
Representation Learning by Learning to Count

Mehdi Noroozi1 Hamed Pirsiavash2 Paolo Favaro1

University of Bern1 University of Maryland, Baltimore County2

{noroozi,favaro}@inf.unibe.ch {hpirsiav@umbc.edu}

Abstract

We introduce a novel method for representation learning
that uses an artificial supervision signal based on count-
ing visual primitives. This supervision signal is obtained
from an equivariance relation, which does not require any
manual annotation. We relate transformations of images to
transformations of the representations. More specifically,
we look for the representation that satisfies such relation
rather than the transformations that match a given repre-
sentation. In this paper, we use two image transformations
in the context of counting: scaling and tiling. The first
transformation exploits the fact that the number of visual
primitives should be invariant to scale. The second trans-
formation allows us to equate the total number of visual
primitives in each tile to that in the whole image. These two
transformations are combined in one constraint and used to
train a neural network with a contrastive loss. The pro-
posed task produces representations that perform on par or
exceed the state of the art in transfer learning benchmarks.

1. Introduction
We are interested in learning representations (features)

that are discriminative for semantic image understanding
tasks such as classification, detection, and segmentation. A
common approach to obtain such features is to use super-
vised learning. However, this requires manual annotation
of images, which is costly, time-consuming, and prone to
errors. In contrast, unsupervised or self-supervised feature
learning methods exploiting unlabeled data can be much
more scalable and flexible.

Some recent feature learning methods, in the so-called
self-supervised learning paradigm, have managed to avoid
annotation by defining a task which provides a supervision
signal. For example, some methods recover color from gray
scale images and vice versa [43, 21, 44, 22], recover a whole
patch from the surrounding pixels [33], or recover the rela-
tive location of patches [9, 29]. These methods use informa-
tion already present in the data as supervision signal so that

nose 1
eyes 2
paws 0
head 1

nose 0
eyes 1
paws 0
head 0.5

nose 0
eyes 0
paws 3
head 0

nose 1
eyes 1
paws 3
head 0.5

nose 2
eyes 4
paws 6
head 2

Figure 1: The number of visual primitives in the whole im-
age should match the sum of the number of visual primitives
in each tile (dashed red boxes).

supervised learning tools can be used. A rationale behind
self-supervised learning is that pretext tasks that relate the
most to the final problems (e.g., classification and detection)
will be more likely to build relevant representations.

As a novel candidate pretext task, we propose counting
visual primitives. It requires discriminative features, which
can be useful to classification, and it can be formulated via
detection. To obtain a supervision signal useful to learn to
count, we exploit the following property: If we partition an
image into non-overlapping regions, the number of visual
primitives in each region should sum up to the number of
primitives in the original image (see the example in Fig. 1).
We make the hypothesis that the model needs to disentangle
the image into high-level factors of variation, such that the
complex relation between the original image and its regions
is translated to a simple arithmetic operation [3, 35]. Our
experimental results validate this hypothesis both qualita-
tively and quantitatively.

While in this work we focus on a specific combination
of transformations, one can consider more general relation-
ships (i.e., beyond counting, scaling, and tiling) as super-



vision signals. The same procedure that we introduce is
therefore applicable to a broader range of tasks as long as
it is possible to express the transformation in feature space
caused by a transformation in image space [24].

Our contributions are: 1) We introduce a novel method
to learn representations from data without manual annota-
tion; 2) We propose exploiting counting as a pretext task and
demonstrate its relation to counting visual primitives; 3) We
show that the proposed methodology learns representations
that perform on par or exceed the state of the art in standard
transfer learning benchmarks.

2. Prior Work
In this work we propose to learn a representation without

relying on annotation, a problem that is typically addressed
via unsupervised learning. An example of this approach is
the autoencoder [14, 40], which reconstructs data by map-
ping it to a low-dimensional feature vector. A recent al-
ternative approach is self-supervised learning, which is a
technique that substitutes the labels for a task with artificial
or surrogate ones. In our work such artificial labels are pro-
vided by a counting constraint. In many instances, this tech-
nique can be seen as recasting the unsupervised learning
problem of finding p(x) = p(x1,x2), where x> = [x>1 x>2 ]
is a random variable, as a partly supervised one of finding
p(x2|x1), so that we can write p(x1,x2) = p(x2|x1)p(x1)
(cf. eq. (5.1) in [12]). In our context, the data sample
x collects all available information, which can be just an
image, but might also include egomotion measurements,
sound, and so on. In the literature, self-supervised methods
do not recover a model for the probability function p(x1),
since p(x2|x1) is sufficient to obtain a representation of x.
Most methods are then organized based on the choice of x1

