Image representation

Slides from Subhransu Maji and many others
Lecture outline

- Origin and motivation of the “bag of words” model

- Algorithm pipeline
 - Extracting local features
 - Learning a dictionary — clustering using k-means
 - Encoding methods — hard vs. soft assignment
 - Spatial pooling — pyramid representations
 - Similarity functions and classifiers

Figure from Chatfield et al., 2011
Bag of features
Origin 1: Texture recognition

- Texture is characterized by the repetition of basic elements or *textons*
- For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters

Origin 1: Texture recognition

Origin 2: Bag-of-words models

- Orderless document representation: frequencies of words from a dictionary
 Salton & McGill (1983)
Origin 2: Bag-of-words models

Origin 2: Bag-of-words models

- Orderless document representation: frequencies of words from a dictionary
 Salton & McGill (1983)
Origin 2: Bag-of-words models

- Orderless document representation: frequencies of words from a dictionary
 Salton & McGill (1983)
Lecture outline

- Origin and motivation of the “bag of words” model
- Algorithm pipeline
 - Extracting local features
 - Learning a dictionary — clustering using k-means
 - Encoding methods — hard vs. soft assignment
 - Spatial pooling — pyramid representations
 - Similarity functions and classifiers

Figure from Chatfield et al., 2011
Local feature extraction

- Regular grid or interest regions
Local feature extraction

Detect patches

Normalize patch

Compute descriptor

Choices of descriptor:
- SIFT
- Filterbank histograms
- The patch itself
Local feature extraction

Extract features from many images
Lecture outline

• Origin and motivation of the “bag of words” model

• Algorithm pipeline
 • Extracting local features
 • Learning a dictionary — clustering using k-means
 • Encoding methods — hard vs. soft assignment
 • Spatial pooling — pyramid representations
 • Similarity functions and classifiers

Figure from Chatfield et al., 2011
Learning a dictionary

Slide credit: Josef Sivic
Learning a dictionary

Clustering

Slide credit: Josef Sivic
Learning a dictionary

Visual vocabulary

Clustering

Slide credit: Josef Sivic
Review: K-means clustering

- Want to minimize sum of squared Euclidean distances between features x_i and their nearest cluster centers m_k

$$D(X,M) = \sum_{\text{cluster } k} \sum_{\text{point } i \text{ in cluster } k} (x_i - m_k)^2$$

Algorithm:

- Randomly initialize K cluster centers

- Iterate until convergence:
 - Assign each feature to the nearest center
 - Recompute each cluster center as the mean of all features assigned to it
Example codebook

Source: B. Leibe
Another codebook
Lecture outline

• Origin and motivation of the “bag of words” model
• Algorithm pipeline
 • Extracting local features
 • Learning a dictionary — clustering using k-means
 • Encoding methods — hard vs. soft assignment
 • Spatial pooling — pyramid representations
• Similarity functions and classifiers

Figure from Chatfield et al., 2011
Encoding methods

- Assigning words to features

Visual vocabulary

partition of space

Also called hard assignment
Encoding methods

- Assigning words to features

Visual vocabulary

- Different words
- Similar features

Partition of space

- Hard assignment

- Large quantization error
Assigning words to features

- **Visual vocabulary**

- **Partition of space**

- **Soft assignment**

\[
\alpha_i \propto e^{-f(d(x, c_i))}
\]

assign high weights to centers that are close in practice non-zero to only k-nearest neighbors
Encoding methods

- Assigning words to features

Soft Assignment

\[\alpha_i \propto e^{-f(d(x,c_i))} \]

Similar Features

- Visual Vocabulary
- Partition of space

Soft Assignment Examples

- 0.6 0 0.4
- 0.4 0 0.6

Hard Assignment Examples

- 1 0 0
- 0 0 1
What should be the size of the dictionary?

- Too small: don’t capture the variability of the dataset
- Too large: have too few points per cluster
- The right size depends on the task and amount of data
 - e.g. instance retrieval (e.g. Nister) uses a vocabulary of 1 million, whereas recognition (e.g., texture) uses a vocabulary of about a hundred.

