Research Challenges for Data Mining in Science and Engineering

Jiawei Han
Department of Computer Science
University of Illinois at Urbana-Champaign

www.cs.uiuc.edu/~hanj

October 17, 2007
Why Data Mining in Science and Engineering?

- **Data is mounting up rapidly and is available!**
 - Giga-bytes → terabytes → peta-bytes in very fast pace
 - Data collection and dissemination tools: New generation of science and engineering equipments, sensors, Web
 - Gigantic data banks from genomics to astronomy: widely available!

- **Data mining: An imminent need in science and engineering**
 - Every discipline: “data poor” → “data rich” → “data richer” → …
 - Jim Gray: “We are in the era of **Data Science**”
 - Diversity of science/engineering data: Data streams, RFID, sensor networks, video/audio data, text and Web, computer systems & software, information networks, and biological/environmental data
 - Discoveries are often of high value
Data Mining Has Been Flourishing in S&E

- Statistical analysis, pattern recognition, machine learning, and data visualization have been popular tools in S & E.
- Data mining research has brought in many new, fresh ideas and methods.
 - Scalable mining methods
 - Pattern mining and analysis methods
 - Invisible data mining: mining as a natural, hidden process.
- There are still many open research problems.
Research Challenges

- Information network analysis
- Discovery, understanding, and usage of patterns
- Stream data mining
- Mining moving object data, RFID data, and data from sensor networks
- Spatiotemporal and multimedia data mining
- Mining text, Web, and other unstructured data
- Data cube-oriented multidimensional online analytical mining
- Visual data mining
- Domain-specific data mining: Work in each scientific and engineering domain
Exploring the Power of Links for Data Mining

- **Google: A shining example of the exploration of links**
 - PageRank and HITS: Identify authoritative Web pages and hubs

- **Science and engineering: Links are everywhere**
 - Beyond explicit homogeneous links: page links, computer network, …
 - Implicitly, heterogeneous, multidimensional links: data relations and cross-relational “bridges”, gene/protein, wireless battlefield, pub, …
 - Knowledge and patterns: Hidden in massive links

- **The Power of links has been demonstrated in various tasks**
 - CrossMine: Classification of multi-relations by link analysis
 - CrossClus: Cross-relational clustering with user’s guidance
 - LinkClus: Efficient link-based clustering by exploring the power law distribution
 - Distinct: Distinguishing objects with identical names by link analysis
 - Veracity: Reliable facts with multiple conflicting information providers
Mining Graphs and Information Networks

Aspirin

Yeast protein interaction network

An Internet Web

Co-author network

Research Challenges

- Information network analysis
- Discovery, understanding, and usage of patterns
- Stream data mining
- Mining moving object data, RFID data, and data from sensor networks
- Spatiotemporal and multimedia data mining
- Mining text, Web, and other unstructured data
- Data cube-oriented multidimensional online analytical mining
- Visual data mining
- Domain-specific data mining: Work in each scientific and engineering domain
Pattern Mining, Pattern Usage and Pattern Understanding

- Exploration of new, application-oriented pattern mining methods
 - Applications, applications, applications!
 - Pattern exploration in software bug mining: frequent, sequential patterns
 - Mining *colossal* (i.e., rather large) patterns for bio-pattern analysis
 - Mining *approximate* substructures in large networks/graphs

- Pattern usage
 - Effective classification by frequent, discriminative pattern analysis
 - Indexing and substructure similarity search in structures

- Pattern Understanding
 - Too many patterns!? — redundancy-aware top-k patterns
 - Semantic annotation of frequent patterns
Discriminative Frequent Pattern Analysis for Effective Classification [ICDE’07]

Table 1. Accuracy by SVM on Frequent Combined Features vs. Single Features

<table>
<thead>
<tr>
<th>Data</th>
<th>Single Feature</th>
<th>Freq. Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Item_All</td>
<td>Item_FS</td>
</tr>
<tr>
<td>anneal</td>
<td>99.78</td>
<td>99.78</td>
</tr>
<tr>
<td>austral</td>
<td>85.01</td>
<td>85.50</td>
</tr>
<tr>
<td>auto</td>
<td>83.25</td>
<td>84.21</td>
</tr>
<tr>
<td>breast</td>
<td>97.46</td>
<td>97.46</td>
</tr>
<tr>
<td>cleve</td>
<td>84.81</td>
<td>84.81</td>
</tr>
<tr>
<td>diabetes</td>
<td>74.41</td>
<td>74.41</td>
</tr>
<tr>
<td>glass</td>
<td>75.19</td>
<td>75.19</td>
</tr>
<tr>
<td>heart</td>
<td>84.81</td>
<td>84.81</td>
</tr>
<tr>
<td>hepatic</td>
<td>84.50</td>
<td>89.04</td>
</tr>
<tr>
<td>horse</td>
<td>83.70</td>
<td>84.79</td>
</tr>
<tr>
<td>iono</td>
<td>93.15</td>
<td>94.30</td>
</tr>
<tr>
<td>iris</td>
<td>94.00</td>
<td>96.00</td>
</tr>
<tr>
<td>labor</td>
<td>89.99</td>
<td>91.67</td>
</tr>
<tr>
<td>lymph</td>
<td>81.00</td>
<td>81.62</td>
</tr>
<tr>
<td>pima</td>
<td>74.56</td>
<td>74.56</td>
</tr>
<tr>
<td>sonar</td>
<td>82.71</td>
<td>86.55</td>
</tr>
<tr>
<td>vehicle</td>
<td>70.43</td>
<td>72.93</td>
</tr>
<tr>
<td>wine</td>
<td>98.33</td>
<td>99.44</td>
</tr>
<tr>
<td>zoo</td>
<td>97.09</td>
<td>97.09</td>
</tr>
</tbody>
</table>
Research Challenges