and x2, where x2 defines the surrogate labels. Below we
briefly summarize methods based on their choice for x2,
which leads to a regression or classification problem.
Regression. In recent work Pathak et al. [33] choose as
surrogate label x2 a region of pixels in an image (e.g., the
central patch) and use the remaining pixels in the image as
x1. The model used for p(x2|x1) is based on generative
adversarial networks [13, 35]. Other related work [43, 21]
maps images to the Lab (luminance and opponent colors)
space, and then uses the opponent colors as labels x2 and
the luminance as x1. Zhang et al. [44] combine this choice
to the opposite task of predicting the grayscale image from
the opponent colors and outperform prior work.
Classification. Doersch et al. and Noroozi & Favaro [9, 29]
define a categorical problem where the surrogate labels are
the relative positions of patches. Other recent works use as
surrogate labels ego-motion [1, 17], temporal ordering in
video [27, 32], sound [31], and physical interaction [34].

In contrast to these works, here we introduce a different
formulation to arrive at a supervision signal. We define the

counting relationship “having the same number of visual
primitives” between two images. We use the fact that this
relationship is satisfied by two identical images undergoing
certain transformations, but not by two different images (al-
though they might, with very low probability). Thus, we
are able to assign a binary label (same or different number
of visual primitives) to pairs of images. We are not aware
of any other self-supervised method that uses this method
to obtain the surrogate labels. In contrast, Wang and Gupta
[41] impose relationships between triplets of different im-
ages obtained through tracking. Notice that also Reed et al.
[36] exploit an explicit relationship between features. How-
ever, they rely on labeling that would reveal the relationship
between different input images. Instead, we only exploit
the structure of images and relate different parts of the same
image to each other. Due to the above counting relationship
our work relates also to object counting, which we revise
here below.
Object counting. In comparison to other semantic tasks,
counting has received little attention in the computer vision
community. Most effort has been devoted to counting just
one category and only recently it was applied to multiple
categories in a scene. Counting is usually addressed as a
supervised task, where a model is trained on annotated im-
ages. The counting prediction can be provided as an object
density map [15, 39, 23] or simply as the number of counted
objects [5, 6]. There are methods to count humans in crowds
[4, 42, 8], cars [28], and penguins [2]. Some recent works
count common objects in the scene without relying on ob-
ject localization [6, 37].

In this work, we are not interested in the task of count-
ing per se. As mentioned earlier on, counting is used as a
pretext task to learn a representation. Moreover, we do not
use labels about the number of objects during training.

3. Transforming Images to Transform Features
One way to characterize a feature of interest is to de-

scribe how it should vary as a function of changes in the
input data. For example, a feature that counts visual prim-
itives should not be affected by scale, 2D translation, and
2D rotation changes of the input image. Other relationships
might indicate instead that a feature should increase its val-
ues as a result of some transformation of the input. For
example, the magnitude of the feature for counting visual
primitives applied to half of an image should be smaller than
when applied to the whole image. In general, we propose to
learn a deep representation by using the known relationship
between input and output transformations as a supervisory
signal. To formalize these concepts, we first need to intro-
duce some notation.

Let us denote a color image with x ∈ Rm×n×3, where
m × n is the size in pixels and there are 3 color chan-
nels (RGB). We define a family of image transformations



G , {G1, . . . , GJ}, where Gj : Rm×n×3 7→ Rp×q×3,
with j = 1, . . . , J , that take images x and map them
to images of p × q pixels. Let us also define a feature
φ : Rp×q×3 7→ Rk mapping the transformed image to some
k-dimensional vector. Finally, we define a feature transfor-
mation g : Rk × · · · × Rk 7→ Rk that takes J features and
maps them to another feature. Given the image transfor-
mation family G and g, we learn the feature φ by using the
following relationship as an artificial supervisory signal

g (φ(G1 ◦ x), . . . , φ(GJ ◦ x)) = 0 ∀x. (1)

In this work, the transformation family consists of the
downsampling operator D, with a downsampling factor of
2, and the tiling operator Tj , where j = 1, . . . , 4, which ex-
tracts the j−th tile from a 2 × 2 grid of tiles. Notice that
these two transformations produce images of the same size.
Thus, we can set G ≡ {D,T1, . . . , T4}. We also define
our desired relation between counting features on the trans-
formed images as g(d, t1, . . . , t4) = d −∑4

j=1 tj. This
can be written explicitly as

φ(D ◦ x) =
4∑

j=1

φ(Tj ◦ x). (2)

We use eq. (2) as our main building block to learn features
φ that can count visual primitives.

