
Mean Shift for Self-Supervised Learning

Soroush Abbasi Koohpayegani* Ajinkya Tejankar* Hamed Pirsiavash

University of Maryland, Baltimore County

Abstract

Most recent self-supervised learning (SSL) algorithms
learn features by contrasting between instances of images
or by clustering the images and then contrasting between
the image clusters. We introduce a simple mean-shift al-
gorithm that learns representations by grouping images to-
gether without contrasting between them or adopting much
of prior on the structure of the clusters. We simply “shift”
the embedding of each image to be close to the “mean”
of its neighbors. Since in our setting, the closest neigh-
bor is always another augmentation of the same image, our
model will be identical to BYOL when using only one near-
est neighbor instead of 5 as used in our experiments. Our
model achieves 72.4% on ImageNet linear evaluation with
ResNet50 at 200 epochs outperforming BYOL. Our code is
available here: https://github.com/UMBCvision/MSF.

1. Introduction

Most current visual recognition algorithms are super-
vised, meaning that they learn from large scale annotated
images or videos. However, in many applications, the an-
notation process may be expensive, biased, ambiguous, or
involve privacy concerns. Self-supervised learning (SSL)
algorithms aim to learn rich representations from unlabeled
images or videos. Such learned representations can be used
along with small annotated data to provide an accurate vi-
sual recognition model. We are interested in developing bet-
ter SSL models using unlabeled images.

Some recent SSL models learn by contrasting between
instances of images. They pull different augmentations of
an image instance together while pushing them away from
other image instances [23, 11]. Some other SSL methods
cluster the unlabeled images to a set of clusters with the
hope that each cluster will contain semantically similar im-
ages. Then, a model that predicts those clusters learns rich
representations similar to supervised learning with labels
[9, 51, 10].

*Equal contribution

These clustering methods also can be considered as con-
trastive learning since they contrast between different clus-
ters of images. For instance, the SoftMax layer in deep clus-
tering method [9] encourages an image to be assigned to the
correct single cluster and not the other clusters.

Also, most clustering algorithms have strong priors on
the overall structure of the clusters. For instance, deep
clustering (k-means) using Euclidean distance encourages
spherical cluster shapes which we believe is unnecessary
for the purpose of SSL methods.

Recently, BYOL [22] showed that it is possible to learn
rich representations without contrasting between image in-
stances. BYOL [22] works by simply pulling the two views
of an image closer without any contrast with other images.
The better performance of BYOL [22] compared to MoCo
hints that contrasting with other images may be a limiting
constraint. For instance, in MoCo, since the negative im-
ages are sampled randomly, they may be from the same cat-
egory as the query, resulting in degraded representations.
Thus, we generalize BYOL to clustering by developing a
simple algorithm for SSL that does not contrast with other
instances or clusters, does not enforce strong priors on the
shape of the clusters, and also does not need an explicit clus-
tering step.

We introduce a simple but effective mean-shift algorithm
to group similar images together in the neighborhood of
each image in an online fashion. The idea is to simply
find the nearest neighbors of a query image in the embed-
ding space and pull the embedding of query to be closer to
the center of those neighbors. We believe this process will
result in developing clusters of images in the embedding
space without enforcing much constraints about their spe-
cific size, number, or shape. Note that in contrast to group-
ing (pulling) in our method, MoCo pushes the query to be
far from any other data points particularly nearest neighbors
by which the loss will be dominated.

Since we need a large set of embeddings to search for
nearest neighbors, we adopt the memory bank idea [23]
to maintain a random set of embeddings. Also, since the
model is evolving over time in the learning process, the
old elements in the memory bank will not be valid, so we

https://github.com/UMBCvision/MSF


Figure 1: MSF method: Similar to BYOL, we maintain two encoders (“target” and “online”) using momentum update for the
target encoder. We augment an image twice and feed to both encoders. We add the target embedding to the memory bank and
look for its nearest neighbors in the memory bank. Obviously target embedding itself will be the first nearest neighbor. We
want to shift the query image towards the mean of its nearest neighbors, so we minimize the summation of those distances.
Note that our method using only one nearest neighbor is identical to BYOL which pulls different augmentations together
without grouping different instances of images. To our knowledge, our method is the first in grouping different instances of
images without contrasting between image instances or clusters.

adopt the momentum idea from [23] to maintain two en-
coders (“target” and “online”) instead of only one. The on-
line model is updated by the loss and the target model is
updated as a moving average of the online model. We feed
two different augmentations of an image to these two en-
coders, then we push the online embedding of the image to
be close to the average of nearest neighbors of the target en-
coding of the image in the target embedding space. Hence,
similar to most recent SSL methods, our method also uses
the inductive bias that the augmentation should not move
the embedding much.

Our experiments show that our method outperforms
state-of-the-art methods on various settings. For instance,
when trained on unlabeled ImageNet for 200 epochs, it
achieves 72.4% linear ImageNet accuracy which is better
than BYOL at 200 epochs.

2. Method
We are interested in mean-shift clustering, so at each it-

eration we want to encourage the model to shift the embed-
ding of the image to be closer to the average of its nearest
neighbors on a large random set of samples.

Following the notation of BYOL [22], we assume a tar-
get encoder f and an online encoder g. Both encoders have
the same backbone architecture followed by a projection
layer and are initialized equally. The online encoder g is
followed by an additional prediction layer h on top of it.

The online encoder g and the prediction layer h are updated
by back-propagating the loss while the target encoder f is
updated by momentum update to be a running average of the
online encoder g. Since nearest neighbor needs a large pool
of examples, we maintain a first-in-first-out (FIFO) memory
bank [23] that includes recent embeddings from the slowly
evolving target encoder f . In our experiments, the embed-
dings have 512 dimensions so a memory bank of size 128K
will need less than 0.5GB of GPU memory, which is man-
ageable.

Given an unlabeled image x, we augment it randomly
twice to get T1(x) and T2(x). We feed them to encoders and
then normalize them with `2 norm to get u = f(T1(x))

jjf(T1(x))jj2
and v = h(g(T2(x)))

jjh(g(T2(x)))jj2 . We first add u to the memory bank
and then, find the k nearest neighbors of u in the memory
bank to get a set of embeddings fzjgkj=1. Note that this set
includes u itself. Since we know it is another embedding
of the same input image, it should be a good target for v.
Finally, we minimize the following loss:

L =

k∑
j=1

dist(v, zj)

where dist(., .) is the distance metric between two em-
beddings. We use MSE loss (dist(a, b) = jja� bjj22) as the
distance in our experiments. The final loss is the summation
of the above loss for all input images. Ideally, we can av-

2




