change
 - causes queries to shift around, not refine
 - one goal leads to another
- Information needs not satisfied by a single set of documents
 - really by bits and pieces found along the way
A sketch of a searcher... "moving through many actions towards a general goal of satisfactory completion of research related to an information need." (after Bates 89)
Role of the IR System

- Berry-picking model is more realistic
 - User’s goal is not to search
 - Searching is part of pursuit of the goal.
- Thus, IR engine is only a *tool* to support searching
 - Only one part of the toolbox
 - Don’t let the only tool be a hammer!
 - But make your tool effective, efficient, and flexible
IR vs. DB Retrieval

- IR is very different from databases!
- Best match, rather than exact match
 - Inference is inductive, not deductive
 - Models are generally "probabilistic"
 - Relevant results instead of matching results
- Query language natural and informal
 - Query specification incomplete
- Query processing less sensitive to bad queries
 - However, users still sensitive to bad results
Representing Documents

- Logical view of a document
 - how the system represents a document
- Might include
 - structural information
 - multiple types of information (multimedia)
 - metadata
- Any logical view loses some information
Full Text representation

- Historical representation
 - set of key words or index terms
 - assigned automatically or by hand
- Modern computing hardware allows the use of "full-text" representations
 - set of all words contained in a document
 - easier to automate than assigning index terms
On 9/3/2002, $140 gets you 80 GB or $0.0018/MB for an IDE disk. RAM? $0.30-0.40/MB

(Michael Lesk, 1995)
All the words?

So, what are the words, anyway?

- Alphabetic sequence of characters
- Punctuation? Is hyphenation 1 or 2 words?
- Dates? Prices?
- Is whitespace important?
- In some languages, segmentation is harder
 - for example, Chinese
All the words?

- Sometimes, you don’t want *all* the words
- Stop list
 - some words contain less information
 - words like *and, the, in, of, which, that*
- Stemming
 - some words relate to the same concept
 - computer, computation, computing: *comput*
 - computer, pc, von-neumann architecture?
Just the words?

- So far, we have a "bag of words"
- No information about lexical structure
- N-grams
 - sequences of n adjacent words in text
 - can also have sequences of n characters
- Identify noun groups or phrases
Document Structure

- Most documents are not simply streams of bytes, but have a structure
 - Fixed: set of fields
 - Hierarchical: chapter, section, title, figure
 - Hypertext: directed graph
- The structure leads to a document model which defines the granularity of a search
Bringing it together

- With
 - a set of documents
 - a document model defining what can be searched
 - a document logical view or representation defining what to look for

we can begin to construct the text database and index.