This relationship has a bearing also on equivariance
[24]. Equivariance, however, is typically defined as the
property of a given feature. In this work we invert this
logic by fixing the transformations and by finding instead a
representation satisfying those transformations. Moreover,
equivariance has restrictions on the type of transformations
applied to the inputs and the features.

Notice that we have no simple way to control the scale
at which our counting features work. It could count ob-
ject parts, whole objects, object groups, or any combination
thereof. This choice might depend on the number of ele-
ments of the counting vector φ, on the loss function used
for training, and on the type of data used for training.

4. Learning to Count
We use convolutional neural networks to obtain our rep-

resentation. In principle, our network could be trained with
color images x from a large database (e.g., ImageNet [38]
or COCO [25]) using an l2 loss based on eq. (2), for exam-
ple,

`(x) =
∣∣∣φ(D ◦ x)−∑4

j=1 φ(Tj ◦ x)
∣∣∣2 . (3)

However, this loss has φ(z) = 0, ∀z, as its trivial solu-
tion. To avoid such a scenario, we use a contrastive loss [7],
where we also enforce that the counting feature should be

shared
weights

�(T1 � x) �(T2 � x) �(T3 � x) �(T4 � x) �(D � x)�(D � y)

+
t dc |d � t|2

y x

D � xD � y T1 � x T2 � x T3 � x T4 � x

t
max{0, M � |c � t|2}

AlexNet
conv1-5

fc8 1000

114x114x3

fc7 4096

fc6 4096
3x3x256

ReLU

ReLU

ReLU

Figure 2: Training AlexNet to learn to count. The pro-
posed architecture uses a siamese arrangement so that we
simultaneously produce features for 4 tiles and a downsam-
pled image. We also compute the feature from a randomly
chosen downsampled image (D ◦ y) as a contrastive term.

different between two randomly chosen different images.
Therefore, for any x 6= y, we would like to minimize

`con(x,y) =
∣∣∣φ(D ◦ x)−∑4

j=1 φ(Tj ◦ x)
∣∣∣2 (4)

+max

{
0,M −

∣∣∣φ(D ◦ y)−∑4
j=1 φ(Tj ◦ x)

∣∣∣2}
where in our experiments the constant scalar M = 10.
Least effort bias. A bias of the system is that it can easily
satisfy the constraint (3) by learning to count as few visual
primitives as possible. Thus, many entries of the feature
mapping may collapse to zero. This effect is observed in the
final trained network. In Fig. 3, we show the average of fea-
tures computed over the ImageNet validation set. There are
only 30 and 44 non zero entries out of 1000 after training on
ImageNet and on COCO respectively. Despite the sparsity
of the features, our transfer learning experiments show that
the features in the hidden layers (conv1-conv5) perform
very well on several benchmarks. In our formulation (4),
the contrastive term limits the effects of the least effort bias.
Indeed, features that count very few visual primitives can-
not differentiate much the content across different images.
Therefore, the contrastive term will introduce a tradeoff that



neurons
0 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e 

m
ag

n
it

u
d

e 

0

0.2

0.4

0.6

0.8

1

Figure 3: Average response of our trained network on
the ImageNet validation set. Despite its sparsity (30 non
zero entries), the hidden representation in the trained net-
work performs well when transferred to the classification,
detection and segmentation tasks.

will push features towards counting as many primitives as
is needed to differentiate images from each other.
Network architecture. In principle, the choice of the ar-
chitecture is arbitrary. For ease of comparison with state-
of-the-art methods when transferring to classification and
detection tasks, we adopt the AlexNet architecture [20] as
commonly done in other self-supervised learning methods.
We use the first 5 convolutional layers from AlexNet fol-
lowed by three fully connected layers ((3×3×256)×4096,
4096× 4096, and 4096× 1000), and ReLU units. Note that
1000 is the number of elements that we want to count. We
use ReLU in the end since we want the counting vector to be
all positive. Our input is 114× 114 pixels to handle smaller
tiles. Because all the features are the same, training with
the loss function in eq. 4 is equivalent to training a 6-way
siamese network, as shown in Fig. 2.

5. Experiments
We first present the evaluations of our learned represen-

tation in the standard transfer learning benchmarks. Then,
we perform ablation studies on our proposed method to
show quantitatively the impact of our techniques to prevent
poor representations. Finally, we analyze the learned repre-
sentation through some quantitative and qualitative experi-
ments to get a better insight into what has been learned. We
call the activation of the last layer of our network, on which
the loss (4) is defined, the counting vector. We evaluate
whether each unit in the counting vector is counting some
visual primitive or not. Our model is based on AlexNet [20]
in all experiments. In our tables we use boldface for the top
performer and underline the second top performer.
Implementation Details. We use caffe [18] with the de-
fault weight regularization settings to train our network.
The learning rate is set to be quite low to avoid divergence.
We begin with a learning rate of 10−4 and drop it by a fac-
tor of 0.9 every 10K iterations. An important step is to nor-
malize the input by subtracting the mean intensity value and
dividing the zero-mean images by their standard deviation.