- Information network analysis
- Discovery, understanding, and usage of patterns
- Stream data mining
- Mining moving object data, RFID data, and data from sensor networks
- Spatiotemporal and multimedia data mining
- Mining text, Web, and other unstructured data
- Data cube-oriented multidimensional online analytical mining
- Visual data mining
- Domain-specific data mining: Work in each scientific and engineering domain
Stream Data Mining

- Streams are common in science, engineering, and industry
 - Scientific experiments/observations, production processes
 - Data could be too huge to be scanned multiple times
- Not just DSMS (data stream management systems)
- More on Stream OLAP and stream data mining
 - Stream data cube: fading model, evolution, summary, and multidimensional drilling
 - Stream sample counting and frequent pattern analysis
 - Classification of data streams: rare events, unexpected distributions
 - Clustering evolving data streams: microclusters vs. macroclusters
MAIDS: Mining Alarming Incidents from Data Streams [SIGMOD’04 demo]

- Stream cubing: Tilted time frame, H-tree structure, online partial aggregation
- Mining evolving clusters in stream data
- Stream classification
- Stream FP analysis
- Mining network intrusion data
Research Challenges

- Information network analysis
- Discovery, understanding, and usage of patterns
- Stream data mining
- Mining moving object data, RFID data, and data from sensor networks
- Spatiotemporal and multimedia data mining
- Mining text, Web, and other unstructured data
- Data cube-oriented multidimensional online analytical mining
- Visual data mining
- Domain-specific data mining: Work in each scientific and engineering domain
Mining Moving Object Data, RFID Data, and Data from Sensor Networks

- **RFID/sensor data warehousing and mining**
 - Deep compression leads to lean and powerful warehouse
 - Paths are important: FlowCube: Multi-Dimensional Analysis of Commodity Flows
 - Mining should explore motifs, paths, traffic, and layers

- **Mining moving object data and trajectories**
 - Classification & outlier detection in moving objects
 - Clustering and classification of trajectory data

- **Mining integrated networks, e.g., sensor network + information network**
 - Medical sensor monitoring and information networks
Typical Unrestricted Moving Paths
Typical Restricted Moving Paths
Typical Scattered Movement Traces
Motion-Alert: Automatic Detection of Anomalies in Massive Moving Objects [SDM’07]

- Extraction of movement fragments as motifs
 - Trajectories are converted to sets of motif expressions
- Combination of motif expressions with other multidimensional features
- Motif-based feature extraction and clustering
- Micro-cluster-based classification to find anomalies
Research Challenges

- Information network analysis
- Discovery, understanding, and usage of patterns
- Stream data mining
- Mining moving object data, RFID data, and data from sensor networks
- Spatiotemporal and multimedia data mining
- Mining text, Web, and other unstructured data
- Data cube-oriented multidimensional online analytical mining
- Visual data mining
- Domain-specific data mining: Work in each scientific and engineering domain
Spatiotemporal and Multimedia Data Mining

- Spatiotemporal and multimedia data
 - Digital photos, videos, YouTube, GoogleMaps, weather services, satellite images, Digital Earth, traffic monitor, ...

- Abundant applications
 - Detect forest fire, predict hurricane path, weather patterns, global warming, traffic routing, ...