Speed of embedding

- Tree structured vocabulary (e.g. Nister)
- Hashing, product quantization

More accurate embeddings

- Generalizations of soft embedding: LLC coding, sparse coding
- Higher order statistics: Fisher vectors, VLAD, etc.
Lecture outline

- Origin and motivation of the “bag of words” model
- Algorithm pipeline
 - Extracting local features
 - Learning a dictionary — clustering using k-means
 - Encoding methods — hard vs. soft assignment
 - Spatial pooling — pyramid representations
 - Similarity functions and classifiers

Figure from Chatfield et al., 2011
Spatial pyramids

pooling: sum embeddings of local features within a region

Lazebnik, Schmid & Ponce (CVPR 2006)
Spatial pyramids

pooling: sum embeddings of local features within a region

Same motivation as **SIFT** — keep coarse layout information

Lazebnik, Schmid & Ponce (CVPR 2006)
Spatial pyramids

pooling: sum embeddings of local features within a region

Same motivation as **SIFT** — keep coarse layout information

Lazebnik, Schmid & Ponce (CVPR 2006)
Lecture outline

- Origin and motivation of the “bag of words” model
- Algorithm pipeline
 - Extracting local features
 - Learning a dictionary — clustering using k-means
 - Encoding methods — hard vs. soft assignment
 - Spatial pooling — pyramid representations
- Similarity functions and classifiers

Figure from Chatfield et al., 2011
Bags of features representation

\[I \]

\[h = \Phi(I) \]

image similarity = feature similarity
Comparing features

- **Euclidean distance:**
 \[
 D(h_1, h_2) = \sqrt{\sum_{i=1}^{N} (h_1(i) - h_2(i))^2}
 \]

- **L1 distance:**
 \[
 D(h_1, h_2) = \sum_{i=1}^{N} |h_1(i) - h_2(i)|
 \]

- **\(\chi^2\) distance:**
 \[
 D(h_1, h_2) = \sum_{i=1}^{N} \frac{(h_1(i) - h_2(i))^2}{h_1(i) + h_2(i)}
 \]

- **Histogram intersection (similarity):**
 \[
 I(h_1, h_2) = \sum_{i=1}^{N} \min(h_1(i), h_2(i))
 \]

- **Hellinger kernel (similarity):**
 \[
 K(h_1, h_2) = \sum_{i=1}^{N} \sqrt{h_1(i) h_2(i)}
 \]
Given a feature representation for images, how do we learn a model for distinguishing features from different classes?
Classifiers

- Given a feature representation for images, how do we learn a model for distinguishing features from different classes?
- Examples of commonly used classifiers
 - Nearest neighbor classifiers
 - Linear classifiers: support vector machines
Nearest neighbor classifier

- Assign label of nearest training data point to each test data point

from Duda et al.
k-Nearest neighbor classifier

- For a new point, find the k closest points from training data.
- Labels of the k points “vote” to classify.

![Diagram showing k-Nearest neighbor classification with $k = 5$.]
Linear classifiers
Linear classifiers

- Find linear function (hyperplane) to separate positive and negative examples

\[x_i \text{ positive: } x_i \cdot w + b \geq 0 \]
\[x_i \text{ negative: } x_i \cdot w + b < 0 \]

Which hyperplane is best?
Support vector machines

• Find hyperplane that maximizes the *margin* between the positive and negative examples

• Find hyperplane that maximizes the *margin* between the positive and negative examples

\[\begin{align*}
 x_i \text{ positive } (y_i = 1) : & \quad x_i \cdot w + b \geq 1 \\
 x_i \text{ negative } (y_i = -1) : & \quad x_i \cdot w + b \leq -1
\end{align*} \]

For support vectors, \(x_i \cdot w + b = \pm 1 \)

Distance between point and hyperplane:
\[\frac{|x_i \cdot w + b|}{\|w\|} \]