Method Ref Class. Det. Segm.

Supervised [20] [43] 79.9 56.8 48.0
Random [33] 53.3 43.4 19.8
Context [9] [19] 55.3 46.6 -
Context [9]∗ [19] 65.3 51.1 -
Jigsaw [30] [30] 67.6 53.2 37.6
ego-motion [1] [1] 52.9 41.8 -
ego-motion [1]∗ [1] 54.2 43.9 -
Adversarial [10]∗ [10] 58.6 46.2 34.9
ContextEncoder [33] [33] 56.5 44.5 29.7
Sound [31] [44] 54.4 44.0 -
Sound [31]∗ [44] 61.3 - -
Video [41] [19] 62.8 47.4 -
Video [41]∗ [19] 63.1 47.2 -
Colorization [43]∗ [43] 65.9 46.9 35.6
Split-Brain [44]∗ [44] 67.1 46.7 36.0
ColorProxy [22] [22] 65.9 - 38.0
WatchingObjectsMove [32] [32] 61.0 52.2 -
Counting 67.7 51.4 36.6

Table 1: Evaluation of transfer learning on PASCAL.
Classification and detection are evaluated on PASCAL VOC
2007 in the frameworks introduced in [19] and [11] respec-
tively. Both tasks are evaluated using mean average pre-
cision (mAP) as a performance measure. Segmentation is
evaluated on PASCAL VOC 2012 in the framework of [26],
which reports mean intersection over union (mIoU). (*) de-
notes the use of the data initialization method [19].

5.1. Transfer Learning Evaluation

We evaluate our learned representation on the detec-
tion, classification, and segmentation tasks on the PASCAL
dataset as well as the classification task on the ImageNet
dataset. We train our counting network on the 1.3M im-
ages from the training set of ImageNet. We use images of
114×114 pixels as input. Since we transfer only the convo-
lutional layers, it has no effect on the transferred models and
evaluation. A new version of [29] has been released [30],
where the standard AlexNet is used for transfer learning.
All the numbers in our comparisons are from that version.

5.1.1 Fine-tuning on PASCAL

In this set of experiments, we fine-tune our network on
the PASCAL VOC 2007 and VOC 2012 datasets, which
are standard benchmarks for representation learning. Fine-
tuning is based on established frameworks for object clas-
sification [19], detection [11] and segmentation [26] tasks.
The classification task is a multi-class classification prob-
lem, which predicts the presence or absence of 20 object
classes. The detection task involves locating objects by
specifying a bounding box around them. Segmentation as-
signs the label of an object class to each pixel in the im-
age. As shown in Table 1, we either outperform previous
methods or achieve the second best performance. Notice



Method Ref conv1 conv2 conv3 conv4 conv5

Supervised [20] [44] 19.3 36.3 44.2 48.3 50.5
Random [44] 11.6 17.1 16.9 16.3 14.1
Context [9] [44] 16.2 23.3 30.2 31.7 29.6
Jigsaw [30] [30] 18.2 28.8 34.0 33.9 27.1
ContextEncoder [33] [44] 14.1 20.7 21.0 19.8 15.5
Adversarial [10] [44] 17.7 24.5 31.0 29.9 28.0
Colorization [43] [44] 12.5 24.5 30.4 31.5 30.3
Split-Brain [44] [44] 17.7 29.3 35.4 35.2 32.8
Counting 18.0 30.6 34.3 32.5 25.7

Table 2: ImageNet classification with a linear classifier.
We use the publicly available code and configuration of
[43]. Every column shows the top-1 accuracy of AlexNet
on the classification task. The learned weights from conv1
up to the displayed layer are frozen. The features of each
layer are spatially resized until there are fewer than 9K di-
mensions left. A fully connected layer followed by softmax
is trained on a 1000-way object classification task.

