MST-Binomial-Heaps(G)
1. T ← ∅
2. for each $v_i \in V[G]$
3. Heap-V_i ← Make-Binomial-Heap()
4. Insert(Heap-V_i, v_i)
5. Heap-E_i ← Make-Binomial-Heap()
6. for each $(v_i, v) \in E[G]$
7. Insert(Heap-E_i, (v_i, v)) // Use the weight of edge (v_i, v) as the key field
 // in the Min-Binomial-Heap, and store the
 // vertices v_i, v in the node.
8. while there is more than one set V_i
9. do choose any set V_i
10. m = Extract-Min(Heap-E_i)
11. Let u and v be the two vertices stored in m
12. $V_x = V_u$ and $V_y = V_v$
13. while parent[V_x] ≠ NIL
14. $V_x = \text{parent}[V_x]$
15. while parent[V_y] ≠ NIL
16. $V_y = \text{parent}[V_y]$
17. if $V_x \neq V_y$
18. T ← T ∪ {(u, v)}
19. Heap-V_x ← Union(Heap-V_x, Heap-V_y)
20. Heap-E_x ← Union(Heap-E_x, Heap-E_y)
21. return T

The entire for loop in lines 2-7 takes $O(E \cdot \lg |E|)$

Lines 3-5 take $O(1)$. Line 4 inserts a single vertex into the binomial tree in the binomial heap.

Lines 7 takes $O(\lg |E|)$ since each E_i will have at most $|E|$ nodes, and it is executed $O(|E|)$ times. Therefore, the complexity of the entire loop in lines 2-7 is $O(E \cdot \lg |E|)$.

The while loop in lines 8-20 will be executed $O(|E|)$ times. Note: \rightarrow indicates the complexity per line * the number of times the line is executed.

Line 10 takes $O(\lg |E|) \rightarrow O(E \cdot \lg |E|)$

Lines 13-14 take $O(\lg |V|) \rightarrow O(E \cdot \lg |V|)$
Lines 15-16 take $O(\lg |V|) \rightarrow O(E \cdot \lg |V|)$

These lines are used to find the representative element of the two nodes. The representative elements are then compared in line 17 to determine if nodes u and v are in the same binomial tree in the binomial heap.

By the if statement in line 17, lines 18-20 are executed $O(|V|)$ times because each Union will reduce the number of disjoint sets on Vertex by 1.

Line 18 takes $O(1) \rightarrow O(|V|)$
Line 19 takes $O(\lg |V|) \rightarrow O(V \cdot \lg |V|)$
Line 20 takes $O(\lg |E|) \rightarrow O(V \cdot \lg |E|)$

MST-Binomial-Heaps is $O(|E| \cdot \lg |E|)$. E is bounded from below by $\Omega(V)$ because a connected graph has at least $|V| - 1$ edges and from above by $O(|V|^2)$ in the case of a completely connected graph.