Therefore, the margin is \(\frac{2}{\|w\|} \)

1. Maximize margin \(\frac{2}{||w||} \)

2. Correctly classify all training data:

\[
\begin{align*}
\text{x}_i \text{ positive (} y_i = 1 \text{):} & \quad \text{x}_i \cdot \text{w} + b \geq 1 \\
\text{x}_i \text{ negative (} y_i = -1 \text{):} & \quad \text{x}_i \cdot \text{w} + b \leq -1
\end{align*}
\]

Quadratic optimization problem:

\[
\min_{w,b} \frac{1}{2} ||w||^2 \quad \text{subject to} \quad y_i (w \cdot x_i + b) \geq 1
\]

Finding the maximum margin hyperplane

• Solution:

\[w = \sum_i \alpha_i y_i x_i \]

Learned weight
(nonzero only for support vectors)

Finding the maximum margin hyperplane

• Solution: \[w = \sum_i \alpha_i y_i x_i \]
 \[w \cdot x_i + b = y_i, \text{ for any support vector} \]

• Classification function (decision boundary):
 \[w \cdot x + b = \sum_i \alpha_i y_i x_i \cdot x + b \]

• Notice that it relies on an *inner product* between the test point \(x \) and the support vectors \(x_i \)

• Solving the optimization problem also involves computing the inner products \(x_i \cdot x_j \) between all pairs of training points

What if the data is not linearly separable?

- **Separable:**
 \[
 \min_{w,b} \frac{1}{2} \|w\|^2 \quad \text{subject to} \quad y_i(w \cdot x_i + b) \geq 1
 \]

- **Non-separable:**
 \[
 \min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i \quad \text{subject to} \quad y_i(w \cdot x_i + b) - 1 + \xi_i \geq 0
 \]

 - **C:** tradeoff constant, \(\xi_i \): *slack variable* (positive)
 - Whenever margin is \(\geq 1 \), \(\xi_i = 0 \)
 - Whenever margin is \(< 1\),
 \[
 \xi_i = 1 - y_i(w \cdot x_i + b)
 \]
What if the data is not linearly separable?

\[\min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \max(0,1 - y_i (w \cdot x_i + b)) \]

Maximize margin

Minimize classification mistakes
What if the data is not linearly separable?

\[
\min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \max(0, 1 - y_i (w \cdot x_i + b))
\]
Datasets that are linearly separable work out great:

But what if the dataset is just too hard?

We can map it to a higher-dimensional space:
• General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

\[\Phi: x \rightarrow \phi(x) \]
Nonlinear SVMs

- **The kernel trick**: instead of explicitly computing the lifting transformation \(\varphi(x) \), define a kernel function \(K \) such that

\[
K(x, y) = \varphi(x) \cdot \varphi(y)
\]

(the kernel function must satisfy Mercer’s condition)

- This gives a nonlinear decision boundary in the original feature space:

\[
\sum_i \alpha_i y_i \varphi(x_i) \cdot \varphi(x) + b = \sum_i \alpha_i y_i K(x_i, x) + b
\]

Non-linear kernels for histograms

- Histogram intersection kernel:
 \[I(h_1, h_2) = \sum_{i=1}^{N} \min(h_1(i), h_2(i)) \]

- Hellinger kernel:
 \[K(h_1, h_2) = \sum_{i=1}^{N} \sqrt{h_1(i) h_2(i)} \]

- Generalized Gaussian kernel:
 \[K(h_1, h_2) = \exp\left(-\frac{1}{A} D(h_1, h_2)^2\right) \]

 \[D \text{ can be L1, Euclidean, } \chi^2 \text{ distance, etc.} \]

Summary: SVMs for image classification

1. Pick an image representation (in our case, bag of features)
2. Pick a kernel function for that representation
3. Feed the kernel and features into your favorite SVM solver to obtain support vectors and weights
4. At test time: compute kernel values for your test example and each support vector, and combine them with the learned weights to get the value of the decision function

\[\sum_i \alpha_i y_i \varphi(x_i) \cdot \varphi(x) + b = \sum_i \alpha_i y_i K(x_i, x) + b \]

Lots of software available! LIBSVM, LIBLINEAR, SVMLight
Summary: SVMs for image classification

1. Pick an image representation (in our case, bag of features)

2. Feed the features into your favorite SVM solver to obtain support vectors and weights

3. At test time: compute features for your test example and multiply with the learned weights to get the value of the decision function

Lots of software available! LIBSVM, LIBLINEAR, SVMLight
What about multi-class SVMs?