Method conv1 conv2 conv3 conv4 conv5

Places labels [45] 22.1 35.1 40.2 43.3 44.6
ImageNet labels [20] 22.7 34.8 38.4 39.4 38.7
Random 15.7 20.3 19.8 19.1 17.5
Context [9] 19.7 26.7 31.9 32.7 30.9
Jigsaw [30] 23.0 31.9 35.0 34.2 29.3
Context encoder [33] 18.2 23.2 23.4 21.9 18.4
Sound [31] 19.9 29.3 32.1 28.8 29.8
Adversarial [10] 22.0 28.7 31.8 31.3 29.7
Colorization [43] 16.0 25.7 29.6 30.3 29.7
Split-Brain [44] 21.3 30.7 34.0 34.1 32.5
Counting 23.3 33.9 36.3 34.7 29.6

Table 3: Places classification with a linear classifier. We
use the same setting as in Table 2 except that to evaluate
generalization across datasets, the model is pretrained on
ImageNet (with no labels) and then tested with frozen layers
on Places (with labels). The last layer has 205 neurons for
scene categories.

that while classification and detection are evaluated on VOC
2007, segmentation is evaluated on VOC 2012. Unfortu-
nately, we did not get any performance boost when using
the method of Krähenbühl et al. [19].

5.1.2 Linear Classification on Places and ImageNet

As introduced by Zhang et al. [43], we train a linear clas-
sifier on top of the frozen layers on ImageNet [38] and
Places [45] datasets. The results of these experiments are
shown in Tables 2 and 3. Our method achieves a perfor-
mance comparable to the other state-of-the-art methods on
the ImageNet dataset and shows a significant improvement
on the Places dataset. Training and testing a method on the
same dataset type, although with separate sets and no labels,
may be affected by dataset bias. To have a better assess-

Interpolation Training Color Counting Detection
method size space dimension performance

Mixed 1.3M RGB/Gray 20 50.9

Mixed 128K Gray 1000 44.9
Mixed 512K Gray 1000 49.1

Mixed 1.3M RGB 1000 48.2
Mixed 1.3M Gray 1000 50.4

Linear 1.3M RGB/Gray 1000 48.4
Cubic 1.3M RGB/Gray 1000 48.9
Area 1.3M RGB/Gray 1000 49.2
Lanczos 1.3M RGB/Gray 1000 47.3

Mixed 1.3M RGB/Gray 1000 51.4

Table 4: Ablation studies. We train the counting task un-
der different interpolation methods, training size/color, and
feature dimensions, and compare the performance of the
learned representations on the detection task on the PAS-
CAL VOC 2007 dataset.

ment of the generalization properties of all the competing
methods, we suggest (as shown in Table 3) using the Ima-
geNet dataset for training and the Places benchmark for test-
ing (or vice versa). Our method archives state-of-the-art re-
sults with the conv1-conv4 layers on the Places dataset.
Interestingly, the performance of our conv1 layer is even
higher than the one obtained with supervised learning
when trained either on ImageNet or Places labels.

5.2. Ablation Studies

To show the effectiveness of our proposed method, in Ta-
ble 4 we compare its performance on the detection task on
PASCAL VOC 2007 under different training scenarios. The
first three rows illustrate some simple comparisons based
on feature and dataset size. The first row shows the im-
pact of the counting vector length. As discussed earlier on,
the network tends to generate sparse counting features. We
train the network on ImageNet with only 20 elements in
the counting vector. This leads to a small drop in the perfor-
mance, thus showing little sensitivity with respect to feature
length. We also train the network with a smaller set of train-
ing images. The results show that our method is sensitive to
the size of the training set. This shows that the counting
task is non-trivial and requires a large training dataset.

The remaining rows in Table 4 illustrate a more advanced
analysis of the counting task. An important part of the de-
sign of the learning procedure is the identification of trivial
solutions, i.e., solutions that would not result in a useful
representation and that the neural network could converge
to. By identifying such trivial learning scenarios, we can
provide suitable countermeasures. We now discuss possible
shortcuts that the network could use to solve the counting
task and also the techniques that we use to avoid them.



train\test Linear Cubic Area Lanczos Mixed std
Linear 0.33 0.63 0.33 0.65 0.48 0.18
Cubic 0.79 0.25 0.78 0.22 0.52 0.32
Area 0.32 0.85 0.31 0.95 0.50 0.34
Lanczos 1.023 0.31 1.02 0.19 0.58 0.45
Mixed 0.36 0.29 0.37 0.30 0.34 0.04

Table 5: Learning the downsampling style. The first col-
umn and row show the downsampling methods used dur-
ing the training and testing time respectively. The values in
the first block show the pairwise error metric in eq. (6) be-
tween corresponding downsampling methods. The last col-
umn shows the standard deviation of the error metric across
different downsampling methods at test time.

