Architecture Conscious Data Mining

Srinivasan Parthasarathy
Data Mining Research Lab
Ohio State University
KDD & Next Generation Challenges

- KDD is an iterative and interactive process the goal of which is to extract **interesting** and **actionable** information from potentially large data stores **efficiently**
- Young field, long laundry list of technical challenges
 - Theoretical foundations in various sub-fields
 - Interestingness and Ranking
 - New and Exciting Applications
 - Embedding domain knowledge effectively
 - Visualization for data & model understanding
 - Efficient and scalable algorithms (focus of this talk)
- Other challenges
 - Educational (talk a bit about this at the end)
 - Reproducability (need for benchmarks)
 - Socio-Political
Efficiency in the KDD process

• Why is it important?
 – Interactive nature of KDD
 – Real-time constraints

• What makes it challenging?
 – Dataset properties (large, heterogeneous, distributed)
 – Computational complexity

• Example Applications
 – Clinical data
 – Biological data
 – Large scale simulation data
 – Social network data
 – Sensor data, WWW data….
Toward Efficient Realizations

• Data driven approach
 – Compression, Sampling, Dimensionality Reduction, Feature Selection, Matrix Factorization etc.

• Computational driven approach
 – Intelligent search space pruning to reduce complexity
 – Approximate algorithms, streaming algorithms
 – Parallel and distributed algorithms

• Architecture-Conscious approach (this talk)
 – Largely orthogonal to the above alternatives
 – Objective is to understand limitations and novel features of modern and emerging architecture(s)
 – Subsequently, re-architect algorithms to better utilize system resources.
Houston, do we have a problem?

• Turns out we do
 – Many state-of-the-art data mining algorithms grossly under-utilize processor resources [Ghoting 2005]

• Why?
 1. Data intensive algorithms – lots of memory accesses – high latency penalty.
 2. Mining algorithms are extremely irregular in nature – data and parameter driven – hard to predict
 3. Use of pointer-based data structures – poor ILP
 4. Do not leverage important features of modern architectures – automated compiler/runtime systems are handicapped because of 1, 2 and 3.
Spatial Locality

- Improve spatial locality of dynamic data structures
 - Memory pooling
 - Loss-less compression – store only data that is needed – allows for more data per cache line
 - Memory placement to match dominant access order
 - Side benefit – enables effective hardware prefetching (latency alleviating mechanism)
Temporal Locality and Leveraging SMT

• Data Structure Tiling
 – Operate on a tile-by-tile basis
 • Non-overlapping (traditional)
 • Overlapping

• Smart data partitioning
 – Jigsaw puzzle analogy

• SMT
 – Co-schedule tasks that operate on same data tile helps improve performance
Sample Benefits

- Gains in performance can be staggering
 - Frequent patterns (itemsets, trees, graphs)
 - Outlier Detection
 - Clustering

- Benefits to end applications
 - Scientific simulation data
 - Web data
 - Molecular and Clinical data

- For network of workstations
 - minimize communication and leverage remote memory
 - Enables mining of terabyte scale distributed datasets efficiently.
CMPs (next frontier)

• Why the push from industry?
 – Increasing clock frequencies is not returning improved IPC, and it is increasing power costs and thermal issues

• Two new PCs in my den, no need for the heat vent!
 – Great for winters!

• Importantly
 – Parallel Computing meets mainstream commodity market

• Challenges
 – Existing applications, they need to be rewritten to use multiple threads of execution
 – Compiler and runtime techniques have a hard time already – application must help
 – Fine-grained sharing of processor resources (cache, bus/channel etc.)
 – Memory hierarchy issues are even more challenging

• Potential solution
 – Adaptable algorithms
Adaptive algorithms

• Key idea: Trading off memory for redundant computation
 • Benefits:
 – Reduced working set sizes
 – Likely to have reduced bandwidth pressure
 – Utilizing strengths of the CMP
 • Challenge:
 – Sensing the problem
 – Re-architecting algorithm to reduce memory consumption

• Key idea: Moldable partitioning and adaptive scheduling of tasks
 • Benefits
 – Better CPU utilization
 – If co-scheduling – reduced cache miss rates
 • Challenges:
 – Sensing the problem
 – Re-architecting algorithm
 • Moldable task decomposition
 • Pass on enough state to move task to another core
Adaptive algorithms performance

- **Graph mining**
 - Gaston vs. Gspan vs. Hybrid (adaptive)

- **Tree Mining**
 - Converted to sequence space (dynamic arrays)
 - Better locality, ILP
 - Reduced memory LCS matching + structure checks
 - Leveraged hybrid scheduling
 - Sequential Performance
 - 2 order reduction in memory footprint
 - 3 orders improvement in processing time
 - Parallel Performance
 - Linear scalability on a 4-core dual chip (8 cores)
 - Adapted similar idea to XML indexing with similar results!

ICDM’06, CIKM’06, VLDB’07
Esoteric CMPs (CELL)

- Interesting design point on commodity CMP space
 - 25 GB/s OC bandwidth
 - 8 cores (SPUs) + 1 PPU
 - FP computation 200 GFlops
 - Breakthroughs in commodity processing

- Challenges
 - Hard to program
 - Need to explicitly manage memory and data transfers between PPU and SPUs
 - Probably not suitable for all programs
 - Interesting class of algorithms and kernels can benefit significantly!

Cell-6 on Sony Playstation
Cell-8 is simulated
All cases codes optimized and Implemented on appropriate compiler
Mining on Clusters

• Heavily researched over the last 15 years
 – DDM Wiki (a very nice start point resource)

• What are the “new” challenges?
 – Non-homogeneous “hybrid” clusters – (e.g. Roadrunner)
 – Multi-level parallelism (on chip, on node, on cluster)
 – Leveraging features of high end systems networking
 • Infiniband makes it feasible and cheaper to access remote memory
 than local disk – how to leverage?
 – KDD may be particularly amenable to pipelined parallelism – a
 largely ignored approach
 – KDD and the grid (heard about this yesterday)
 – Application specific challenges -- e.g. astronomy, folding@home etc.
Discussion

• KDD is an iterative and interactive process the goal of which is to extract **interesting** and **actionable** information from potentially large data stores **efficiently**

• This talk was primarily about the last but all 3 are important.

• Architecture conscious data mining is a viable orthogonal approach to achieve efficiency (references in paper)
 – Tangible benefits to applications, algorithms and kernels
 – Lower memory footprints + significantly faster performance
 – Adaptive algorithms are necessary for emerging architectures
 – Whats next? Services oriented architecture
 • Plug-and-Play naturally connects with KDD process
 • An effective mechanism to keep cores busy.
Broadly Speaking

• Education
 – As an aside parallel algorithms and high performance computing has to be a part of basic CS curriculum.
 – We as data-intensive science need to understand the key systems issues better from OS and architecture friends

• Broader Scientific Impact
 – Interactions between Systems and Data Mining
 • Data mining for software engineering, invariant tracking, testing, bug detection in sequential and parallel codes
 • Data mining for performance modeling
 • Leveraging systems features for data mining
Thanks

• Students
 – A. Ghoting, G. Buehrer, S. Tatikonda
• Collaborating Colleagues
 – OSU-Physics, OSU-Biomedical Informatics, Intel, IBM
• Funding agencies
 – DOE Early career principal investigator grant
 – IBM Faculty partnership
• Organizers of this workshop
• Additional Information: dmrl.cse.ohio-state.edu or srini@cse.ohio-state.edu