• Many options!

• For example, we have to obtain a multi-class SVM by combining multiple two-class SVMs

• One vs. rest
 • **Training**: learn an SVM for each class vs. the rest
 • **Testing**: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

• One vs. one
 • **Training**: learn an SVM for each pair of classes
 • **Testing**: each learned SVM “votes” for a class to assign to the test example
 • http://www.kernel-machines.org/software
Lecture outline

• Origin and motivation of the “bag of words” model
• Algorithm pipeline
 • Extracting local features
 • Learning a dictionary — clustering using k-means
 • Encoding methods — hard vs. soft assignment
 • Spatial pooling — pyramid representations
• Similarity functions and classifiers

Figure from Chatfield et al., 2011
Multi-class classification results
(100 training images per class)

<table>
<thead>
<tr>
<th>Level</th>
<th>Single-level</th>
<th>Pyramid</th>
<th>Single-level</th>
<th>Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (1 × 1)</td>
<td>45.3 ±0.5</td>
<td></td>
<td>72.2 ±0.6</td>
<td></td>
</tr>
<tr>
<td>1 (2 × 2)</td>
<td>53.6 ±0.3</td>
<td>56.2 ±0.6</td>
<td>77.9 ±0.6</td>
<td>79.0 ±0.5</td>
</tr>
<tr>
<td>2 (4 × 4)</td>
<td>61.7 ±0.6</td>
<td>64.7 ±0.7</td>
<td>79.4 ±0.3</td>
<td>81.1 ±0.3</td>
</tr>
<tr>
<td>3 (8 × 8)</td>
<td>63.3 ±0.8</td>
<td>66.8 ±0.6</td>
<td>77.2 ±0.4</td>
<td>80.7 ±0.3</td>
</tr>
</tbody>
</table>
Multi-class classification results (30 training images per class)

<table>
<thead>
<tr>
<th>Level</th>
<th>Weak features (16)</th>
<th>Strong features (200)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single-level</td>
<td>Pyramid</td>
</tr>
<tr>
<td>0</td>
<td>15.5 ±0.9</td>
<td>41.2 ±1.2</td>
</tr>
<tr>
<td>1</td>
<td>31.4 ±1.2</td>
<td>32.8 ±1.3</td>
</tr>
<tr>
<td>2</td>
<td>47.2 ±1.1</td>
<td>49.3 ±1.4</td>
</tr>
<tr>
<td>3</td>
<td>52.2 ±0.8</td>
<td>54.0 ±1.1</td>
</tr>
</tbody>
</table>
Further thoughts and readings …

• All about embeddings (detailed experiments and code)
 • K. Chatfield et al., The devil is in the details: an evaluation of recent feature encoding methods, BMVC 2011
 • http://www.robots.ox.ac.uk/~vgg/research/encoding_eval/
 • Includes discussion of advanced embeddings such as Fisher vector representations and locally linear coding (LLC)

• All about SVMs — http://research.microsoft.com/pubs/67119/svmtutorial.pdf

• Fast non-linear SVM evaluation (scales linearly with #SVs)
 • Classification using Intersection kernel SVMs is efficient, Maji et al., CVPR 2008 — O(1) evaluation ~ 1000x faster on on large datasets!
 (Also see the PAMI 2013 paper on my webpage)

 • Approximate embeddings for kernels (Maji and Berg, Vedaldi and Zisserman) — O(n) training ~ 100x faster on large datasets!