A first potential problem is that the neural network
learns trivial features such as low-level texture statistics his-
tograms. For example, a special case is color histograms.
This representation is undesirable because it would be se-
mantically agnostic (or very weak) and therefore we would
not expect it to transfer well to classification and detection.
In general, these histograms would not satisfy eq. (2). How-
ever, if the neural network could tell tiles apart from down-
sampled images, then it could apply a customized scaling
factor to the histograms in the two cases and satisfy eq. (2).
In other words, the network might learn the following de-
generate feature

φ(z) =

{
1
4hist(z) if z is a tile
hist(z) if z is downsampled.

(5)

Notice that this feature would satisfy the first term in eq. (2).
The second (contrastive) term would also be easily satis-
fied since different images have typically different low-level
texture histograms. We discuss below scenarios when this
might happen and present our solutions towards reducing
the likelihood of trivial learning.
The network recognizes the downsampling style. Dur-
ing training, we randomly crop a 224 × 224 region from
a 256 × 256 image. Next, we downsample the whole im-
age by a factor of 2. The downsampling style, e.g., bilinear,
bicubic, and Lanczos, may leave artifacts in images that the
network may learn to recognize. To make the identifica-
tion of the downsampling method difficult, at each stochas-
tic gradient descent iteration, we randomly pick either the
bicubic, bilinear, lanczos, or the area method as defined in
OpenCV [16]. As shown in Table 4, the randomization of
different downsampling methods significantly improves the
detection performance by at least 2.2%.

In Table 5, we perform another experiment that clearly
shows that network learns the downsampling style. We
train our network by using only one downsampling method.
Then, we test the network on the pretext task by using only
one (possibly different) method. If the network has learned

to detect the downsampling method, then it will perform
poorly at test time when using a different one. As an error
metric, we use the first term in the loss function normalized
by the average of the norm of the feature vector. More pre-
cisely, the error when the network is trained with the i-th
downsampling style and tested on the j-th one is

eij =

∑
x

∣∣∣∑4
p=1 φ

i
(
Tp ◦ x)− φi(Dj ◦ x

)∣∣∣2∑
x |φi (Di ◦ x)|2

(6)

where φi denotes the counting vector of the network trained
with the i-th downsampling method. Dj denotes the down-
sampling transformation using the j-th method. Tp is the
tiling transformation that gives the p-th tile.

Table 5 collects all the computed errors. The element
in row i and column j shows the pairwise error metric eij .
The last column shows the standard deviation of this error
metric across different downsampling methods. A higher
value means that the network is sensitive to the downsam-
pling method. This experiment clearly shows that the net-
work learns the downsampling style. Another observation
that can be made based on the similarity of the errors, is that
the pairs (linear, area) and (cubic, lanczos) leave similar ar-
tifacts in downsampling.
The network recognizes chromatic aberration. The pres-
ence of chromatic aberration and its undesirable effects on
learning have been pointed out by Doersch et al. [9]. Chro-
matic aberration is a relative shift between the color chan-
nels that increases in the outward radial direction. Hence,
our network can use this property to tell tiles apart from
the dowsampled images. In fact, tiles will have a strongly
diagonal chromatic aberration, while the downsampled im-
age will have a radial aberration. We already reduce its ef-
fect by choosing the central region in the very first crop-
ping preprocessing. To further reduce its effect, we train
the network with both color and grayscale images (obtained
by replicating the average color across all 3 channels). In
training, we randomly choose color images 33% of the time
and grayscale images 67% of the time. This choice is con-
sistent across all the terms in the loss function (i.e., all tiles
and downsampled images are either colored or grayscale).
While this choice does not completely solve the issue, it
does improve the performance of the model. We find that
completely eliminating the color from images leads to a loss
in performance in transfer learning (see Table 4).

5.3. Analysis

We use visualization and nearest neighbor search to see
what visual primitives our trained network counts. Ideally,
these visual primitives should capture high-level concepts
like objects or object parts rather than low-level concepts
like edges and corners. In fact, detecting simple corners
will not go a long way in semantic scene understanding. To



(a) (b) (c) (d)

Figure 4: Examples of activating/ignored images. (a) and (b) show the top 16 images with the highest and lowest counting
feature magnitude from the validation set of ImageNet. (c) and (d) show the top 16 images with the highest and lowest
counting feature magnitude from the test set of COCO.

Figure 5: Image croppings of increasing size. The number
of visual primitives should increase going from left to right.

scale
.50 .55 .60 .65 .70 .75 .80 .85 .90 .95

co
u
n
ti

n
g
 v

ec
to

r 
m

ag
n
it

u
d
e 

2

4

6

8

10

12

14

16

18

20
Low norm
High norm

Figure 6: Counting evaluation on ImageNet. On the ab-
scissa we report the scale of the cropped region and on the
ordinate the corresponding average and standard deviation
of the counting vector magnitude.

avoid dataset bias, we train our model on ImageNet (with
no labeles) and show the results on COCO dataset.