- Warehouse spatiotemporal and multimedia data
 - More dimensions: Spatial, temporal, color, shape, relationships, ...
 - Multidimensional analysis and OLAP

- Confluence of multi-disciplines: CVPR, GIS, stat., HPC
 - Frequent pattern and correlation analysis
 - Classification, clustering and outlier analysis
Mining Multimedia Databases in MultiMediaMiner
Clustering with Obstacle Objects

Not Taking obstacles into account Taking obstacles into account
Research Challenges

- Information network analysis
- Discovery, understanding, and usage of patterns
- Stream data mining
- Mining moving object data, RFID data, and data from sensor networks
- Spatiotemporal and multimedia data mining
- Mining text, Web, and other unstructured data
- Data cube-oriented multidimensional online analytical mining
- Visual data mining
- Domain-specific data mining: Work in each scientific and engineering domain
Text and Web Mining

- **Web**: The ultimate information access and processing platform
 - The common place for S & E to pub., share and exchange data and ideas, e.g., Bio: GenBank, ProteinBank, GO, Pubmed, …

- **Web modeling**: an evolving, collaborative, social network

- **Web, text, email and blog mining**
 - Mining digital libraries and research literature databases
 - Document clustering, classification: Exploiting text, links and usages for multi-level, many-class clustering and classification
 - Mining unstructured, textual information: emails, blogs

- **Semantic Web and information repository construction**
 - Information extraction, exploiting markup structure to extract structured data from pages meant for human consumption

- **Web usage mining and adaptive Web sites**
VIPS: Vision based Page Segmentation
Block-based Web Search
Block-level Link analysis
Web image search and organization
Research Challenges

- Information network analysis
- Discovery, understanding, and usage of patterns
- Stream data mining
- Mining moving object data, RFID data, and data from sensor networks
- Spatiotemporal and multimedia data mining
- Mining text, Web, and other unstructured data
- Data cube-oriented multidimensional online analytical mining
- Visual data mining
- Domain-specific data mining: Work in each scientific and engineering domain
Science and eng. data sets are often high-D in mature
Viewing and mining data in multidimensional space
Data cube and OLAP technology
Beyond conventional data cubes
 - Regression cubes, prediction cubes
 - Integration cube and ranking query processing: The Ranking Cube Approach” [VLDB'06, SIGMOD’07]
 - High-dimensional OLAP: A Minimal Cubing Approach [VLDB’04]
OLAP mining may substantially enhance the power and flexibility of data analysis
 - Exploratory-based science and eng. data mining
Research Challenges

- Information network analysis
- Discovery, understanding, and usage of patterns
- Stream data mining
- Mining moving object data, RFID data, and data from sensor networks
- Spatiotemporal and multimedia data mining
- Mining text, Web, and other unstructured data
- Data cube-oriented multidimensional online analytical mining
- Visual data mining
- Domain-specific data mining: Work in each scientific and engineering domain
Visual Data Mining

- One picture is worth ten thousand words
Research Challenges

- Information network analysis
- Discovery, understanding, and usage of patterns
- Stream data mining
- Mining moving object data, RFID data, and data from sensor networks
- Spatiotemporal and multimedia data mining
- Mining text, Web, and other unstructured data
- Data cube-oriented multidimensional online analytical mining
- Visual data mining
- Domain-specific data mining: Work in each scientific and engineering domain
Biological Data Mining

- Bioinformatics: A driving force in data mining
 - Huge, complex and valuable data sources for data mining
 - Gene or protein chips, molecular structures, biomedical data, biomedical literature databases, mass spectrometry, spatial/image data, …

- Data mining for genomics and proteomics
 - Mining motif patterns, phylogenetic and functional prediction, biological networks, system biology, bioliterature
 - Data mining is at very primitive stage in bioinformatics
 - A very rewarding frontier for data mining
System/Software Engineering Data Mining

- Computer and software system generate a huge amount of data
- Data mining will improve their performance, reliability & security
- Autonomic computing: Automate the construction, maintenance and evolution of sophisticated systems (esp. software systems)
- Frontiers in computer/software system data mining
 - Software bug isolation and analysis
 - Computer network intrusion detection
 - System performance improvement, diagnosis, and maintenance
 - Protection of intellectual property (e.g., plagiarism detection)
SOBER: Bug Localization based on Classification of Statistical Distribution of Statement Execution

- Based on statistical differences between passing and failing runs, identify which lines or portions of code are most bug relevant

- Performance study [FSE’05] shows it can detect buggy lines by examining a smaller portions of code
Other Research Themes

- **Privacy-preserving data mining**
 - Encryption of data while preserving mining statistics
 - Data perturbation: adding noise and randomization
 - Data transformation: Projection in different angles while preserving mining results
 - Privacy-preserving mining in distributed environments

- **Invisible data mining**
 - Embedded functions: Web search engine (link analysis, authoritative pages, user profiles), Google News, adaptive web sites, query optimization via data mining

- **Towards integrated information systems**
 - Integration of database, data warehouse, Web, and data mining: Infrastructure for integrated data/information systems
 - Languages, optimization, automated system tuning & adaptation
Conclusions

- Science and engineering are fertile lands for data mining
- Gigantic amounts of S & E data are constantly being generated and collected
- Data mining: An essential scientific discovery process
- Lots of research themes will be flourishing
 - Information network analysis
 - Stream data mining
 - Mining moving object data, RFID data, and data from sensor networks
 - Spatiotemporal and multimedia data mining
 - Text and Web mining, visual data mining, …
 - Working on every S&E domain!
- NSF CDI: A long-awaited, exciting call!