5.3.1 Quantitative Analysis

We illustrate quantitatively the relation between the mag-
nitude of the counting vector and the number of objects.
Rather than counting exactly the number of specific ob-
jects, we introduce a simple method to rank images based
on how many objects they contain. The method is based on
cropping an image with larger and larger regions which are
then rescaled to the same size through downsampling (see
Fig. 5). We build two sets of 100 images each. We assign
images yielding the highest and lowest feature magnitude
into two different sets. We randomly crop 10 regions with
an area between 50%−95% of each image and compute the

corresponding counting vector. The mean and the standard
deviation of the counting vector magnitude of the cropped
images for each set is shown in Fig 6. We observe that
our feature does not count low-level texture, and is instead
more sensitive to composite images. A better understanding
of this observation needs futher investigation.

5.3.2 Qualitative Analysis

Activating/Ignored images. In Fig 4, we show blocks of
16 images ranked based on the magnitude of the count-
ing vector. We observe that images with the lowest feature
norms are textures without any high-level visual primitives.
In contrast, images with the highest feature response mostly
contain multiple object instances or a large object. For this
experiment we use the validation or the test set of the dataset
that the network has been trained on, so the network has not
seen these images during training.
Nearest neighbor search. To qualitatively evaluate our
learned representation, for some validation images, we vi-
sualize their nearest neighbors in the training set in Fig. 7.
Given a query image, the retrieval is obtained as a rank-
ing of the Euclidean distance between the counting vector
of the query image and the counting vector of images in
the dataset. Smaller values indicate higher affinity. Fig. 7
shows that the retrieved results share a similar scene outline
and are semantically related to the query images. Note that
we perform retrieval in the counting space, which is the last
layer of our network. This is different from the analogous
experiment in [19] which performs the retrieval in the in-
termediate layers. This result can be seen as an evidence
that our initial hypothesis, that the counting vectors capture
high level visual primitives, was true.
Neuron activations. To visualize what each single count-
ing neuron (i.e., feature element) has learned, we rank im-
ages not seen during training based on the magnitude of
their neuron responses. We do this experiment on the vali-
dation set of ImageNet and the test set of COCO. In Fig. 8,



Figure 7: Nearest neighbor retrievals. Left: COCO retrievals. Right: ImageNet retrievals. In both datasets, the leftmost
column (with a red border) shows the queries and the other columns show the top matching images sorted with increasing
Euclidean distance in our counting feature space from left to right. On the bottom 3 rows, we show the failure retrieval cases.
Note that the matches share a similar content and scene outline.

Figure 8: Blocks of the 8 most activating images for 4 neurons of our network trained on ImageNet (top row) and COCO
(bottom row). The counting neurons are sensitive to semantically similar images. Interestingly, dominant concepts in each
dataset, e.g., dogs in ImageNet and persons playing baseball in COCO, emerge in our counting vector.

we show the top 8 most activating images for 4 neurons out
of 30 active ones on ImageNet and out of 44 active ones on
COCO. We observe that these neurons seem to cluster im-
ages that share the same scene layout and general content.

6. Conclusions

We have presented a novel representation learning
method that does not rely on annotated data. We used
counting as a pretext task, which we formalized as a con-
straint that relates the “counted” visual primitives in tiles
of an image to those counted in its downsampled version.
This constraint was used to train a neural network with a
contrastive loss. Our experiments show that the learned
features count non-trivial semantic content, qualitatively
cluster images with similar scene outline, and outperform

previous state of the art methods on transfer learning
benchmarks. Our framework can be further extended
to other tasks and transformations in addition to being
combined with partially labeled data in a semi-supervised
learning method.

Acknowledgements. We thank Attila Szabó for insight-
ful discussions about unsupervised learning and relations
based on equivariance. Paolo Favaro acknowledges sup-
port from the Swiss National Science Foundation on project
200021 149227. Hamed Pirsiavash acknowledges support
from GE Global Research.

References
[1] P. Agrawal, J. Carreira, and J. Malik. Learning to see by

moving. In ICCV, 2015.



[2] C. Arteta, V. Lempitsky, and A. Zisserman. Counting in the
wild. In ECCV, 2016.

[3] Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai. Better mix-
ing via deep representations. In ICML, 2013.

[4] A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos. Privacy pre-
serving crowd monitoring: Counting people without people
models or tracking. In CVPR, 2008.

[5] A. B. Chan and N. Vasconcelos. Bayesian poisson regression
for crowd counting. In ICCV, 2009.

[6] P. Chattopadhyay, R. Vedantam, R. R. Selvaraju, D. Ba-
tra, and D. Parikh. Counting everyday objects in everyday
scenes. arXiv preprint arXiv:1604.03505v2, 2016.

[7] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity
metric discriminatively, with application to face. In CVPR,
2005.

[8] J. Dai. Generative modeling of convolutional neural net-
works. In ICLR, 2015.

[9] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised vi-
sual representation learning by context prediction. In ICCV,
2015.

[10] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial fea-
ture learning. In ICLR, 2017.

[11] R. Girshick. Fast r-cnn. In ICCV, 2015.
[12] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning.

MIT Press, 2016.
[13] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial networks. In NIPS, 2014.

[14] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504507, 2006.

[15] H. Idrees, K. Soomro, and M. Shah. Detecting humans in
dense crowds using locally-consistent scale prior and global
occlusion reasoning. PAMI, 2015.

[16] Itseez. The OpenCV Reference Manual, 2.4.9.0 edition,
April 2014.

[17] D. Jayaraman and K. Grauman. Learning image representa-
tions tied to ego-motion. In ICCV, 2015.

[18] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. In ACM-MM, 2014.

[19] P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell. Data-
dependent initializations of convolutional neural networks.
In ICLR, 2016.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS. 2012.

[21] G. Larsson, M. Maire, and G. Shakhnarovich. Learning rep-
resentations for automatic colorization. In ECCV, 2016.

[22] G. Larsson, M. Maire, and G. Shakhnarovich. Colorization
as a proxy task for visual understanding. In CVPR, 2017.

[23] V. Lempitsky and A. Zisserman. Learning to count objects
in images. In NIPS, 2010.

[24] K. Lenc and A. Vedaldi. Understanding image representa-
tions by measuring their equivariance and equivalence. In
CVPR, 2015.

[25] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollr, and C. L. Zitnick. Microsoft coco: Common
objects in context. In ECCV, 2014.

[26] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015.

[27] I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and learn:
Unsupervised learning using temporal order verification. In
ECCV, 2016.

[28] T. N. Mundhenk, G. Konjevod, W. A. Sakla, and K. Boakye.
A large contextual dataset for classification, detection and
counting of cars with deep learning. In ECCV, 2016.

[29] M. Noroozi and P. Favaro. Unsupervised learning of visual
representations by solving jigsaw puzzles. In ECCV, 2016.

[30] M. Noroozi and P. Favaro. Unsupervised learning of visual
representations by solving jigsaw puzzles. arXiv preprint
arXiv:1603.09246, 2016.

[31] A. Owens, J. Wu, J. H. M. annd William T. Freeman, and
A. Torralba. Ambient sound provides supervision for visual
learning. In ECCV, 2016.

[32] D. Pathak, R. Girshick, P. Dollr, T. Darrell, and B. Hariharan.
Learning features by watching objects move. arXiv preprint
arXiv:1612.06370, 2016.

[33] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A.
Efros. Context encoders: Feature learning by inpainting. In
CVPR, 2016.

[34] L. Pinto, D. Gandhi, Y. Han, Y.-L. Park, and A. Gupta. The
curious robot: Learning visual representations via physical
interactions. In ECCV, 2016.

[35] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. In ICLR, 2016.

[36] S. Reed, Y. Zhang, Y. Zhang, and H. Lee. Deep visual
analogy-making. In NIPS, 2015.

[37] M. Ren and R. S. Zemel. End-to-end instance segmentation
with recurrent attention. arXiv:1605.09410v4, 2017.

[38] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recog-
nition challenge. IJCV, 2015.

[39] J. Shao, K. Kang, C. C. Loy, and X. Wang. Deeply learned
attributes for crowded scene understanding. In CVPR, 2015.

[40] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.
Extracting and composing robust features with denoising au-
toencoders. In ICML, 2006.

[41] X. Wang and A. Gupta. Unsupervised learning of visual rep-
resentations using videos. In ICCV, 2015.

[42] C. Zhang, H. Li, X. Wang, and X. Yang. Cross-scene crowd
counting via deep convolutional neural networks. In CVPR,
2015.

[43] R. Zhang, P. Isola, and A. A. Efros. Colorful image coloriza-
tion. In ECCV, 2016.

[44] R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders:
Unsupervised learning by cross-channel prediction. arXiv
preprint arXiv:1611.09842, 2016.

[45] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. In
NIPS, 2014.


